// SPDX-License-Identifier: GPL-2.0+ /* * Copyright 2018 SiFive, Inc. * Copyright 2019 Bhargav Shah * * SiFive SPI controller driver (master mode only) */ #include #include #include #include #include #include #include #include #include #include #include #define SIFIVE_SPI_MAX_CS 32 #define SIFIVE_SPI_DEFAULT_DEPTH 8 #define SIFIVE_SPI_DEFAULT_BITS 8 /* register offsets */ #define SIFIVE_SPI_REG_SCKDIV 0x00 /* Serial clock divisor */ #define SIFIVE_SPI_REG_SCKMODE 0x04 /* Serial clock mode */ #define SIFIVE_SPI_REG_CSID 0x10 /* Chip select ID */ #define SIFIVE_SPI_REG_CSDEF 0x14 /* Chip select default */ #define SIFIVE_SPI_REG_CSMODE 0x18 /* Chip select mode */ #define SIFIVE_SPI_REG_DELAY0 0x28 /* Delay control 0 */ #define SIFIVE_SPI_REG_DELAY1 0x2c /* Delay control 1 */ #define SIFIVE_SPI_REG_FMT 0x40 /* Frame format */ #define SIFIVE_SPI_REG_TXDATA 0x48 /* Tx FIFO data */ #define SIFIVE_SPI_REG_RXDATA 0x4c /* Rx FIFO data */ #define SIFIVE_SPI_REG_TXMARK 0x50 /* Tx FIFO watermark */ #define SIFIVE_SPI_REG_RXMARK 0x54 /* Rx FIFO watermark */ #define SIFIVE_SPI_REG_FCTRL 0x60 /* SPI flash interface control */ #define SIFIVE_SPI_REG_FFMT 0x64 /* SPI flash instruction format */ #define SIFIVE_SPI_REG_IE 0x70 /* Interrupt Enable Register */ #define SIFIVE_SPI_REG_IP 0x74 /* Interrupt Pendings Register */ /* sckdiv bits */ #define SIFIVE_SPI_SCKDIV_DIV_MASK 0xfffU /* sckmode bits */ #define SIFIVE_SPI_SCKMODE_PHA BIT(0) #define SIFIVE_SPI_SCKMODE_POL BIT(1) #define SIFIVE_SPI_SCKMODE_MODE_MASK (SIFIVE_SPI_SCKMODE_PHA | \ SIFIVE_SPI_SCKMODE_POL) /* csmode bits */ #define SIFIVE_SPI_CSMODE_MODE_AUTO 0U #define SIFIVE_SPI_CSMODE_MODE_HOLD 2U #define SIFIVE_SPI_CSMODE_MODE_OFF 3U /* delay0 bits */ #define SIFIVE_SPI_DELAY0_CSSCK(x) ((u32)(x)) #define SIFIVE_SPI_DELAY0_CSSCK_MASK 0xffU #define SIFIVE_SPI_DELAY0_SCKCS(x) ((u32)(x) << 16) #define SIFIVE_SPI_DELAY0_SCKCS_MASK (0xffU << 16) /* delay1 bits */ #define SIFIVE_SPI_DELAY1_INTERCS(x) ((u32)(x)) #define SIFIVE_SPI_DELAY1_INTERCS_MASK 0xffU #define SIFIVE_SPI_DELAY1_INTERXFR(x) ((u32)(x) << 16) #define SIFIVE_SPI_DELAY1_INTERXFR_MASK (0xffU << 16) /* fmt bits */ #define SIFIVE_SPI_FMT_PROTO_SINGLE 0U #define SIFIVE_SPI_FMT_PROTO_DUAL 1U #define SIFIVE_SPI_FMT_PROTO_QUAD 2U #define SIFIVE_SPI_FMT_PROTO_MASK 3U #define SIFIVE_SPI_FMT_ENDIAN BIT(2) #define SIFIVE_SPI_FMT_DIR BIT(3) #define SIFIVE_SPI_FMT_LEN(x) ((u32)(x) << 16) #define SIFIVE_SPI_FMT_LEN_MASK (0xfU << 16) /* txdata bits */ #define SIFIVE_SPI_TXDATA_DATA_MASK 0xffU #define SIFIVE_SPI_TXDATA_FULL BIT(31) /* rxdata bits */ #define SIFIVE_SPI_RXDATA_DATA_MASK 0xffU #define SIFIVE_SPI_RXDATA_EMPTY BIT(31) /* ie and ip bits */ #define SIFIVE_SPI_IP_TXWM BIT(0) #define SIFIVE_SPI_IP_RXWM BIT(1) /* format protocol */ #define SIFIVE_SPI_PROTO_QUAD 4 /* 4 lines I/O protocol transfer */ #define SIFIVE_SPI_PROTO_DUAL 2 /* 2 lines I/O protocol transfer */ #define SIFIVE_SPI_PROTO_SINGLE 1 /* 1 line I/O protocol transfer */ struct sifive_spi { void *regs; /* base address of the registers */ u32 fifo_depth; u32 bits_per_word; u32 cs_inactive; /* Level of the CS pins when inactive*/ u32 freq; u32 num_cs; u8 fmt_proto; }; static void sifive_spi_prep_device(struct sifive_spi *spi, struct dm_spi_slave_plat *slave_plat) { /* Update the chip select polarity */ if (slave_plat->mode & SPI_CS_HIGH) spi->cs_inactive &= ~BIT(slave_plat->cs); else spi->cs_inactive |= BIT(slave_plat->cs); writel(spi->cs_inactive, spi->regs + SIFIVE_SPI_REG_CSDEF); /* Select the correct device */ writel(slave_plat->cs, spi->regs + SIFIVE_SPI_REG_CSID); } static int sifive_spi_set_cs(struct sifive_spi *spi, struct dm_spi_slave_plat *slave_plat) { u32 cs_mode = SIFIVE_SPI_CSMODE_MODE_HOLD; if (slave_plat->mode & SPI_CS_HIGH) cs_mode = SIFIVE_SPI_CSMODE_MODE_AUTO; writel(cs_mode, spi->regs + SIFIVE_SPI_REG_CSMODE); return 0; } static void sifive_spi_clear_cs(struct sifive_spi *spi) { writel(SIFIVE_SPI_CSMODE_MODE_AUTO, spi->regs + SIFIVE_SPI_REG_CSMODE); } static void sifive_spi_prep_transfer(struct sifive_spi *spi, struct dm_spi_slave_plat *slave_plat, u8 *rx_ptr) { u32 cr; /* Modify the SPI protocol mode */ cr = readl(spi->regs + SIFIVE_SPI_REG_FMT); /* Bits per word ? */ cr &= ~SIFIVE_SPI_FMT_LEN_MASK; cr |= SIFIVE_SPI_FMT_LEN(spi->bits_per_word); /* LSB first? */ cr &= ~SIFIVE_SPI_FMT_ENDIAN; if (slave_plat->mode & SPI_LSB_FIRST) cr |= SIFIVE_SPI_FMT_ENDIAN; /* Number of wires ? */ cr &= ~SIFIVE_SPI_FMT_PROTO_MASK; switch (spi->fmt_proto) { case SIFIVE_SPI_PROTO_QUAD: cr |= SIFIVE_SPI_FMT_PROTO_QUAD; break; case SIFIVE_SPI_PROTO_DUAL: cr |= SIFIVE_SPI_FMT_PROTO_DUAL; break; default: cr |= SIFIVE_SPI_FMT_PROTO_SINGLE; break; } /* SPI direction in/out ? */ cr &= ~SIFIVE_SPI_FMT_DIR; if (!rx_ptr) cr |= SIFIVE_SPI_FMT_DIR; writel(cr, spi->regs + SIFIVE_SPI_REG_FMT); } static void sifive_spi_rx(struct sifive_spi *spi, u8 *rx_ptr) { u32 data; do { data = readl(spi->regs + SIFIVE_SPI_REG_RXDATA); } while (data & SIFIVE_SPI_RXDATA_EMPTY); if (rx_ptr) *rx_ptr = data & SIFIVE_SPI_RXDATA_DATA_MASK; } static void sifive_spi_tx(struct sifive_spi *spi, const u8 *tx_ptr) { u32 data; u8 tx_data = (tx_ptr) ? *tx_ptr & SIFIVE_SPI_TXDATA_DATA_MASK : SIFIVE_SPI_TXDATA_DATA_MASK; do { data = readl(spi->regs + SIFIVE_SPI_REG_TXDATA); } while (data & SIFIVE_SPI_TXDATA_FULL); writel(tx_data, spi->regs + SIFIVE_SPI_REG_TXDATA); } static int sifive_spi_wait(struct sifive_spi *spi, u32 bit) { return wait_for_bit_le32(spi->regs + SIFIVE_SPI_REG_IP, bit, true, 100, false); } static int sifive_spi_xfer(struct udevice *dev, unsigned int bitlen, const void *dout, void *din, unsigned long flags) { struct udevice *bus = dev->parent; struct sifive_spi *spi = dev_get_priv(bus); struct dm_spi_slave_plat *slave_plat = dev_get_parent_plat(dev); const u8 *tx_ptr = dout; u8 *rx_ptr = din; u32 remaining_len; int ret; if (flags & SPI_XFER_BEGIN) { sifive_spi_prep_device(spi, slave_plat); ret = sifive_spi_set_cs(spi, slave_plat); if (ret) return ret; } sifive_spi_prep_transfer(spi, slave_plat, rx_ptr); remaining_len = bitlen / 8; while (remaining_len) { unsigned int n_words = min(remaining_len, spi->fifo_depth); unsigned int tx_words, rx_words; /* Enqueue n_words for transmission */ for (tx_words = 0; tx_words < n_words; tx_words++) { if (!tx_ptr) sifive_spi_tx(spi, NULL); else sifive_spi_tx(spi, tx_ptr++); } if (rx_ptr) { /* Wait for transmission + reception to complete */ writel(n_words - 1, spi->regs + SIFIVE_SPI_REG_RXMARK); ret = sifive_spi_wait(spi, SIFIVE_SPI_IP_RXWM); if (ret) return ret; /* Read out all the data from the RX FIFO */ for (rx_words = 0; rx_words < n_words; rx_words++) sifive_spi_rx(spi, rx_ptr++); } else { /* Wait for transmission to complete */ ret = sifive_spi_wait(spi, SIFIVE_SPI_IP_TXWM); if (ret) return ret; } remaining_len -= n_words; } if (flags & SPI_XFER_END) sifive_spi_clear_cs(spi); return 0; } static int sifive_spi_exec_op(struct spi_slave *slave, const struct spi_mem_op *op) { struct udevice *dev = slave->dev; struct sifive_spi *spi = dev_get_priv(dev->parent); unsigned long flags = SPI_XFER_BEGIN; u8 opcode = op->cmd.opcode; unsigned int pos = 0; const void *tx_buf = NULL; void *rx_buf = NULL; int op_len, i; int ret; if (!op->addr.nbytes && !op->dummy.nbytes && !op->data.nbytes) flags |= SPI_XFER_END; spi->fmt_proto = op->cmd.buswidth; /* send the opcode */ ret = sifive_spi_xfer(dev, 8, (void *)&opcode, NULL, flags); if (ret < 0) { dev_err(dev, "failed to xfer opcode\n"); return ret; } op_len = op->addr.nbytes + op->dummy.nbytes; u8 op_buf[op_len]; /* send the addr + dummy */ if (op->addr.nbytes) { /* fill address */ for (i = 0; i < op->addr.nbytes; i++) op_buf[pos + i] = op->addr.val >> (8 * (op->addr.nbytes - i - 1)); pos += op->addr.nbytes; /* fill dummy */ if (op->dummy.nbytes) memset(op_buf + pos, 0xff, op->dummy.nbytes); /* make sure to set end flag, if no data bytes */ if (!op->data.nbytes) flags |= SPI_XFER_END; spi->fmt_proto = op->addr.buswidth; ret = sifive_spi_xfer(dev, op_len * 8, op_buf, NULL, flags); if (ret < 0) { dev_err(dev, "failed to xfer addr + dummy\n"); return ret; } } /* send/received the data */ if (op->data.nbytes) { if (op->data.dir == SPI_MEM_DATA_IN) rx_buf = op->data.buf.in; else tx_buf = op->data.buf.out; spi->fmt_proto = op->data.buswidth; ret = sifive_spi_xfer(dev, op->data.nbytes * 8, tx_buf, rx_buf, SPI_XFER_END); if (ret) { dev_err(dev, "failed to xfer data\n"); return ret; } } return 0; } static int sifive_spi_set_speed(struct udevice *bus, uint speed) { struct sifive_spi *spi = dev_get_priv(bus); u32 scale; if (speed > spi->freq) speed = spi->freq; /* Configure max speed */ scale = (DIV_ROUND_UP(spi->freq >> 1, speed) - 1) & SIFIVE_SPI_SCKDIV_DIV_MASK; writel(scale, spi->regs + SIFIVE_SPI_REG_SCKDIV); return 0; } static int sifive_spi_set_mode(struct udevice *bus, uint mode) { struct sifive_spi *spi = dev_get_priv(bus); u32 cr; /* Switch clock mode bits */ cr = readl(spi->regs + SIFIVE_SPI_REG_SCKMODE) & ~SIFIVE_SPI_SCKMODE_MODE_MASK; if (mode & SPI_CPHA) cr |= SIFIVE_SPI_SCKMODE_PHA; if (mode & SPI_CPOL) cr |= SIFIVE_SPI_SCKMODE_POL; writel(cr, spi->regs + SIFIVE_SPI_REG_SCKMODE); return 0; } static int sifive_spi_cs_info(struct udevice *bus, uint cs, struct spi_cs_info *info) { struct sifive_spi *spi = dev_get_priv(bus); if (cs >= spi->num_cs) return -EINVAL; return 0; } static void sifive_spi_init_hw(struct sifive_spi *spi) { u32 cs_bits; /* probe the number of CS lines */ spi->cs_inactive = readl(spi->regs + SIFIVE_SPI_REG_CSDEF); writel(0xffffffffU, spi->regs + SIFIVE_SPI_REG_CSDEF); cs_bits = readl(spi->regs + SIFIVE_SPI_REG_CSDEF); writel(spi->cs_inactive, spi->regs + SIFIVE_SPI_REG_CSDEF); if (!cs_bits) { printf("Could not auto probe CS lines\n"); return; } spi->num_cs = ilog2(cs_bits) + 1; if (spi->num_cs > SIFIVE_SPI_MAX_CS) { printf("Invalid number of spi slaves\n"); return; } /* Watermark interrupts are disabled by default */ writel(0, spi->regs + SIFIVE_SPI_REG_IE); /* Default watermark FIFO threshold values */ writel(1, spi->regs + SIFIVE_SPI_REG_TXMARK); writel(0, spi->regs + SIFIVE_SPI_REG_RXMARK); /* Set CS/SCK Delays and Inactive Time to defaults */ writel(SIFIVE_SPI_DELAY0_CSSCK(1) | SIFIVE_SPI_DELAY0_SCKCS(1), spi->regs + SIFIVE_SPI_REG_DELAY0); writel(SIFIVE_SPI_DELAY1_INTERCS(1) | SIFIVE_SPI_DELAY1_INTERXFR(0), spi->regs + SIFIVE_SPI_REG_DELAY1); /* Exit specialized memory-mapped SPI flash mode */ writel(0, spi->regs + SIFIVE_SPI_REG_FCTRL); } static int sifive_spi_probe(struct udevice *bus) { struct sifive_spi *spi = dev_get_priv(bus); struct clk clkdev; int ret; spi->regs = (void *)(ulong)dev_remap_addr(bus); if (!spi->regs) return -ENODEV; spi->fifo_depth = dev_read_u32_default(bus, "sifive,fifo-depth", SIFIVE_SPI_DEFAULT_DEPTH); spi->bits_per_word = dev_read_u32_default(bus, "sifive,max-bits-per-word", SIFIVE_SPI_DEFAULT_BITS); ret = clk_get_by_index(bus, 0, &clkdev); if (ret) return ret; spi->freq = clk_get_rate(&clkdev); /* init the sifive spi hw */ sifive_spi_init_hw(spi); return 0; } static const struct spi_controller_mem_ops sifive_spi_mem_ops = { .exec_op = sifive_spi_exec_op, }; static const struct dm_spi_ops sifive_spi_ops = { .xfer = sifive_spi_xfer, .set_speed = sifive_spi_set_speed, .set_mode = sifive_spi_set_mode, .cs_info = sifive_spi_cs_info, .mem_ops = &sifive_spi_mem_ops, }; static const struct udevice_id sifive_spi_ids[] = { { .compatible = "sifive,spi0" }, { } }; U_BOOT_DRIVER(sifive_spi) = { .name = "sifive_spi", .id = UCLASS_SPI, .of_match = sifive_spi_ids, .ops = &sifive_spi_ops, .priv_auto = sizeof(struct sifive_spi), .probe = sifive_spi_probe, };