// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2018 Linaro Limited */ #include #include #include #include #include #include #include #include "optee/optee_msg.h" #include "optee/optee_private.h" /* * The sandbox tee driver tries to emulate a generic Trusted Exectution * Environment (TEE) with the Trusted Applications (TA) OPTEE_TA_AVB and * OPTEE_TA_RPC_TEST available. */ static const u32 pstorage_max = 16; /** * struct ta_entry - TA entries * @uuid: UUID of an emulated TA * @open_session Called when a session is openened to the TA * @invoke_func Called when a function in the TA is to be invoked * * This struct is used to register TAs in this sandbox emulation of a TEE. */ struct ta_entry { struct tee_optee_ta_uuid uuid; u32 (*open_session)(struct udevice *dev, uint num_params, struct tee_param *params); u32 (*invoke_func)(struct udevice *dev, u32 func, uint num_params, struct tee_param *params); }; static int get_msg_arg(struct udevice *dev, uint num_params, struct tee_shm **shmp, struct optee_msg_arg **msg_arg) { int rc; struct optee_msg_arg *ma; rc = __tee_shm_add(dev, OPTEE_MSG_NONCONTIG_PAGE_SIZE, NULL, OPTEE_MSG_GET_ARG_SIZE(num_params), TEE_SHM_ALLOC, shmp); if (rc) return rc; ma = (*shmp)->addr; memset(ma, 0, OPTEE_MSG_GET_ARG_SIZE(num_params)); ma->num_params = num_params; *msg_arg = ma; return 0; } void *optee_alloc_and_init_page_list(void *buf, ulong len, u64 *phys_buf_ptr) { /* * An empty stub is added just to fix linking issues. * This function isn't supposed to be called in sandbox * setup, otherwise replace this with a proper * implementation from optee/core.c */ return NULL; } #if defined(CONFIG_OPTEE_TA_SCP03) || defined(CONFIG_OPTEE_TA_AVB) static u32 get_attr(uint n, uint num_params, struct tee_param *params) { if (n >= num_params) return TEE_PARAM_ATTR_TYPE_NONE; return params[n].attr; } static u32 check_params(u8 p0, u8 p1, u8 p2, u8 p3, uint num_params, struct tee_param *params) { u8 p[] = { p0, p1, p2, p3 }; uint n; for (n = 0; n < ARRAY_SIZE(p); n++) if (p[n] != get_attr(n, num_params, params)) goto bad_params; for (; n < num_params; n++) if (get_attr(n, num_params, params)) goto bad_params; return TEE_SUCCESS; bad_params: printf("Bad param attrs\n"); return TEE_ERROR_BAD_PARAMETERS; } #endif #ifdef CONFIG_OPTEE_TA_SCP03 static u32 pta_scp03_open_session(struct udevice *dev, uint num_params, struct tee_param *params) { /* * We don't expect additional parameters when opening a session to * this TA. */ return check_params(TEE_PARAM_ATTR_TYPE_NONE, TEE_PARAM_ATTR_TYPE_NONE, TEE_PARAM_ATTR_TYPE_NONE, TEE_PARAM_ATTR_TYPE_NONE, num_params, params); } static u32 pta_scp03_invoke_func(struct udevice *dev, u32 func, uint num_params, struct tee_param *params) { u32 res; static bool enabled; static bool provisioned; switch (func) { case PTA_CMD_ENABLE_SCP03: res = check_params(TEE_PARAM_ATTR_TYPE_VALUE_INPUT, TEE_PARAM_ATTR_TYPE_NONE, TEE_PARAM_ATTR_TYPE_NONE, TEE_PARAM_ATTR_TYPE_NONE, num_params, params); if (res) return res; /* If SCP03 was not enabled, enable it */ if (!enabled) enabled = true; /* If SCP03 was not provisioned, provision new keys */ if (params[0].u.value.a && !provisioned) provisioned = true; /* * Either way, we asume both operations succeeded and that * the communication channel has now been stablished */ return TEE_SUCCESS; default: return TEE_ERROR_NOT_SUPPORTED; } } #endif #ifdef CONFIG_OPTEE_TA_AVB static u32 ta_avb_open_session(struct udevice *dev, uint num_params, struct tee_param *params) { /* * We don't expect additional parameters when opening a session to * this TA. */ return check_params(TEE_PARAM_ATTR_TYPE_NONE, TEE_PARAM_ATTR_TYPE_NONE, TEE_PARAM_ATTR_TYPE_NONE, TEE_PARAM_ATTR_TYPE_NONE, num_params, params); } static u32 ta_avb_invoke_func(struct udevice *dev, u32 func, uint num_params, struct tee_param *params) { struct sandbox_tee_state *state = dev_get_priv(dev); struct env_entry e, *ep; char *name; u32 res; uint slot; u64 val; char *value; u32 value_sz; switch (func) { case TA_AVB_CMD_READ_ROLLBACK_INDEX: res = check_params(TEE_PARAM_ATTR_TYPE_VALUE_INPUT, TEE_PARAM_ATTR_TYPE_VALUE_OUTPUT, TEE_PARAM_ATTR_TYPE_NONE, TEE_PARAM_ATTR_TYPE_NONE, num_params, params); if (res) return res; slot = params[0].u.value.a; if (slot >= ARRAY_SIZE(state->ta_avb_rollback_indexes)) { printf("Rollback index slot out of bounds %u\n", slot); return TEE_ERROR_BAD_PARAMETERS; } val = state->ta_avb_rollback_indexes[slot]; params[1].u.value.a = val >> 32; params[1].u.value.b = val; return TEE_SUCCESS; case TA_AVB_CMD_WRITE_ROLLBACK_INDEX: res = check_params(TEE_PARAM_ATTR_TYPE_VALUE_INPUT, TEE_PARAM_ATTR_TYPE_VALUE_INPUT, TEE_PARAM_ATTR_TYPE_NONE, TEE_PARAM_ATTR_TYPE_NONE, num_params, params); if (res) return res; slot = params[0].u.value.a; if (slot >= ARRAY_SIZE(state->ta_avb_rollback_indexes)) { printf("Rollback index slot out of bounds %u\n", slot); return TEE_ERROR_BAD_PARAMETERS; } val = (u64)params[1].u.value.a << 32 | params[1].u.value.b; if (val < state->ta_avb_rollback_indexes[slot]) return TEE_ERROR_SECURITY; state->ta_avb_rollback_indexes[slot] = val; return TEE_SUCCESS; case TA_AVB_CMD_READ_LOCK_STATE: res = check_params(TEE_PARAM_ATTR_TYPE_VALUE_OUTPUT, TEE_PARAM_ATTR_TYPE_NONE, TEE_PARAM_ATTR_TYPE_NONE, TEE_PARAM_ATTR_TYPE_NONE, num_params, params); if (res) return res; params[0].u.value.a = state->ta_avb_lock_state; return TEE_SUCCESS; case TA_AVB_CMD_WRITE_LOCK_STATE: res = check_params(TEE_PARAM_ATTR_TYPE_VALUE_INPUT, TEE_PARAM_ATTR_TYPE_NONE, TEE_PARAM_ATTR_TYPE_NONE, TEE_PARAM_ATTR_TYPE_NONE, num_params, params); if (res) return res; if (state->ta_avb_lock_state != params[0].u.value.a) { state->ta_avb_lock_state = params[0].u.value.a; memset(state->ta_avb_rollback_indexes, 0, sizeof(state->ta_avb_rollback_indexes)); } return TEE_SUCCESS; case TA_AVB_CMD_READ_PERSIST_VALUE: res = check_params(TEE_PARAM_ATTR_TYPE_MEMREF_INPUT, TEE_PARAM_ATTR_TYPE_MEMREF_INOUT, TEE_PARAM_ATTR_TYPE_NONE, TEE_PARAM_ATTR_TYPE_NONE, num_params, params); if (res) return res; name = params[0].u.memref.shm->addr; value = params[1].u.memref.shm->addr; value_sz = params[1].u.memref.size; e.key = name; e.data = NULL; hsearch_r(e, ENV_FIND, &ep, &state->pstorage_htab, 0); if (!ep) return TEE_ERROR_ITEM_NOT_FOUND; value_sz = strlen(ep->data) + 1; memcpy(value, ep->data, value_sz); return TEE_SUCCESS; case TA_AVB_CMD_WRITE_PERSIST_VALUE: res = check_params(TEE_PARAM_ATTR_TYPE_MEMREF_INPUT, TEE_PARAM_ATTR_TYPE_MEMREF_INPUT, TEE_PARAM_ATTR_TYPE_NONE, TEE_PARAM_ATTR_TYPE_NONE, num_params, params); if (res) return res; name = params[0].u.memref.shm->addr; value = params[1].u.memref.shm->addr; value_sz = params[1].u.memref.size; e.key = name; e.data = NULL; hsearch_r(e, ENV_FIND, &ep, &state->pstorage_htab, 0); if (ep) hdelete_r(e.key, &state->pstorage_htab, 0); e.key = name; e.data = value; hsearch_r(e, ENV_ENTER, &ep, &state->pstorage_htab, 0); if (!ep) return TEE_ERROR_OUT_OF_MEMORY; return TEE_SUCCESS; default: return TEE_ERROR_NOT_SUPPORTED; } } #endif /* OPTEE_TA_AVB */ #ifdef CONFIG_OPTEE_TA_RPC_TEST static u32 ta_rpc_test_open_session(struct udevice *dev, uint num_params, struct tee_param *params) { /* * We don't expect additional parameters when opening a session to * this TA. */ return check_params(TEE_PARAM_ATTR_TYPE_NONE, TEE_PARAM_ATTR_TYPE_NONE, TEE_PARAM_ATTR_TYPE_NONE, TEE_PARAM_ATTR_TYPE_NONE, num_params, params); } static void fill_i2c_rpc_params(struct optee_msg_arg *msg_arg, u64 bus_num, u64 chip_addr, u64 xfer_flags, u64 op, struct tee_param_memref memref) { msg_arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT; msg_arg->params[1].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT; msg_arg->params[2].attr = OPTEE_MSG_ATTR_TYPE_RMEM_INOUT; msg_arg->params[3].attr = OPTEE_MSG_ATTR_TYPE_VALUE_OUTPUT; /* trigger I2C services of TEE supplicant */ msg_arg->cmd = OPTEE_MSG_RPC_CMD_I2C_TRANSFER; msg_arg->params[0].u.value.a = op; msg_arg->params[0].u.value.b = bus_num; msg_arg->params[0].u.value.c = chip_addr; msg_arg->params[1].u.value.a = xfer_flags; /* buffer to read/write data */ msg_arg->params[2].u.rmem.shm_ref = (ulong)memref.shm; msg_arg->params[2].u.rmem.size = memref.size; msg_arg->params[2].u.rmem.offs = memref.shm_offs; msg_arg->num_params = 4; } static u32 ta_rpc_test_invoke_func(struct udevice *dev, u32 func, uint num_params, struct tee_param *params) { struct tee_shm *shm; struct tee_param_memref memref_data; struct optee_msg_arg *msg_arg; int chip_addr, bus_num, op, xfer_flags; int res; res = check_params(TEE_PARAM_ATTR_TYPE_VALUE_INPUT, TEE_PARAM_ATTR_TYPE_MEMREF_INOUT, TEE_PARAM_ATTR_TYPE_NONE, TEE_PARAM_ATTR_TYPE_NONE, num_params, params); if (res) return TEE_ERROR_BAD_PARAMETERS; bus_num = params[0].u.value.a; chip_addr = params[0].u.value.b; xfer_flags = params[0].u.value.c; memref_data = params[1].u.memref; switch (func) { case TA_RPC_TEST_CMD_I2C_READ: op = OPTEE_MSG_RPC_CMD_I2C_TRANSFER_RD; break; case TA_RPC_TEST_CMD_I2C_WRITE: op = OPTEE_MSG_RPC_CMD_I2C_TRANSFER_WR; break; default: return TEE_ERROR_NOT_SUPPORTED; } /* * Fill params for an RPC call to tee supplicant */ res = get_msg_arg(dev, 4, &shm, &msg_arg); if (res) goto out; fill_i2c_rpc_params(msg_arg, bus_num, chip_addr, xfer_flags, op, memref_data); /* Make an RPC call to tee supplicant */ optee_suppl_cmd(dev, shm, 0); res = msg_arg->ret; out: tee_shm_free(shm); return res; } #endif /* CONFIG_OPTEE_TA_RPC_TEST */ static const struct ta_entry ta_entries[] = { #ifdef CONFIG_OPTEE_TA_AVB { .uuid = TA_AVB_UUID, .open_session = ta_avb_open_session, .invoke_func = ta_avb_invoke_func, }, #endif #ifdef CONFIG_OPTEE_TA_RPC_TEST { .uuid = TA_RPC_TEST_UUID, .open_session = ta_rpc_test_open_session, .invoke_func = ta_rpc_test_invoke_func, }, #endif #ifdef CONFIG_OPTEE_TA_SCP03 { .uuid = PTA_SCP03_UUID, .open_session = pta_scp03_open_session, .invoke_func = pta_scp03_invoke_func, }, #endif }; static void sandbox_tee_get_version(struct udevice *dev, struct tee_version_data *vers) { struct tee_version_data v = { .gen_caps = TEE_GEN_CAP_GP | TEE_GEN_CAP_REG_MEM, }; *vers = v; } static int sandbox_tee_close_session(struct udevice *dev, u32 session) { struct sandbox_tee_state *state = dev_get_priv(dev); if (!state->ta || state->session != session) return -EINVAL; state->session = 0; state->ta = NULL; return 0; } static const struct ta_entry *find_ta_entry(u8 uuid[TEE_UUID_LEN]) { struct tee_optee_ta_uuid u; uint n; tee_optee_ta_uuid_from_octets(&u, uuid); for (n = 0; n < ARRAY_SIZE(ta_entries); n++) if (!memcmp(&u, &ta_entries[n].uuid, sizeof(u))) return ta_entries + n; return NULL; } static int sandbox_tee_open_session(struct udevice *dev, struct tee_open_session_arg *arg, uint num_params, struct tee_param *params) { struct sandbox_tee_state *state = dev_get_priv(dev); const struct ta_entry *ta; if (state->ta) { printf("A session is already open\n"); return -EBUSY; } ta = find_ta_entry(arg->uuid); if (!ta) { printf("Cannot find TA\n"); arg->ret = TEE_ERROR_ITEM_NOT_FOUND; arg->ret_origin = TEE_ORIGIN_TEE; return 0; } arg->ret = ta->open_session(dev, num_params, params); arg->ret_origin = TEE_ORIGIN_TRUSTED_APP; if (!arg->ret) { state->ta = (void *)ta; state->session = 1; arg->session = state->session; } else { printf("Cannot open session, TA returns error\n"); } return 0; } static int sandbox_tee_invoke_func(struct udevice *dev, struct tee_invoke_arg *arg, uint num_params, struct tee_param *params) { struct sandbox_tee_state *state = dev_get_priv(dev); struct ta_entry *ta = state->ta; if (!arg->session) { printf("Missing session\n"); return -EINVAL; } if (!ta) { printf("TA session not available\n"); return -EINVAL; } if (arg->session != state->session) { printf("Session mismatch\n"); return -EINVAL; } arg->ret = ta->invoke_func(dev, arg->func, num_params, params); arg->ret_origin = TEE_ORIGIN_TRUSTED_APP; return 0; } static int sandbox_tee_shm_register(struct udevice *dev, struct tee_shm *shm) { struct sandbox_tee_state *state = dev_get_priv(dev); state->num_shms++; return 0; } static int sandbox_tee_shm_unregister(struct udevice *dev, struct tee_shm *shm) { struct sandbox_tee_state *state = dev_get_priv(dev); state->num_shms--; return 0; } static int sandbox_tee_remove(struct udevice *dev) { struct sandbox_tee_state *state = dev_get_priv(dev); hdestroy_r(&state->pstorage_htab); return 0; } static int sandbox_tee_probe(struct udevice *dev) { struct sandbox_tee_state *state = dev_get_priv(dev); /* * With this hastable we emulate persistent storage, * which should contain persistent values * between different sessions/command invocations. */ if (!hcreate_r(pstorage_max, &state->pstorage_htab)) return TEE_ERROR_OUT_OF_MEMORY; return 0; } static const struct tee_driver_ops sandbox_tee_ops = { .get_version = sandbox_tee_get_version, .open_session = sandbox_tee_open_session, .close_session = sandbox_tee_close_session, .invoke_func = sandbox_tee_invoke_func, .shm_register = sandbox_tee_shm_register, .shm_unregister = sandbox_tee_shm_unregister, }; static const struct udevice_id sandbox_tee_match[] = { { .compatible = "sandbox,tee" }, {}, }; U_BOOT_DRIVER(sandbox_tee) = { .name = "sandbox_tee", .id = UCLASS_TEE, .of_match = sandbox_tee_match, .ops = &sandbox_tee_ops, .priv_auto = sizeof(struct sandbox_tee_state), .probe = sandbox_tee_probe, .remove = sandbox_tee_remove, };