// SPDX-License-Identifier: GPL-2.0+ /* * Copyright 2017~2020 NXP * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include DECLARE_GLOBAL_DATA_PTR; #define SITES_MAX 16 #define FLAGS_VER2 0x1 #define FLAGS_VER3 0x2 #define FLAGS_VER4 0x4 #define TMR_DISABLE 0x0 #define TMR_ME 0x80000000 #define TMR_ALPF 0x0c000000 #define TMTMIR_DEFAULT 0x00000002 #define TIER_DISABLE 0x0 #define TER_EN 0x80000000 #define TER_ADC_PD 0x40000000 #define TER_ALPF 0x3 #define IMX_TMU_POLLING_DELAY_MS 5000 /* * i.MX TMU Registers */ struct imx_tmu_site_regs { u32 tritsr; /* Immediate Temperature Site Register */ u32 tratsr; /* Average Temperature Site Register */ u8 res0[0x8]; }; struct imx_tmu_regs { u32 tmr; /* Mode Register */ u32 tsr; /* Status Register */ u32 tmtmir; /* Temperature measurement interval Register */ u8 res0[0x14]; u32 tier; /* Interrupt Enable Register */ u32 tidr; /* Interrupt Detect Register */ u32 tiscr; /* Interrupt Site Capture Register */ u32 ticscr; /* Interrupt Critical Site Capture Register */ u8 res1[0x10]; u32 tmhtcrh; /* High Temperature Capture Register */ u32 tmhtcrl; /* Low Temperature Capture Register */ u8 res2[0x8]; u32 tmhtitr; /* High Temperature Immediate Threshold */ u32 tmhtatr; /* High Temperature Average Threshold */ u32 tmhtactr; /* High Temperature Average Crit Threshold */ u8 res3[0x24]; u32 ttcfgr; /* Temperature Configuration Register */ u32 tscfgr; /* Sensor Configuration Register */ u8 res4[0x78]; struct imx_tmu_site_regs site[SITES_MAX]; u8 res5[0x9f8]; u32 ipbrr0; /* IP Block Revision Register 0 */ u32 ipbrr1; /* IP Block Revision Register 1 */ u8 res6[0x310]; u32 ttr0cr; /* Temperature Range 0 Control Register */ u32 ttr1cr; /* Temperature Range 1 Control Register */ u32 ttr2cr; /* Temperature Range 2 Control Register */ u32 ttr3cr; /* Temperature Range 3 Control Register */ }; struct imx_tmu_regs_v4 { u32 tmr; /* Mode Register */ u32 tsr; /* Status Register */ u32 tmsr; /* Monitor Site Register */ u32 tmtmir; /* Temperature measurement interval Register */ u8 res0[0x10]; u32 tier; /* Interrupt Enable Register */ u32 tidr; /* Interrupt Detect Register */ u8 res1[0x8]; u32 tiiscr; /* Interrupt Immediate Site Capture Register */ u32 tiascr; /* Interrupt Average Site Capture Register */ u32 ticscr; /* Interrupt Critical Site Capture Register */ u8 res2[0x4]; u32 tmhtcr; /* Monitor High Temperature Capture Register */ u32 tmltcr; /* MonitorLow Temperature Capture Register */ u32 tmrtrcr; /* Monitor Rising Temperature Rate Capture Register */ u32 tmftrcr; /* Monitor Falling Temperature Rate Capture Register */ u32 tmhtitr; /* Monitor High Temperature Immediate Threshold */ u32 tmhtatr; /* Monitor High Temperature Average Threshold */ u32 tmhtactr; /* Monitor High Temperature Average Crit Threshold */ u8 res3[0x4]; u32 tmltitr; /* Monitor Low Temperature Immediate Threshold */ u32 tmltatr; /* Monitor Low Temperature Average Threshold */ u32 tmltactr; /* Monitor Low Temperature Average Crit Threshold */ u8 res4[0x4]; u32 tmrtrctr; /* Monitor Rising Temperature Rate Critical Threshold Register */ u32 tmftrctr; /* Monitor Falling Temperature Rate Critical Threshold Register */ u8 res5[0x8]; u32 ttcfgr; /* Temperature Configuration Register */ u32 tscfgr; /* Sensor Configuration Register */ u8 res6[0x78]; u32 tritsr0; /* Immediate Temperature Site Register */ u32 tratsr0; /* Average Temperature Site Register */ u8 res7[0xdf8]; u32 tcmcfg; /* Central Module Configuration */ u8 res8[0xc]; u32 ttrcr[16]; /* Temperature Range Control Register */ }; struct imx_tmu_regs_v2 { u32 ter; /* TMU enable Register */ u32 tsr; /* Status Register */ u32 tier; /* Interrupt enable register */ u32 tidr; /* Interrupt detect register */ u32 tmhtitr; /* Monitor high temperature immediate threshold register */ u32 tmhtatr; /* Monitor high temperature average threshold register */ u32 tmhtactr; /* TMU monitor high temperature average critical threshold register */ u32 tscr; /* Sensor value capture register */ u32 tritsr; /* Report immediate temperature site register 0 */ u32 tratsr; /* Report average temperature site register 0 */ u32 tasr; /* Amplifier setting register */ u32 ttmc; /* Test MUX control */ u32 tcaliv; }; struct imx_tmu_regs_v3 { u32 ter; /* TMU enable Register */ u32 tps; /* Status Register */ u32 tier; /* Interrupt enable register */ u32 tidr; /* Interrupt detect register */ u32 tmhtitr; /* Monitor high temperature immediate threshold register */ u32 tmhtatr; /* Monitor high temperature average threshold register */ u32 tmhtactr; /* TMU monitor high temperature average critical threshold register */ u32 tscr; /* Sensor value capture register */ u32 tritsr; /* Report immediate temperature site register 0 */ u32 tratsr; /* Report average temperature site register 0 */ u32 tasr; /* Amplifier setting register */ u32 ttmc; /* Test MUX control */ u32 tcaliv0; u32 tcaliv1; u32 tcaliv_m40; u32 trim; }; union tmu_regs { struct imx_tmu_regs regs_v1; struct imx_tmu_regs_v2 regs_v2; struct imx_tmu_regs_v3 regs_v3; struct imx_tmu_regs_v4 regs_v4; }; struct imx_tmu_plat { int critical; int alert; int polling_delay; int id; bool zone_node; union tmu_regs *regs; }; static int read_temperature(struct udevice *dev, int *temp) { struct imx_tmu_plat *pdata = dev_get_plat(dev); ulong drv_data = dev_get_driver_data(dev); u32 val; u32 retry = 10; u32 valid = 0; do { mdelay(100); retry--; if (drv_data & FLAGS_VER3) { val = readl(&pdata->regs->regs_v3.tritsr); valid = val & (1 << (30 + pdata->id)); } else if (drv_data & FLAGS_VER2) { val = readl(&pdata->regs->regs_v2.tritsr); /* * Check if TEMP is in valid range, the V bit in TRITSR * only reflects the RAW uncalibrated data */ valid = ((val & 0xff) < 10 || (val & 0xff) > 125) ? 0 : 1; } else if (drv_data & FLAGS_VER4) { val = readl(&pdata->regs->regs_v4.tritsr0); valid = val & 0x80000000; } else { val = readl(&pdata->regs->regs_v1.site[pdata->id].tritsr); valid = val & 0x80000000; } } while (!valid && retry > 0); if (retry > 0) { if (drv_data & FLAGS_VER3) { val = (val >> (pdata->id * 16)) & 0xff; if (val & 0x80) /* Negative */ val = (~(val & 0x7f) + 1); *temp = val; if (*temp < -40 || *temp > 125) /* Check the range */ return -EINVAL; *temp *= 1000; } else if (drv_data & FLAGS_VER4) { *temp = (val & 0x1ff) * 1000; if (val & 0x200) *temp += 500; /* Convert Kelvin to Celsius */ *temp -= 273000; } else { *temp = (val & 0xff) * 1000; } } else { return -EINVAL; } return 0; } int imx_tmu_get_temp(struct udevice *dev, int *temp) { struct imx_tmu_plat *pdata = dev_get_plat(dev); int cpu_tmp = 0; int ret; ret = read_temperature(dev, &cpu_tmp); if (ret) return ret; while (cpu_tmp >= pdata->alert) { dev_crit(dev, "CPU Temperature (%dC) is beyond alert (%dC), close to critical (%dC) waiting...\n", cpu_tmp / 1000, pdata->alert / 1000, pdata->critical / 1000); mdelay(pdata->polling_delay); ret = read_temperature(dev, &cpu_tmp); if (ret) return ret; } *temp = cpu_tmp / 1000; return 0; } static const struct dm_thermal_ops imx_tmu_ops = { .get_temp = imx_tmu_get_temp, }; static int imx_tmu_calibration(struct udevice *dev) { int i, val, len, ret; int index; u32 range[4]; const fdt32_t *calibration; struct imx_tmu_plat *pdata = dev_get_plat(dev); ulong drv_data = dev_get_driver_data(dev); dev_dbg(dev, "%s\n", __func__); if (drv_data & (FLAGS_VER2 | FLAGS_VER3)) return 0; if (drv_data & FLAGS_VER4) { calibration = dev_read_prop(dev, "fsl,tmu-calibration", &len); if (!calibration || len % 8 || len > 128) { printf("TMU: invalid calibration data.\n"); return -ENODEV; } for (i = 0; i < len; i += 8, calibration += 2) { index = i / 8; writel(index, &pdata->regs->regs_v4.ttcfgr); val = fdt32_to_cpu(*calibration); writel(val, &pdata->regs->regs_v4.tscfgr); val = fdt32_to_cpu(*(calibration + 1)); writel((1 << 31) | val, &pdata->regs->regs_v4.ttrcr[index]); } return 0; } ret = dev_read_u32_array(dev, "fsl,tmu-range", range, 4); if (ret) { dev_err(dev, "TMU: missing calibration range, ret = %d.\n", ret); return ret; } /* Init temperature range registers */ writel(range[0], &pdata->regs->regs_v1.ttr0cr); writel(range[1], &pdata->regs->regs_v1.ttr1cr); writel(range[2], &pdata->regs->regs_v1.ttr2cr); writel(range[3], &pdata->regs->regs_v1.ttr3cr); calibration = dev_read_prop(dev, "fsl,tmu-calibration", &len); if (!calibration || len % 8) { dev_err(dev, "TMU: invalid calibration data.\n"); return -ENODEV; } for (i = 0; i < len; i += 8, calibration += 2) { val = fdt32_to_cpu(*calibration); writel(val, &pdata->regs->regs_v1.ttcfgr); val = fdt32_to_cpu(*(calibration + 1)); writel(val, &pdata->regs->regs_v1.tscfgr); } return 0; } #if defined(CONFIG_IMX8MM) || defined(CONFIG_IMX8MN) static void imx_tmu_mx8mm_mx8mn_init(struct udevice *dev) { /* Load TCALIV and TASR from fuses */ struct ocotp_regs *ocotp = (struct ocotp_regs *)OCOTP_BASE_ADDR; struct fuse_bank *bank = &ocotp->bank[3]; struct fuse_bank3_regs *fuse = (struct fuse_bank3_regs *)bank->fuse_regs; struct imx_tmu_plat *pdata = dev_get_plat(dev); void *reg_base = (void *)pdata->regs; u32 tca_rt, tca_hr, tca_en; u32 buf_vref, buf_slope; tca_rt = fuse->ana0 & 0xFF; tca_hr = (fuse->ana0 & 0xFF00) >> 8; tca_en = (fuse->ana0 & 0x2000000) >> 25; buf_vref = (fuse->ana0 & 0x1F00000) >> 20; buf_slope = (fuse->ana0 & 0xF0000) >> 16; writel(buf_vref | (buf_slope << 16), (ulong)reg_base + 0x28); writel((tca_en << 31) | (tca_hr << 16) | tca_rt, (ulong)reg_base + 0x30); } #else static inline void imx_tmu_mx8mm_mx8mn_init(struct udevice *dev) { } #endif #if defined(CONFIG_IMX8MP) static void imx_tmu_mx8mp_init(struct udevice *dev) { /* Load TCALIV0/1/m40 and TRIM from fuses */ struct ocotp_regs *ocotp = (struct ocotp_regs *)OCOTP_BASE_ADDR; struct fuse_bank *bank = &ocotp->bank[38]; struct fuse_bank38_regs *fuse = (struct fuse_bank38_regs *)bank->fuse_regs; struct fuse_bank *bank2 = &ocotp->bank[39]; struct fuse_bank39_regs *fuse2 = (struct fuse_bank39_regs *)bank2->fuse_regs; struct imx_tmu_plat *pdata = dev_get_plat(dev); void *reg_base = (void *)pdata->regs; u32 buf_vref, buf_slope, bjt_cur, vlsb, bgr; u32 reg; u32 tca40[2], tca25[2], tca105[2]; /* For blank sample */ if (!fuse->ana_trim2 && !fuse->ana_trim3 && !fuse->ana_trim4 && !fuse2->ana_trim5) { /* Use a default 25C binary codes */ tca25[0] = 1596; tca25[1] = 1596; writel(tca25[0], (ulong)reg_base + 0x30); writel(tca25[1], (ulong)reg_base + 0x34); return; } buf_vref = (fuse->ana_trim2 & 0xc0) >> 6; buf_slope = (fuse->ana_trim2 & 0xF00) >> 8; bjt_cur = (fuse->ana_trim2 & 0xF000) >> 12; bgr = (fuse->ana_trim2 & 0xF0000) >> 16; vlsb = (fuse->ana_trim2 & 0xF00000) >> 20; writel(buf_vref | (buf_slope << 16), (ulong)reg_base + 0x28); reg = (bgr << 28) | (bjt_cur << 20) | (vlsb << 12) | (1 << 7); writel(reg, (ulong)reg_base + 0x3c); tca40[0] = (fuse->ana_trim3 & 0xFFF0000) >> 16; tca25[0] = (fuse->ana_trim3 & 0xF0000000) >> 28; tca25[0] |= ((fuse->ana_trim4 & 0xFF) << 4); tca105[0] = (fuse->ana_trim4 & 0xFFF00) >> 8; tca40[1] = (fuse->ana_trim4 & 0xFFF00000) >> 20; tca25[1] = fuse2->ana_trim5 & 0xFFF; tca105[1] = (fuse2->ana_trim5 & 0xFFF000) >> 12; /* use 25c for 1p calibration */ writel(tca25[0] | (tca105[0] << 16), (ulong)reg_base + 0x30); writel(tca25[1] | (tca105[1] << 16), (ulong)reg_base + 0x34); writel(tca40[0] | (tca40[1] << 16), (ulong)reg_base + 0x38); } #else static inline void imx_tmu_mx8mp_init(struct udevice *dev) { } #endif static inline void imx_tmu_mx93_init(struct udevice *dev) { } static void imx_tmu_arch_init(struct udevice *dev) { if (is_imx8mm() || is_imx8mn()) imx_tmu_mx8mm_mx8mn_init(dev); else if (is_imx8mp()) imx_tmu_mx8mp_init(dev); else if (is_imx93()) imx_tmu_mx93_init(dev); else dev_err(dev, "Unsupported SoC, TMU calibration not loaded!\n"); } static void imx_tmu_init(struct udevice *dev) { struct imx_tmu_plat *pdata = dev_get_plat(dev); ulong drv_data = dev_get_driver_data(dev); dev_dbg(dev, "%s\n", __func__); if (drv_data & FLAGS_VER3) { /* Disable monitoring */ writel(0x0, &pdata->regs->regs_v3.ter); /* Disable interrupt, using polling instead */ writel(0x0, &pdata->regs->regs_v3.tier); } else if (drv_data & FLAGS_VER2) { /* Disable monitoring */ writel(0x0, &pdata->regs->regs_v2.ter); /* Disable interrupt, using polling instead */ writel(0x0, &pdata->regs->regs_v2.tier); } else if (drv_data & FLAGS_VER4) { /* Disable monitoring */ writel(TMR_DISABLE, &pdata->regs->regs_v4.tmr); /* Disable interrupt, using polling instead */ writel(TIER_DISABLE, &pdata->regs->regs_v4.tier); /* Set update_interval */ writel(TMTMIR_DEFAULT, &pdata->regs->regs_v4.tmtmir); } else { /* Disable monitoring */ writel(TMR_DISABLE, &pdata->regs->regs_v1.tmr); /* Disable interrupt, using polling instead */ writel(TIER_DISABLE, &pdata->regs->regs_v1.tier); /* Set update_interval */ writel(TMTMIR_DEFAULT, &pdata->regs->regs_v1.tmtmir); } imx_tmu_arch_init(dev); } static int imx_tmu_enable_msite(struct udevice *dev) { struct imx_tmu_plat *pdata = dev_get_plat(dev); ulong drv_data = dev_get_driver_data(dev); u32 reg; dev_dbg(dev, "%s\n", __func__); if (!pdata->regs) return -EIO; if (drv_data & FLAGS_VER3) { reg = readl(&pdata->regs->regs_v3.ter); reg &= ~TER_EN; writel(reg, &pdata->regs->regs_v3.ter); writel(pdata->id << 30, &pdata->regs->regs_v3.tps); reg &= ~TER_ALPF; reg |= 0x1; reg &= ~TER_ADC_PD; writel(reg, &pdata->regs->regs_v3.ter); /* Enable monitor */ reg |= TER_EN; writel(reg, &pdata->regs->regs_v3.ter); } else if (drv_data & FLAGS_VER2) { reg = readl(&pdata->regs->regs_v2.ter); reg &= ~TER_EN; writel(reg, &pdata->regs->regs_v2.ter); reg &= ~TER_ALPF; reg |= 0x1; writel(reg, &pdata->regs->regs_v2.ter); /* Enable monitor */ reg |= TER_EN; writel(reg, &pdata->regs->regs_v2.ter); } else if (drv_data & FLAGS_VER4) { reg = readl(&pdata->regs->regs_v4.tcmcfg); reg |= (1 << 30) | (1 << 28); reg &= ~0xF000; /* set SAR clk = IPG clk /16 */ writel(reg, &pdata->regs->regs_v4.tcmcfg); /* Set ALPF*/ reg = readl(&pdata->regs->regs_v4.tmr); reg |= TMR_ALPF; writel(reg, &pdata->regs->regs_v4.tmr); writel(1, &pdata->regs->regs_v4.tmsr); /* Enable ME */ reg |= TMR_ME; writel(reg, &pdata->regs->regs_v4.tmr); } else { /* Clear the ME before setting MSITE and ALPF*/ reg = readl(&pdata->regs->regs_v1.tmr); reg &= ~TMR_ME; writel(reg, &pdata->regs->regs_v1.tmr); reg |= 1 << (15 - pdata->id); reg |= TMR_ALPF; writel(reg, &pdata->regs->regs_v1.tmr); /* Enable ME */ reg |= TMR_ME; writel(reg, &pdata->regs->regs_v1.tmr); } return 0; } static int imx_tmu_bind(struct udevice *dev) { struct imx_tmu_plat *pdata = dev_get_plat(dev); int ret; ofnode node, offset; const char *name; const void *prop; int minc, maxc; dev_dbg(dev, "%s\n", __func__); prop = dev_read_prop(dev, "compatible", NULL); if (!prop) return 0; pdata->zone_node = 1; /* default alert/crit temps based on temp grade */ get_cpu_temp_grade(&minc, &maxc); pdata->critical = maxc * 1000; pdata->alert = (maxc - 10) * 1000; node = ofnode_path("/thermal-zones"); ofnode_for_each_subnode(offset, node) { /* Bind the subnode to this driver */ name = ofnode_get_name(offset); ret = device_bind_with_driver_data(dev, dev->driver, name, dev->driver_data, offset, NULL); if (ret) dev_err(dev, "Error binding driver: %d\n", ret); } return 0; } static int imx_tmu_parse_fdt(struct udevice *dev) { struct imx_tmu_plat *pdata = dev_get_plat(dev), *p_parent_data; struct ofnode_phandle_args args; ofnode trips_np; int ret; dev_dbg(dev, "%s\n", __func__); pdata->polling_delay = IMX_TMU_POLLING_DELAY_MS; if (pdata->zone_node) { pdata->regs = (union tmu_regs *)dev_read_addr_ptr(dev); if (!pdata->regs) return -EINVAL; return 0; } p_parent_data = dev_get_plat(dev->parent); if (p_parent_data->zone_node) pdata->regs = p_parent_data->regs; ret = dev_read_phandle_with_args(dev, "thermal-sensors", "#thermal-sensor-cells", 0, 0, &args); if (ret) return ret; if (!ofnode_equal(args.node, dev_ofnode(dev->parent))) return -EFAULT; if (args.args_count >= 1) pdata->id = args.args[0]; else pdata->id = 0; dev_dbg(dev, "args.args_count %d, id %d\n", args.args_count, pdata->id); pdata->polling_delay = dev_read_u32_default(dev, "polling-delay", IMX_TMU_POLLING_DELAY_MS); trips_np = ofnode_path("/thermal-zones/cpu-thermal/trips"); ofnode_for_each_subnode(trips_np, trips_np) { const char *type; type = ofnode_get_property(trips_np, "type", NULL); if (!type) continue; if (!strcmp(type, "critical")) pdata->critical = ofnode_read_u32_default(trips_np, "temperature", 85); else if (strcmp(type, "passive") == 0) pdata->alert = ofnode_read_u32_default(trips_np, "temperature", 80); else continue; } dev_dbg(dev, "id %d polling_delay %d, critical %d, alert %d\n", pdata->id, pdata->polling_delay, pdata->critical, pdata->alert); return 0; } static int imx_tmu_probe(struct udevice *dev) { struct imx_tmu_plat *pdata = dev_get_plat(dev); int ret; ret = imx_tmu_parse_fdt(dev); if (ret) { dev_err(dev, "Error in parsing TMU FDT %d\n", ret); return ret; } if (pdata->zone_node) { imx_tmu_init(dev); imx_tmu_calibration(dev); imx_tmu_enable_msite(dev); } else { imx_tmu_enable_msite(dev); } return 0; } static const struct udevice_id imx_tmu_ids[] = { { .compatible = "fsl,imx8mq-tmu", }, { .compatible = "fsl,imx8mm-tmu", .data = FLAGS_VER2, }, { .compatible = "fsl,imx8mp-tmu", .data = FLAGS_VER3, }, { .compatible = "fsl,imx93-tmu", .data = FLAGS_VER4, }, { } }; U_BOOT_DRIVER(imx_tmu) = { .name = "imx_tmu", .id = UCLASS_THERMAL, .ops = &imx_tmu_ops, .of_match = imx_tmu_ids, .bind = imx_tmu_bind, .probe = imx_tmu_probe, .plat_auto = sizeof(struct imx_tmu_plat), .flags = DM_FLAG_PRE_RELOC, };