// SPDX-License-Identifier: CC0-1.0 /* Based on libxcrypt v4.4.17-0-g6b110bc */ /* One way encryption based on the SHA512-based Unix crypt implementation. * * Written by Ulrich Drepper in 2007 [1]. * Modified by Zack Weinberg in 2017, 2018. * Composed by Björn Esser in 2018. * Modified by Björn Esser in 2020. * Modified by Steffen Jaeckel in 2021 * for U-Boot, instead of using the global errno to use a static one * inside this file. * To the extent possible under law, the named authors have waived all * copyright and related or neighboring rights to this work. * * See https://creativecommons.org/publicdomain/zero/1.0/ for further * details. * * This file is a modified except from [2], lines 1403 up to 1676. * * [1] https://www.akkadia.org/drepper/sha-crypt.html * [2] https://www.akkadia.org/drepper/SHA-crypt.txt */ #include "crypt-port.h" #include "alg-sha512.h" #include #include #include #if INCLUDE_sha512crypt /* Define our magic string to mark salt for SHA512 "encryption" replacement. */ static const char sha512_salt_prefix[] = "$6$"; /* Prefix for optional rounds specification. */ static const char sha512_rounds_prefix[] = "rounds="; /* Maximum salt string length. */ #define SALT_LEN_MAX 16 /* Default number of rounds if not explicitly specified. */ #define ROUNDS_DEFAULT 5000 /* Minimum number of rounds. */ #define ROUNDS_MIN 1000 /* Maximum number of rounds. */ #define ROUNDS_MAX 999999999 /* The maximum possible length of a SHA512-hashed password string, including the terminating NUL character. Prefix (including its NUL) + rounds tag ("rounds=$" = "rounds=\0") + strlen(ROUNDS_MAX) + salt (up to SALT_LEN_MAX chars) + '$' + hash (86 chars). */ #define LENGTH_OF_NUMBER(n) (sizeof #n - 1) #define SHA512_HASH_LENGTH \ (sizeof (sha512_salt_prefix) + sizeof (sha512_rounds_prefix) + \ LENGTH_OF_NUMBER (ROUNDS_MAX) + SALT_LEN_MAX + 1 + 86) static_assert (SHA512_HASH_LENGTH <= CRYPT_OUTPUT_SIZE, "CRYPT_OUTPUT_SIZE is too small for SHA512"); /* A sha512_buffer holds all of the sensitive intermediate data. */ struct sha512_buffer { SHA512_CTX ctx; uint8_t result[64]; uint8_t p_bytes[64]; uint8_t s_bytes[64]; }; static_assert (sizeof (struct sha512_buffer) <= ALG_SPECIFIC_SIZE, "ALG_SPECIFIC_SIZE is too small for SHA512"); /* Use this instead of including errno.h */ static int errno; void crypt_sha512crypt_rn(const char *phrase, size_t phr_size, const char *setting, size_t ARG_UNUSED(set_size), uint8_t *output, size_t out_size, void *scratch, size_t scr_size); int crypt_sha512crypt_rn_wrapped(const char *phrase, size_t phr_size, const char *setting, size_t set_size, u8 *output, size_t out_size, void *scratch, size_t scr_size) { errno = 0; crypt_sha512crypt_rn(phrase, phr_size, setting, set_size, output, out_size, scratch, scr_size); return -errno; } /* Subroutine of _xcrypt_crypt_sha512crypt_rn: Feed CTX with LEN bytes of a virtual byte sequence consisting of BLOCK repeated over and over indefinitely. */ static void sha512_process_recycled_bytes (unsigned char block[64], size_t len, SHA512_CTX *ctx) { size_t cnt; for (cnt = len; cnt >= 64; cnt -= 64) SHA512_Update (ctx, block, 64); SHA512_Update (ctx, block, cnt); } void crypt_sha512crypt_rn (const char *phrase, size_t phr_size, const char *setting, size_t ARG_UNUSED (set_size), uint8_t *output, size_t out_size, void *scratch, size_t scr_size) { /* This shouldn't ever happen, but... */ if (out_size < SHA512_HASH_LENGTH || scr_size < sizeof (struct sha512_buffer)) { errno = ERANGE; return; } struct sha512_buffer *buf = scratch; SHA512_CTX *ctx = &buf->ctx; uint8_t *result = buf->result; uint8_t *p_bytes = buf->p_bytes; uint8_t *s_bytes = buf->s_bytes; char *cp = (char *)output; const char *salt = setting; size_t salt_size; size_t cnt; /* Default number of rounds. */ size_t rounds = ROUNDS_DEFAULT; bool rounds_custom = false; /* Find beginning of salt string. The prefix should normally always be present. Just in case it is not. */ if (strncmp (sha512_salt_prefix, salt, sizeof (sha512_salt_prefix) - 1) == 0) /* Skip salt prefix. */ salt += sizeof (sha512_salt_prefix) - 1; if (strncmp (salt, sha512_rounds_prefix, sizeof (sha512_rounds_prefix) - 1) == 0) { const char *num = salt + sizeof (sha512_rounds_prefix) - 1; /* Do not allow an explicit setting of zero rounds, nor of the default number of rounds, nor leading zeroes on the rounds. */ if (!(*num >= '1' && *num <= '9')) { errno = EINVAL; return; } errno = 0; char *endp; rounds = strtoul (num, &endp, 10); if (endp == num || *endp != '$' || rounds < ROUNDS_MIN || rounds > ROUNDS_MAX || errno) { errno = EINVAL; return; } salt = endp + 1; rounds_custom = true; } /* The salt ends at the next '$' or the end of the string. Ensure ':' does not appear in the salt (it is used as a separator in /etc/passwd). Also check for '\n', as in /etc/passwd the whole parameters of the user data must be on a single line. */ salt_size = strcspn (salt, "$:\n"); if (!(salt[salt_size] == '$' || !salt[salt_size])) { errno = EINVAL; return; } /* Ensure we do not use more salt than SALT_LEN_MAX. */ if (salt_size > SALT_LEN_MAX) salt_size = SALT_LEN_MAX; /* Compute alternate SHA512 sum with input PHRASE, SALT, and PHRASE. The final result will be added to the first context. */ SHA512_Init (ctx); /* Add phrase. */ SHA512_Update (ctx, phrase, phr_size); /* Add salt. */ SHA512_Update (ctx, salt, salt_size); /* Add phrase again. */ SHA512_Update (ctx, phrase, phr_size); /* Now get result of this (64 bytes) and add it to the other context. */ SHA512_Final (result, ctx); /* Prepare for the real work. */ SHA512_Init (ctx); /* Add the phrase string. */ SHA512_Update (ctx, phrase, phr_size); /* The last part is the salt string. This must be at most 8 characters and it ends at the first `$' character (for compatibility with existing implementations). */ SHA512_Update (ctx, salt, salt_size); /* Add for any character in the phrase one byte of the alternate sum. */ for (cnt = phr_size; cnt > 64; cnt -= 64) SHA512_Update (ctx, result, 64); SHA512_Update (ctx, result, cnt); /* Take the binary representation of the length of the phrase and for every 1 add the alternate sum, for every 0 the phrase. */ for (cnt = phr_size; cnt > 0; cnt >>= 1) if ((cnt & 1) != 0) SHA512_Update (ctx, result, 64); else SHA512_Update (ctx, phrase, phr_size); /* Create intermediate result. */ SHA512_Final (result, ctx); /* Start computation of P byte sequence. */ SHA512_Init (ctx); /* For every character in the password add the entire password. */ for (cnt = 0; cnt < phr_size; ++cnt) SHA512_Update (ctx, phrase, phr_size); /* Finish the digest. */ SHA512_Final (p_bytes, ctx); /* Start computation of S byte sequence. */ SHA512_Init (ctx); /* For every character in the password add the entire password. */ for (cnt = 0; cnt < (size_t) 16 + (size_t) result[0]; ++cnt) SHA512_Update (ctx, salt, salt_size); /* Finish the digest. */ SHA512_Final (s_bytes, ctx); /* Repeatedly run the collected hash value through SHA512 to burn CPU cycles. */ for (cnt = 0; cnt < rounds; ++cnt) { /* New context. */ SHA512_Init (ctx); /* Add phrase or last result. */ if ((cnt & 1) != 0) sha512_process_recycled_bytes (p_bytes, phr_size, ctx); else SHA512_Update (ctx, result, 64); /* Add salt for numbers not divisible by 3. */ if (cnt % 3 != 0) sha512_process_recycled_bytes (s_bytes, salt_size, ctx); /* Add phrase for numbers not divisible by 7. */ if (cnt % 7 != 0) sha512_process_recycled_bytes (p_bytes, phr_size, ctx); /* Add phrase or last result. */ if ((cnt & 1) != 0) SHA512_Update (ctx, result, 64); else sha512_process_recycled_bytes (p_bytes, phr_size, ctx); /* Create intermediate result. */ SHA512_Final (result, ctx); } /* Now we can construct the result string. It consists of four parts, one of which is optional. We already know that buflen is at least sha512_hash_length, therefore none of the string bashing below can overflow the buffer. */ memcpy (cp, sha512_salt_prefix, sizeof (sha512_salt_prefix) - 1); cp += sizeof (sha512_salt_prefix) - 1; if (rounds_custom) { int n = snprintf (cp, SHA512_HASH_LENGTH - (sizeof (sha512_salt_prefix) - 1), "%s%zu$", sha512_rounds_prefix, rounds); cp += n; } memcpy (cp, salt, salt_size); cp += salt_size; *cp++ = '$'; #define b64_from_24bit(B2, B1, B0, N) \ do { \ unsigned int w = ((((unsigned int)(B2)) << 16) | \ (((unsigned int)(B1)) << 8) | \ ((unsigned int)(B0))); \ int n = (N); \ while (n-- > 0) \ { \ *cp++ = b64t[w & 0x3f]; \ w >>= 6; \ } \ } while (0) b64_from_24bit (result[0], result[21], result[42], 4); b64_from_24bit (result[22], result[43], result[1], 4); b64_from_24bit (result[44], result[2], result[23], 4); b64_from_24bit (result[3], result[24], result[45], 4); b64_from_24bit (result[25], result[46], result[4], 4); b64_from_24bit (result[47], result[5], result[26], 4); b64_from_24bit (result[6], result[27], result[48], 4); b64_from_24bit (result[28], result[49], result[7], 4); b64_from_24bit (result[50], result[8], result[29], 4); b64_from_24bit (result[9], result[30], result[51], 4); b64_from_24bit (result[31], result[52], result[10], 4); b64_from_24bit (result[53], result[11], result[32], 4); b64_from_24bit (result[12], result[33], result[54], 4); b64_from_24bit (result[34], result[55], result[13], 4); b64_from_24bit (result[56], result[14], result[35], 4); b64_from_24bit (result[15], result[36], result[57], 4); b64_from_24bit (result[37], result[58], result[16], 4); b64_from_24bit (result[59], result[17], result[38], 4); b64_from_24bit (result[18], result[39], result[60], 4); b64_from_24bit (result[40], result[61], result[19], 4); b64_from_24bit (result[62], result[20], result[41], 4); b64_from_24bit (0, 0, result[63], 2); *cp = '\0'; } #ifndef NO_GENSALT void gensalt_sha512crypt_rn (unsigned long count, const uint8_t *rbytes, size_t nrbytes, uint8_t *output, size_t output_size) { gensalt_sha_rn ('6', SALT_LEN_MAX, ROUNDS_DEFAULT, ROUNDS_MIN, ROUNDS_MAX, count, rbytes, nrbytes, output, output_size); } #endif #endif