// SPDX-License-Identifier: GPL-2.0+ /* * (C) Copyright 2018 Xilinx * * Xilinx ZynqMP Generic Quad-SPI(QSPI) controller driver(master mode only) */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define GQSPI_GFIFO_STRT_MODE_MASK BIT(29) #define GQSPI_CONFIG_MODE_EN_MASK (3 << 30) #define GQSPI_CONFIG_DMA_MODE (2 << 30) #define GQSPI_CONFIG_CPHA_MASK BIT(2) #define GQSPI_CONFIG_CPOL_MASK BIT(1) /* * QSPI Interrupt Registers bit Masks * * All the four interrupt registers (Status/Mask/Enable/Disable) have the same * bit definitions. */ #define GQSPI_IXR_TXNFULL_MASK 0x00000004 /* QSPI TX FIFO Overflow */ #define GQSPI_IXR_TXFULL_MASK 0x00000008 /* QSPI TX FIFO is full */ #define GQSPI_IXR_TXFIFOEMPTY_MASK 0x00000100 /* QSPI TX FIFO is Empty */ #define GQSPI_IXR_RXNEMTY_MASK 0x00000010 /* QSPI RX FIFO Not Empty */ #define GQSPI_IXR_GFEMTY_MASK 0x00000080 /* QSPI Generic FIFO Empty */ #define GQSPI_IXR_GFNFULL_MASK 0x00000200 /* QSPI GENFIFO not full */ #define GQSPI_IXR_ALL_MASK (GQSPI_IXR_TXNFULL_MASK | \ GQSPI_IXR_RXNEMTY_MASK) /* * QSPI Enable Register bit Masks * * This register is used to enable or disable the QSPI controller */ #define GQSPI_ENABLE_ENABLE_MASK 0x00000001 /* QSPI Enable Bit Mask */ #define GQSPI_GFIFO_LOW_BUS BIT(14) #define GQSPI_GFIFO_CS_LOWER BIT(12) #define GQSPI_GFIFO_UP_BUS BIT(15) #define GQSPI_GFIFO_CS_UPPER BIT(13) #define GQSPI_SPI_MODE_QSPI (3 << 10) #define GQSPI_SPI_MODE_SPI BIT(10) #define GQSPI_SPI_MODE_DUAL_SPI (2 << 10) #define GQSPI_IMD_DATA_CS_ASSERT 5 #define GQSPI_IMD_DATA_CS_DEASSERT 5 #define GQSPI_GFIFO_TX BIT(16) #define GQSPI_GFIFO_RX BIT(17) #define GQSPI_GFIFO_STRIPE_MASK BIT(18) #define GQSPI_GFIFO_IMD_MASK 0xFF #define GQSPI_GFIFO_EXP_MASK BIT(9) #define GQSPI_GFIFO_DATA_XFR_MASK BIT(8) #define GQSPI_STRT_GEN_FIFO BIT(28) #define GQSPI_GEN_FIFO_STRT_MOD BIT(29) #define GQSPI_GFIFO_WP_HOLD BIT(19) #define GQSPI_BAUD_DIV_MASK (7 << 3) #define GQSPI_DFLT_BAUD_RATE_DIV BIT(3) #define GQSPI_GFIFO_ALL_INT_MASK 0xFBE #define GQSPI_DMA_DST_I_STS_DONE BIT(1) #define GQSPI_DMA_DST_I_STS_MASK 0xFE #define MODEBITS 0x6 #define GQSPI_GFIFO_SELECT BIT(0) #define GQSPI_FIFO_THRESHOLD 1 #define GQSPI_GENFIFO_THRESHOLD 31 #define SPI_XFER_ON_BOTH 0 #define SPI_XFER_ON_LOWER 1 #define SPI_XFER_ON_UPPER 2 #define GQSPI_DMA_ALIGN 0x4 #define GQSPI_MAX_BAUD_RATE_VAL 7 #define GQSPI_DFLT_BAUD_RATE_VAL 2 #define GQSPI_TIMEOUT 100000000 #define GQSPI_BAUD_DIV_SHIFT 2 #define GQSPI_LPBK_DLY_ADJ_LPBK_SHIFT 5 #define GQSPI_LPBK_DLY_ADJ_DLY_1 0x1 #define GQSPI_LPBK_DLY_ADJ_DLY_1_SHIFT 3 #define GQSPI_LPBK_DLY_ADJ_DLY_0 0x3 #define GQSPI_USE_DATA_DLY 0x1 #define GQSPI_USE_DATA_DLY_SHIFT 31 #define GQSPI_DATA_DLY_ADJ_VALUE 0x2 #define GQSPI_DATA_DLY_ADJ_SHIFT 28 #define TAP_DLY_BYPASS_LQSPI_RX_VALUE 0x1 #define TAP_DLY_BYPASS_LQSPI_RX_SHIFT 2 #define GQSPI_DATA_DLY_ADJ_OFST 0x000001F8 #define IOU_TAPDLY_BYPASS_OFST !(IS_ENABLED(CONFIG_ARCH_VERSAL) || \ IS_ENABLED(CONFIG_ARCH_VERSAL_NET)) ? \ 0xFF180390 : 0xF103003C #define GQSPI_LPBK_DLY_ADJ_LPBK_MASK 0x00000020 #define GQSPI_FREQ_37_5MHZ 37500000 #define GQSPI_FREQ_40MHZ 40000000 #define GQSPI_FREQ_100MHZ 100000000 #define GQSPI_FREQ_150MHZ 150000000 #define IOU_TAPDLY_BYPASS_MASK 0x7 #define GQSPI_REG_OFFSET 0x100 #define GQSPI_DMA_REG_OFFSET 0x800 /* QSPI register offsets */ struct zynqmp_qspi_regs { u32 confr; /* 0x00 */ u32 isr; /* 0x04 */ u32 ier; /* 0x08 */ u32 idisr; /* 0x0C */ u32 imaskr; /* 0x10 */ u32 enbr; /* 0x14 */ u32 dr; /* 0x18 */ u32 txd0r; /* 0x1C */ u32 drxr; /* 0x20 */ u32 sicr; /* 0x24 */ u32 txftr; /* 0x28 */ u32 rxftr; /* 0x2C */ u32 gpior; /* 0x30 */ u32 reserved0; /* 0x34 */ u32 lpbkdly; /* 0x38 */ u32 reserved1; /* 0x3C */ u32 genfifo; /* 0x40 */ u32 gqspisel; /* 0x44 */ u32 reserved2; /* 0x48 */ u32 gqfifoctrl; /* 0x4C */ u32 gqfthr; /* 0x50 */ u32 gqpollcfg; /* 0x54 */ u32 gqpollto; /* 0x58 */ u32 gqxfersts; /* 0x5C */ u32 gqfifosnap; /* 0x60 */ u32 gqrxcpy; /* 0x64 */ u32 reserved3[36]; /* 0x68 */ u32 gqspidlyadj; /* 0xF8 */ }; struct zynqmp_qspi_dma_regs { u32 dmadst; /* 0x00 */ u32 dmasize; /* 0x04 */ u32 dmasts; /* 0x08 */ u32 dmactrl; /* 0x0C */ u32 reserved0; /* 0x10 */ u32 dmaisr; /* 0x14 */ u32 dmaier; /* 0x18 */ u32 dmaidr; /* 0x1C */ u32 dmaimr; /* 0x20 */ u32 dmactrl2; /* 0x24 */ u32 dmadstmsb; /* 0x28 */ }; struct zynqmp_qspi_plat { struct zynqmp_qspi_regs *regs; struct zynqmp_qspi_dma_regs *dma_regs; u32 frequency; u32 speed_hz; unsigned int io_mode; }; struct zynqmp_qspi_priv { struct zynqmp_qspi_regs *regs; struct zynqmp_qspi_dma_regs *dma_regs; const void *tx_buf; void *rx_buf; unsigned int len; unsigned int io_mode; int bytes_to_transfer; int bytes_to_receive; const struct spi_mem_op *op; }; __weak int zynqmp_mmio_write(const u32 address, const u32 mask, const u32 value) { return 0; } static int zynqmp_qspi_of_to_plat(struct udevice *bus) { struct zynqmp_qspi_plat *plat = dev_get_plat(bus); debug("%s\n", __func__); plat->regs = (struct zynqmp_qspi_regs *)(dev_read_addr(bus) + GQSPI_REG_OFFSET); plat->dma_regs = (struct zynqmp_qspi_dma_regs *) (dev_read_addr(bus) + GQSPI_DMA_REG_OFFSET); plat->io_mode = dev_read_bool(bus, "has-io-mode"); return 0; } static void zynqmp_qspi_init_hw(struct zynqmp_qspi_priv *priv) { u32 config_reg; struct zynqmp_qspi_regs *regs = priv->regs; writel(GQSPI_GFIFO_SELECT, ®s->gqspisel); writel(GQSPI_GFIFO_ALL_INT_MASK, ®s->idisr); writel(GQSPI_FIFO_THRESHOLD, ®s->txftr); writel(GQSPI_FIFO_THRESHOLD, ®s->rxftr); writel(GQSPI_GENFIFO_THRESHOLD, ®s->gqfthr); writel(GQSPI_GFIFO_ALL_INT_MASK, ®s->isr); writel(~GQSPI_ENABLE_ENABLE_MASK, ®s->enbr); config_reg = readl(®s->confr); config_reg &= ~(GQSPI_GFIFO_STRT_MODE_MASK | GQSPI_CONFIG_MODE_EN_MASK); config_reg |= GQSPI_GFIFO_WP_HOLD | GQSPI_DFLT_BAUD_RATE_DIV; config_reg |= GQSPI_GFIFO_STRT_MODE_MASK; if (!priv->io_mode) config_reg |= GQSPI_CONFIG_DMA_MODE; writel(config_reg, ®s->confr); writel(GQSPI_ENABLE_ENABLE_MASK, ®s->enbr); } static u32 zynqmp_qspi_bus_select(struct zynqmp_qspi_priv *priv) { u32 gqspi_fifo_reg = 0; gqspi_fifo_reg = GQSPI_GFIFO_LOW_BUS | GQSPI_GFIFO_CS_LOWER; return gqspi_fifo_reg; } static u32 zynqmp_qspi_genfifo_mode(u8 buswidth) { switch (buswidth) { case 1: return GQSPI_SPI_MODE_SPI; case 2: return GQSPI_SPI_MODE_DUAL_SPI; case 4: return GQSPI_SPI_MODE_QSPI; default: debug("Unsupported bus width %u\n", buswidth); return GQSPI_SPI_MODE_SPI; } } static void zynqmp_qspi_fill_gen_fifo(struct zynqmp_qspi_priv *priv, u32 gqspi_fifo_reg) { struct zynqmp_qspi_regs *regs = priv->regs; u32 config_reg, ier; int ret = 0; writel(gqspi_fifo_reg, ®s->genfifo); config_reg = readl(®s->confr); /* Manual start if needed */ config_reg |= GQSPI_STRT_GEN_FIFO; writel(config_reg, ®s->confr); /* Enable interrupts */ ier = readl(®s->ier); ier |= GQSPI_IXR_GFEMTY_MASK; writel(ier, ®s->ier); /* Wait until the gen fifo is empty to write the new command */ ret = wait_for_bit_le32(®s->isr, GQSPI_IXR_GFEMTY_MASK, 1, GQSPI_TIMEOUT, 1); if (ret) printf("%s Timeout\n", __func__); } static void zynqmp_qspi_chipselect(struct zynqmp_qspi_priv *priv, int is_on) { u32 gqspi_fifo_reg = 0; if (is_on) { gqspi_fifo_reg = zynqmp_qspi_bus_select(priv); gqspi_fifo_reg |= GQSPI_SPI_MODE_SPI | GQSPI_IMD_DATA_CS_ASSERT; } else { gqspi_fifo_reg = GQSPI_GFIFO_LOW_BUS; gqspi_fifo_reg |= GQSPI_IMD_DATA_CS_DEASSERT; } debug("GFIFO_CMD_CS: 0x%x\n", gqspi_fifo_reg); zynqmp_qspi_fill_gen_fifo(priv, gqspi_fifo_reg); } static void zynqmp_qspi_set_tapdelay(struct udevice *bus, u32 baudrateval) { struct zynqmp_qspi_plat *plat = dev_get_plat(bus); struct zynqmp_qspi_priv *priv = dev_get_priv(bus); struct zynqmp_qspi_regs *regs = priv->regs; u32 tapdlybypass = 0, lpbkdlyadj = 0, datadlyadj = 0, clk_rate; u32 reqhz = 0; clk_rate = plat->frequency; reqhz = (clk_rate / (GQSPI_BAUD_DIV_SHIFT << baudrateval)); debug("%s, req_hz:%d, clk_rate:%d, baudrateval:%d\n", __func__, reqhz, clk_rate, baudrateval); if (!(IS_ENABLED(CONFIG_ARCH_VERSAL) || IS_ENABLED(CONFIG_ARCH_VERSAL_NET))) { if (reqhz <= GQSPI_FREQ_40MHZ) { tapdlybypass = TAP_DLY_BYPASS_LQSPI_RX_VALUE << TAP_DLY_BYPASS_LQSPI_RX_SHIFT; } else if (reqhz <= GQSPI_FREQ_100MHZ) { tapdlybypass = TAP_DLY_BYPASS_LQSPI_RX_VALUE << TAP_DLY_BYPASS_LQSPI_RX_SHIFT; lpbkdlyadj = GQSPI_LPBK_DLY_ADJ_LPBK_MASK; datadlyadj = (GQSPI_USE_DATA_DLY << GQSPI_USE_DATA_DLY_SHIFT) | (GQSPI_DATA_DLY_ADJ_VALUE << GQSPI_DATA_DLY_ADJ_SHIFT); } else if (reqhz <= GQSPI_FREQ_150MHZ) { lpbkdlyadj = GQSPI_LPBK_DLY_ADJ_LPBK_MASK | GQSPI_LPBK_DLY_ADJ_DLY_0; } zynqmp_mmio_write(IOU_TAPDLY_BYPASS_OFST, IOU_TAPDLY_BYPASS_MASK, tapdlybypass); } else { if (reqhz <= GQSPI_FREQ_37_5MHZ) { tapdlybypass = TAP_DLY_BYPASS_LQSPI_RX_VALUE << TAP_DLY_BYPASS_LQSPI_RX_SHIFT; } else if (reqhz <= GQSPI_FREQ_100MHZ) { tapdlybypass = TAP_DLY_BYPASS_LQSPI_RX_VALUE << TAP_DLY_BYPASS_LQSPI_RX_SHIFT; lpbkdlyadj = GQSPI_LPBK_DLY_ADJ_LPBK_MASK; datadlyadj = GQSPI_USE_DATA_DLY << GQSPI_USE_DATA_DLY_SHIFT; } else if (reqhz <= GQSPI_FREQ_150MHZ) { lpbkdlyadj = GQSPI_LPBK_DLY_ADJ_LPBK_MASK | (GQSPI_LPBK_DLY_ADJ_DLY_1 << GQSPI_LPBK_DLY_ADJ_DLY_1_SHIFT); } writel(tapdlybypass, IOU_TAPDLY_BYPASS_OFST); } writel(lpbkdlyadj, ®s->lpbkdly); writel(datadlyadj, ®s->gqspidlyadj); } static int zynqmp_qspi_set_speed(struct udevice *bus, uint speed) { struct zynqmp_qspi_plat *plat = dev_get_plat(bus); struct zynqmp_qspi_priv *priv = dev_get_priv(bus); struct zynqmp_qspi_regs *regs = priv->regs; u32 confr; u8 baud_rate_val = 0; debug("%s\n", __func__); if (speed > plat->frequency) speed = plat->frequency; if (plat->speed_hz != speed) { /* Set the clock frequency */ /* If speed == 0, default to lowest speed */ while ((baud_rate_val < 8) && ((plat->frequency / (2 << baud_rate_val)) > speed)) baud_rate_val++; if (baud_rate_val > GQSPI_MAX_BAUD_RATE_VAL) baud_rate_val = GQSPI_DFLT_BAUD_RATE_VAL; plat->speed_hz = plat->frequency / (2 << baud_rate_val); confr = readl(®s->confr); confr &= ~GQSPI_BAUD_DIV_MASK; confr |= (baud_rate_val << 3); writel(confr, ®s->confr); zynqmp_qspi_set_tapdelay(bus, baud_rate_val); debug("regs=%p, speed=%d\n", priv->regs, plat->speed_hz); } return 0; } static int zynqmp_qspi_probe(struct udevice *bus) { struct zynqmp_qspi_plat *plat = dev_get_plat(bus); struct zynqmp_qspi_priv *priv = dev_get_priv(bus); struct clk clk; unsigned long clock; int ret; debug("%s: bus:%p, priv:%p\n", __func__, bus, priv); priv->regs = plat->regs; priv->dma_regs = plat->dma_regs; priv->io_mode = plat->io_mode; ret = clk_get_by_index(bus, 0, &clk); if (ret < 0) { dev_err(bus, "failed to get clock\n"); return ret; } clock = clk_get_rate(&clk); if (IS_ERR_VALUE(clock)) { dev_err(bus, "failed to get rate\n"); return clock; } debug("%s: CLK %ld\n", __func__, clock); ret = clk_enable(&clk); if (ret) { dev_err(bus, "failed to enable clock\n"); return ret; } plat->frequency = clock; plat->speed_hz = plat->frequency / 2; /* init the zynq spi hw */ zynqmp_qspi_init_hw(priv); return 0; } static int zynqmp_qspi_set_mode(struct udevice *bus, uint mode) { struct zynqmp_qspi_priv *priv = dev_get_priv(bus); struct zynqmp_qspi_regs *regs = priv->regs; u32 confr; debug("%s\n", __func__); /* Set the SPI Clock phase and polarities */ confr = readl(®s->confr); confr &= ~(GQSPI_CONFIG_CPHA_MASK | GQSPI_CONFIG_CPOL_MASK); if (mode & SPI_CPHA) confr |= GQSPI_CONFIG_CPHA_MASK; if (mode & SPI_CPOL) confr |= GQSPI_CONFIG_CPOL_MASK; writel(confr, ®s->confr); return 0; } static int zynqmp_qspi_fill_tx_fifo(struct zynqmp_qspi_priv *priv, u32 size) { u32 data; int ret = 0; struct zynqmp_qspi_regs *regs = priv->regs; u32 *buf = (u32 *)priv->tx_buf; u32 len = size; debug("TxFIFO: 0x%x, size: 0x%x\n", readl(®s->isr), size); while (size) { ret = wait_for_bit_le32(®s->isr, GQSPI_IXR_TXNFULL_MASK, 1, GQSPI_TIMEOUT, 1); if (ret) { printf("%s: Timeout\n", __func__); return ret; } if (size >= 4) { writel(*buf, ®s->txd0r); buf++; size -= 4; } else { switch (size) { case 1: data = *((u8 *)buf); buf += 1; data |= GENMASK(31, 8); break; case 2: data = *((u16 *)buf); buf += 2; data |= GENMASK(31, 16); break; case 3: data = *buf; buf += 3; data |= GENMASK(31, 24); break; } writel(data, ®s->txd0r); size = 0; } } ret = wait_for_bit_le32(®s->isr, GQSPI_IXR_TXFIFOEMPTY_MASK, 1, GQSPI_TIMEOUT, 1); if (ret) { printf("%s: Timeout\n", __func__); return ret; } priv->tx_buf += len; return 0; } static void zynqmp_qspi_genfifo_cmd(struct zynqmp_qspi_priv *priv) { const struct spi_mem_op *op = priv->op; u32 gen_fifo_cmd; u8 i, dummy_cycles, addr; /* Send opcode */ gen_fifo_cmd = zynqmp_qspi_bus_select(priv); gen_fifo_cmd |= zynqmp_qspi_genfifo_mode(op->cmd.buswidth); gen_fifo_cmd |= GQSPI_GFIFO_TX; gen_fifo_cmd |= op->cmd.opcode; zynqmp_qspi_fill_gen_fifo(priv, gen_fifo_cmd); /* Send address */ for (i = 0; i < op->addr.nbytes; i++) { addr = op->addr.val >> (8 * (op->addr.nbytes - i - 1)); gen_fifo_cmd = zynqmp_qspi_bus_select(priv); gen_fifo_cmd |= zynqmp_qspi_genfifo_mode(op->addr.buswidth); gen_fifo_cmd |= GQSPI_GFIFO_TX; gen_fifo_cmd |= addr; debug("GFIFO_CMD_Cmd = 0x%x\n", gen_fifo_cmd); zynqmp_qspi_fill_gen_fifo(priv, gen_fifo_cmd); } /* Send dummy */ if (op->dummy.nbytes) { dummy_cycles = op->dummy.nbytes * 8 / op->dummy.buswidth; gen_fifo_cmd = zynqmp_qspi_bus_select(priv); gen_fifo_cmd |= zynqmp_qspi_genfifo_mode(op->dummy.buswidth); gen_fifo_cmd &= ~(GQSPI_GFIFO_TX | GQSPI_GFIFO_RX); gen_fifo_cmd |= GQSPI_GFIFO_DATA_XFR_MASK; gen_fifo_cmd |= dummy_cycles; zynqmp_qspi_fill_gen_fifo(priv, gen_fifo_cmd); } } static u32 zynqmp_qspi_calc_exp(struct zynqmp_qspi_priv *priv, u32 *gen_fifo_cmd) { u32 expval = 8; u32 len; while (1) { if (priv->len > 255) { if (priv->len & (1 << expval)) { *gen_fifo_cmd &= ~GQSPI_GFIFO_IMD_MASK; *gen_fifo_cmd |= GQSPI_GFIFO_EXP_MASK; *gen_fifo_cmd |= expval; priv->len -= (1 << expval); return expval; } expval++; } else { *gen_fifo_cmd &= ~(GQSPI_GFIFO_IMD_MASK | GQSPI_GFIFO_EXP_MASK); *gen_fifo_cmd |= (u8)priv->len; len = (u8)priv->len; priv->len = 0; return len; } } } static int zynqmp_qspi_genfifo_fill_tx(struct zynqmp_qspi_priv *priv) { u32 gen_fifo_cmd; u32 len; int ret = 0; gen_fifo_cmd = zynqmp_qspi_bus_select(priv); gen_fifo_cmd |= zynqmp_qspi_genfifo_mode(priv->op->data.buswidth); gen_fifo_cmd |= GQSPI_GFIFO_TX | GQSPI_GFIFO_DATA_XFR_MASK; while (priv->len) { len = zynqmp_qspi_calc_exp(priv, &gen_fifo_cmd); zynqmp_qspi_fill_gen_fifo(priv, gen_fifo_cmd); debug("GFIFO_CMD_TX:0x%x\n", gen_fifo_cmd); if (gen_fifo_cmd & GQSPI_GFIFO_EXP_MASK) ret = zynqmp_qspi_fill_tx_fifo(priv, 1 << len); else ret = zynqmp_qspi_fill_tx_fifo(priv, len); if (ret) return ret; } return ret; } static int zynqmp_qspi_start_io(struct zynqmp_qspi_priv *priv, u32 gen_fifo_cmd, u32 *buf) { u32 len; u32 actuallen = priv->len; u32 config_reg, ier, isr; u32 timeout = GQSPI_TIMEOUT; struct zynqmp_qspi_regs *regs = priv->regs; u32 last_bits; u32 *traverse = buf; while (priv->len) { len = zynqmp_qspi_calc_exp(priv, &gen_fifo_cmd); /* If exponent bit is set, reset immediate to be 2^len */ if (gen_fifo_cmd & GQSPI_GFIFO_EXP_MASK) priv->bytes_to_receive = (1 << len); else priv->bytes_to_receive = len; zynqmp_qspi_fill_gen_fifo(priv, gen_fifo_cmd); debug("GFIFO_CMD_RX:0x%x\n", gen_fifo_cmd); /* Manual start */ config_reg = readl(®s->confr); config_reg |= GQSPI_STRT_GEN_FIFO; writel(config_reg, ®s->confr); /* Enable RX interrupts for IO mode */ ier = readl(®s->ier); ier |= GQSPI_IXR_ALL_MASK; writel(ier, ®s->ier); while (priv->bytes_to_receive && timeout) { isr = readl(®s->isr); if (isr & GQSPI_IXR_RXNEMTY_MASK) { if (priv->bytes_to_receive >= 4) { *traverse = readl(®s->drxr); traverse++; priv->bytes_to_receive -= 4; } else { last_bits = readl(®s->drxr); memcpy(traverse, &last_bits, priv->bytes_to_receive); priv->bytes_to_receive = 0; } timeout = GQSPI_TIMEOUT; } else { udelay(1); timeout--; } } debug("buf:0x%lx, rxbuf:0x%lx, *buf:0x%x len: 0x%x\n", (unsigned long)buf, (unsigned long)priv->rx_buf, *buf, actuallen); if (!timeout) { printf("IO timeout: %d\n", readl(®s->isr)); return -1; } } return 0; } static int zynqmp_qspi_start_dma(struct zynqmp_qspi_priv *priv, u32 gen_fifo_cmd, u32 *buf) { unsigned long addr; u32 size; u32 actuallen = priv->len; u32 totallen = priv->len; int ret = 0; struct zynqmp_qspi_dma_regs *dma_regs = priv->dma_regs; while (totallen) { if (totallen >= SZ_512M) priv->len = SZ_256M; else priv->len = totallen; totallen -= priv->len; /* Save remaining bytes length to read */ actuallen = priv->len; /* Actual number of bytes reading */ writel(lower_32_bits((unsigned long)buf), &dma_regs->dmadst); writel(upper_32_bits((unsigned long)buf) & GENMASK(11, 0), &dma_regs->dmadstmsb); writel(roundup(priv->len, GQSPI_DMA_ALIGN), &dma_regs->dmasize); writel(GQSPI_DMA_DST_I_STS_MASK, &dma_regs->dmaier); addr = (unsigned long)buf; size = roundup(priv->len, GQSPI_DMA_ALIGN); invalidate_dcache_range(addr, addr + size); while (priv->len) { zynqmp_qspi_calc_exp(priv, &gen_fifo_cmd); zynqmp_qspi_fill_gen_fifo(priv, gen_fifo_cmd); debug("GFIFO_CMD_RX:0x%x\n", gen_fifo_cmd); } ret = wait_for_bit_le32(&dma_regs->dmaisr, GQSPI_DMA_DST_I_STS_DONE, 1, GQSPI_TIMEOUT, 1); if (ret) { printf("DMA Timeout:0x%x\n", readl(&dma_regs->dmaisr)); return -ETIMEDOUT; } invalidate_dcache_range(addr, addr + size); writel(GQSPI_DMA_DST_I_STS_DONE, &dma_regs->dmaisr); debug("buf:0x%lx, rxbuf:0x%lx, *buf:0x%x len: 0x%x\n", (unsigned long)buf, (unsigned long)priv->rx_buf, *buf, actuallen); if (buf != priv->rx_buf) memcpy(priv->rx_buf, buf, actuallen); buf = (u32 *)((u8 *)buf + actuallen); priv->rx_buf = (u8 *)priv->rx_buf + actuallen; } return 0; } static int zynqmp_qspi_genfifo_fill_rx(struct zynqmp_qspi_priv *priv) { u32 gen_fifo_cmd; u32 *buf; u32 actuallen = priv->len; gen_fifo_cmd = zynqmp_qspi_bus_select(priv); gen_fifo_cmd |= zynqmp_qspi_genfifo_mode(priv->op->data.buswidth); gen_fifo_cmd |= GQSPI_GFIFO_RX | GQSPI_GFIFO_DATA_XFR_MASK; /* * Check if receive buffer is aligned to 4 byte and length * is multiples of four byte as we are using dma to receive. */ if ((!((unsigned long)priv->rx_buf & (GQSPI_DMA_ALIGN - 1)) && !(actuallen % GQSPI_DMA_ALIGN)) || priv->io_mode) { buf = (u32 *)priv->rx_buf; if (priv->io_mode) return zynqmp_qspi_start_io(priv, gen_fifo_cmd, buf); else return zynqmp_qspi_start_dma(priv, gen_fifo_cmd, buf); } ALLOC_CACHE_ALIGN_BUFFER(u8, tmp, roundup(priv->len, GQSPI_DMA_ALIGN)); buf = (u32 *)tmp; return zynqmp_qspi_start_dma(priv, gen_fifo_cmd, buf); } static int zynqmp_qspi_claim_bus(struct udevice *dev) { struct udevice *bus = dev->parent; struct zynqmp_qspi_priv *priv = dev_get_priv(bus); struct zynqmp_qspi_regs *regs = priv->regs; writel(GQSPI_ENABLE_ENABLE_MASK, ®s->enbr); return 0; } static int zynqmp_qspi_release_bus(struct udevice *dev) { struct udevice *bus = dev->parent; struct zynqmp_qspi_priv *priv = dev_get_priv(bus); struct zynqmp_qspi_regs *regs = priv->regs; writel(~GQSPI_ENABLE_ENABLE_MASK, ®s->enbr); return 0; } static int zynqmp_qspi_exec_op(struct spi_slave *slave, const struct spi_mem_op *op) { struct zynqmp_qspi_priv *priv = dev_get_priv(slave->dev->parent); int ret = 0; priv->op = op; priv->tx_buf = op->data.buf.out; priv->rx_buf = op->data.buf.in; priv->len = op->data.nbytes; zynqmp_qspi_chipselect(priv, 1); /* Send opcode, addr, dummy */ zynqmp_qspi_genfifo_cmd(priv); /* Request the transfer */ if (op->data.dir == SPI_MEM_DATA_IN) ret = zynqmp_qspi_genfifo_fill_rx(priv); else if (op->data.dir == SPI_MEM_DATA_OUT) ret = zynqmp_qspi_genfifo_fill_tx(priv); zynqmp_qspi_chipselect(priv, 0); return ret; } static const struct spi_controller_mem_ops zynqmp_qspi_mem_ops = { .exec_op = zynqmp_qspi_exec_op, }; static const struct dm_spi_ops zynqmp_qspi_ops = { .claim_bus = zynqmp_qspi_claim_bus, .release_bus = zynqmp_qspi_release_bus, .set_speed = zynqmp_qspi_set_speed, .set_mode = zynqmp_qspi_set_mode, .mem_ops = &zynqmp_qspi_mem_ops, }; static const struct udevice_id zynqmp_qspi_ids[] = { { .compatible = "xlnx,zynqmp-qspi-1.0" }, { .compatible = "xlnx,versal-qspi-1.0" }, { } }; U_BOOT_DRIVER(zynqmp_qspi) = { .name = "zynqmp_qspi", .id = UCLASS_SPI, .of_match = zynqmp_qspi_ids, .ops = &zynqmp_qspi_ops, .of_to_plat = zynqmp_qspi_of_to_plat, .plat_auto = sizeof(struct zynqmp_qspi_plat), .priv_auto = sizeof(struct zynqmp_qspi_priv), .probe = zynqmp_qspi_probe, };