// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2018 Exceet Electronics GmbH * Copyright (C) 2018 Bootlin * * Author: Boris Brezillon */ #ifndef __UBOOT__ #include #include #include #include #include "internals.h" #else #include #include #include #include #include #include #include #include #include #include #endif #ifndef __UBOOT__ /** * spi_controller_dma_map_mem_op_data() - DMA-map the buffer attached to a * memory operation * @ctlr: the SPI controller requesting this dma_map() * @op: the memory operation containing the buffer to map * @sgt: a pointer to a non-initialized sg_table that will be filled by this * function * * Some controllers might want to do DMA on the data buffer embedded in @op. * This helper prepares everything for you and provides a ready-to-use * sg_table. This function is not intended to be called from spi drivers. * Only SPI controller drivers should use it. * Note that the caller must ensure the memory region pointed by * op->data.buf.{in,out} is DMA-able before calling this function. * * Return: 0 in case of success, a negative error code otherwise. */ int spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr, const struct spi_mem_op *op, struct sg_table *sgt) { struct device *dmadev; if (!op->data.nbytes) return -EINVAL; if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx) dmadev = ctlr->dma_tx->device->dev; else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx) dmadev = ctlr->dma_rx->device->dev; else dmadev = ctlr->dev.parent; if (!dmadev) return -EINVAL; return spi_map_buf(ctlr, dmadev, sgt, op->data.buf.in, op->data.nbytes, op->data.dir == SPI_MEM_DATA_IN ? DMA_FROM_DEVICE : DMA_TO_DEVICE); } EXPORT_SYMBOL_GPL(spi_controller_dma_map_mem_op_data); /** * spi_controller_dma_unmap_mem_op_data() - DMA-unmap the buffer attached to a * memory operation * @ctlr: the SPI controller requesting this dma_unmap() * @op: the memory operation containing the buffer to unmap * @sgt: a pointer to an sg_table previously initialized by * spi_controller_dma_map_mem_op_data() * * Some controllers might want to do DMA on the data buffer embedded in @op. * This helper prepares things so that the CPU can access the * op->data.buf.{in,out} buffer again. * * This function is not intended to be called from SPI drivers. Only SPI * controller drivers should use it. * * This function should be called after the DMA operation has finished and is * only valid if the previous spi_controller_dma_map_mem_op_data() call * returned 0. * * Return: 0 in case of success, a negative error code otherwise. */ void spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr, const struct spi_mem_op *op, struct sg_table *sgt) { struct device *dmadev; if (!op->data.nbytes) return; if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx) dmadev = ctlr->dma_tx->device->dev; else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx) dmadev = ctlr->dma_rx->device->dev; else dmadev = ctlr->dev.parent; spi_unmap_buf(ctlr, dmadev, sgt, op->data.dir == SPI_MEM_DATA_IN ? DMA_FROM_DEVICE : DMA_TO_DEVICE); } EXPORT_SYMBOL_GPL(spi_controller_dma_unmap_mem_op_data); #endif /* __UBOOT__ */ static int spi_check_buswidth_req(struct spi_slave *slave, u8 buswidth, bool tx) { u32 mode = slave->mode; switch (buswidth) { case 1: return 0; case 2: if ((tx && (mode & (SPI_TX_DUAL | SPI_TX_QUAD))) || (!tx && (mode & (SPI_RX_DUAL | SPI_RX_QUAD)))) return 0; break; case 4: if ((tx && (mode & SPI_TX_QUAD)) || (!tx && (mode & SPI_RX_QUAD))) return 0; break; case 8: if ((tx && (mode & SPI_TX_OCTAL)) || (!tx && (mode & SPI_RX_OCTAL))) return 0; break; default: break; } return -ENOTSUPP; } static bool spi_mem_check_buswidth(struct spi_slave *slave, const struct spi_mem_op *op) { if (spi_check_buswidth_req(slave, op->cmd.buswidth, true)) return false; if (op->addr.nbytes && spi_check_buswidth_req(slave, op->addr.buswidth, true)) return false; if (op->dummy.nbytes && spi_check_buswidth_req(slave, op->dummy.buswidth, true)) return false; if (op->data.dir != SPI_MEM_NO_DATA && spi_check_buswidth_req(slave, op->data.buswidth, op->data.dir == SPI_MEM_DATA_OUT)) return false; return true; } bool spi_mem_dtr_supports_op(struct spi_slave *slave, const struct spi_mem_op *op) { if (op->cmd.buswidth == 8 && op->cmd.nbytes % 2) return false; if (op->addr.nbytes && op->addr.buswidth == 8 && op->addr.nbytes % 2) return false; if (op->dummy.nbytes && op->dummy.buswidth == 8 && op->dummy.nbytes % 2) return false; /* * Transactions of odd length do not make sense for 8D-8D-8D mode * because a byte is transferred in just half a cycle. */ if (op->data.dir != SPI_MEM_NO_DATA && op->data.dir != SPI_MEM_DATA_IN && op->data.buswidth == 8 && op->data.nbytes % 2) return false; return spi_mem_check_buswidth(slave, op); } EXPORT_SYMBOL_GPL(spi_mem_dtr_supports_op); bool spi_mem_default_supports_op(struct spi_slave *slave, const struct spi_mem_op *op) { if (op->cmd.dtr || op->addr.dtr || op->dummy.dtr || op->data.dtr) return false; if (op->cmd.nbytes != 1) return false; return spi_mem_check_buswidth(slave, op); } EXPORT_SYMBOL_GPL(spi_mem_default_supports_op); /** * spi_mem_supports_op() - Check if a memory device and the controller it is * connected to support a specific memory operation * @slave: the SPI device * @op: the memory operation to check * * Some controllers are only supporting Single or Dual IOs, others might only * support specific opcodes, or it can even be that the controller and device * both support Quad IOs but the hardware prevents you from using it because * only 2 IO lines are connected. * * This function checks whether a specific operation is supported. * * Return: true if @op is supported, false otherwise. */ bool spi_mem_supports_op(struct spi_slave *slave, const struct spi_mem_op *op) { struct udevice *bus = slave->dev->parent; struct dm_spi_ops *ops = spi_get_ops(bus); if (ops->mem_ops && ops->mem_ops->supports_op) return ops->mem_ops->supports_op(slave, op); return spi_mem_default_supports_op(slave, op); } EXPORT_SYMBOL_GPL(spi_mem_supports_op); /** * spi_mem_exec_op() - Execute a memory operation * @slave: the SPI device * @op: the memory operation to execute * * Executes a memory operation. * * This function first checks that @op is supported and then tries to execute * it. * * Return: 0 in case of success, a negative error code otherwise. */ int spi_mem_exec_op(struct spi_slave *slave, const struct spi_mem_op *op) { struct udevice *bus = slave->dev->parent; struct dm_spi_ops *ops = spi_get_ops(bus); unsigned int pos = 0; const u8 *tx_buf = NULL; u8 *rx_buf = NULL; int op_len; u32 flag; int ret; int i; if (!spi_mem_supports_op(slave, op)) return -ENOTSUPP; ret = spi_claim_bus(slave); if (ret < 0) return ret; if (ops->mem_ops && ops->mem_ops->exec_op) { #ifndef __UBOOT__ /* * Flush the message queue before executing our SPI memory * operation to prevent preemption of regular SPI transfers. */ spi_flush_queue(ctlr); if (ctlr->auto_runtime_pm) { ret = pm_runtime_get_sync(ctlr->dev.parent); if (ret < 0) { dev_err(&ctlr->dev, "Failed to power device: %d\n", ret); return ret; } } mutex_lock(&ctlr->bus_lock_mutex); mutex_lock(&ctlr->io_mutex); #endif ret = ops->mem_ops->exec_op(slave, op); #ifndef __UBOOT__ mutex_unlock(&ctlr->io_mutex); mutex_unlock(&ctlr->bus_lock_mutex); if (ctlr->auto_runtime_pm) pm_runtime_put(ctlr->dev.parent); #endif /* * Some controllers only optimize specific paths (typically the * read path) and expect the core to use the regular SPI * interface in other cases. */ if (!ret || ret != -ENOTSUPP) { spi_release_bus(slave); return ret; } } #ifndef __UBOOT__ tmpbufsize = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes; /* * Allocate a buffer to transmit the CMD, ADDR cycles with kmalloc() so * we're guaranteed that this buffer is DMA-able, as required by the * SPI layer. */ tmpbuf = kzalloc(tmpbufsize, GFP_KERNEL | GFP_DMA); if (!tmpbuf) return -ENOMEM; spi_message_init(&msg); tmpbuf[0] = op->cmd.opcode; xfers[xferpos].tx_buf = tmpbuf; xfers[xferpos].len = op->cmd.nbytes; xfers[xferpos].tx_nbits = op->cmd.buswidth; spi_message_add_tail(&xfers[xferpos], &msg); xferpos++; totalxferlen++; if (op->addr.nbytes) { int i; for (i = 0; i < op->addr.nbytes; i++) tmpbuf[i + 1] = op->addr.val >> (8 * (op->addr.nbytes - i - 1)); xfers[xferpos].tx_buf = tmpbuf + 1; xfers[xferpos].len = op->addr.nbytes; xfers[xferpos].tx_nbits = op->addr.buswidth; spi_message_add_tail(&xfers[xferpos], &msg); xferpos++; totalxferlen += op->addr.nbytes; } if (op->dummy.nbytes) { memset(tmpbuf + op->addr.nbytes + 1, 0xff, op->dummy.nbytes); xfers[xferpos].tx_buf = tmpbuf + op->addr.nbytes + 1; xfers[xferpos].len = op->dummy.nbytes; xfers[xferpos].tx_nbits = op->dummy.buswidth; spi_message_add_tail(&xfers[xferpos], &msg); xferpos++; totalxferlen += op->dummy.nbytes; } if (op->data.nbytes) { if (op->data.dir == SPI_MEM_DATA_IN) { xfers[xferpos].rx_buf = op->data.buf.in; xfers[xferpos].rx_nbits = op->data.buswidth; } else { xfers[xferpos].tx_buf = op->data.buf.out; xfers[xferpos].tx_nbits = op->data.buswidth; } xfers[xferpos].len = op->data.nbytes; spi_message_add_tail(&xfers[xferpos], &msg); xferpos++; totalxferlen += op->data.nbytes; } ret = spi_sync(slave, &msg); kfree(tmpbuf); if (ret) return ret; if (msg.actual_length != totalxferlen) return -EIO; #else if (op->data.nbytes) { if (op->data.dir == SPI_MEM_DATA_IN) rx_buf = op->data.buf.in; else tx_buf = op->data.buf.out; } op_len = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes; /* * Avoid using malloc() here so that we can use this code in SPL where * simple malloc may be used. That implementation does not allow free() * so repeated calls to this code can exhaust the space. * * The value of op_len is small, since it does not include the actual * data being sent, only the op-code and address. In fact, it should be * possible to just use a small fixed value here instead of op_len. */ u8 op_buf[op_len]; op_buf[pos++] = op->cmd.opcode; if (op->addr.nbytes) { for (i = 0; i < op->addr.nbytes; i++) op_buf[pos + i] = op->addr.val >> (8 * (op->addr.nbytes - i - 1)); pos += op->addr.nbytes; } if (op->dummy.nbytes) memset(op_buf + pos, 0xff, op->dummy.nbytes); /* 1st transfer: opcode + address + dummy cycles */ flag = SPI_XFER_BEGIN; /* Make sure to set END bit if no tx or rx data messages follow */ if (!tx_buf && !rx_buf) flag |= SPI_XFER_END; ret = spi_xfer(slave, op_len * 8, op_buf, NULL, flag); if (ret) return ret; /* 2nd transfer: rx or tx data path */ if (tx_buf || rx_buf) { ret = spi_xfer(slave, op->data.nbytes * 8, tx_buf, rx_buf, SPI_XFER_END); if (ret) return ret; } spi_release_bus(slave); for (i = 0; i < pos; i++) debug("%02x ", op_buf[i]); debug("| [%dB %s] ", tx_buf || rx_buf ? op->data.nbytes : 0, tx_buf || rx_buf ? (tx_buf ? "out" : "in") : "-"); for (i = 0; i < op->data.nbytes; i++) debug("%02x ", tx_buf ? tx_buf[i] : rx_buf[i]); debug("[ret %d]\n", ret); if (ret < 0) return ret; #endif /* __UBOOT__ */ return 0; } EXPORT_SYMBOL_GPL(spi_mem_exec_op); /** * spi_mem_adjust_op_size() - Adjust the data size of a SPI mem operation to * match controller limitations * @slave: the SPI device * @op: the operation to adjust * * Some controllers have FIFO limitations and must split a data transfer * operation into multiple ones, others require a specific alignment for * optimized accesses. This function allows SPI mem drivers to split a single * operation into multiple sub-operations when required. * * Return: a negative error code if the controller can't properly adjust @op, * 0 otherwise. Note that @op->data.nbytes will be updated if @op * can't be handled in a single step. */ int spi_mem_adjust_op_size(struct spi_slave *slave, struct spi_mem_op *op) { struct udevice *bus = slave->dev->parent; struct dm_spi_ops *ops = spi_get_ops(bus); if (ops->mem_ops && ops->mem_ops->adjust_op_size) return ops->mem_ops->adjust_op_size(slave, op); if (!ops->mem_ops || !ops->mem_ops->exec_op) { unsigned int len; len = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes; if (slave->max_write_size && len > slave->max_write_size) return -EINVAL; if (op->data.dir == SPI_MEM_DATA_IN) { if (slave->max_read_size) op->data.nbytes = min(op->data.nbytes, slave->max_read_size); } else if (slave->max_write_size) { op->data.nbytes = min(op->data.nbytes, slave->max_write_size - len); } if (!op->data.nbytes) return -EINVAL; } return 0; } EXPORT_SYMBOL_GPL(spi_mem_adjust_op_size); static ssize_t spi_mem_no_dirmap_read(struct spi_mem_dirmap_desc *desc, u64 offs, size_t len, void *buf) { struct spi_mem_op op = desc->info.op_tmpl; int ret; op.addr.val = desc->info.offset + offs; op.data.buf.in = buf; op.data.nbytes = len; ret = spi_mem_adjust_op_size(desc->slave, &op); if (ret) return ret; ret = spi_mem_exec_op(desc->slave, &op); if (ret) return ret; return op.data.nbytes; } static ssize_t spi_mem_no_dirmap_write(struct spi_mem_dirmap_desc *desc, u64 offs, size_t len, const void *buf) { struct spi_mem_op op = desc->info.op_tmpl; int ret; op.addr.val = desc->info.offset + offs; op.data.buf.out = buf; op.data.nbytes = len; ret = spi_mem_adjust_op_size(desc->slave, &op); if (ret) return ret; ret = spi_mem_exec_op(desc->slave, &op); if (ret) return ret; return op.data.nbytes; } /** * spi_mem_dirmap_create() - Create a direct mapping descriptor * @mem: SPI mem device this direct mapping should be created for * @info: direct mapping information * * This function is creating a direct mapping descriptor which can then be used * to access the memory using spi_mem_dirmap_read() or spi_mem_dirmap_write(). * If the SPI controller driver does not support direct mapping, this function * falls back to an implementation using spi_mem_exec_op(), so that the caller * doesn't have to bother implementing a fallback on his own. * * Return: a valid pointer in case of success, and ERR_PTR() otherwise. */ struct spi_mem_dirmap_desc * spi_mem_dirmap_create(struct spi_slave *slave, const struct spi_mem_dirmap_info *info) { struct udevice *bus = slave->dev->parent; struct dm_spi_ops *ops = spi_get_ops(bus); struct spi_mem_dirmap_desc *desc; int ret = -EOPNOTSUPP; /* Make sure the number of address cycles is between 1 and 8 bytes. */ if (!info->op_tmpl.addr.nbytes || info->op_tmpl.addr.nbytes > 8) return ERR_PTR(-EINVAL); /* data.dir should either be SPI_MEM_DATA_IN or SPI_MEM_DATA_OUT. */ if (info->op_tmpl.data.dir == SPI_MEM_NO_DATA) return ERR_PTR(-EINVAL); desc = kzalloc(sizeof(*desc), GFP_KERNEL); if (!desc) return ERR_PTR(-ENOMEM); desc->slave = slave; desc->info = *info; if (ops->mem_ops && ops->mem_ops->dirmap_create) ret = ops->mem_ops->dirmap_create(desc); if (ret) { desc->nodirmap = true; if (!spi_mem_supports_op(desc->slave, &desc->info.op_tmpl)) ret = -EOPNOTSUPP; else ret = 0; } if (ret) { kfree(desc); return ERR_PTR(ret); } return desc; } EXPORT_SYMBOL_GPL(spi_mem_dirmap_create); /** * spi_mem_dirmap_destroy() - Destroy a direct mapping descriptor * @desc: the direct mapping descriptor to destroy * * This function destroys a direct mapping descriptor previously created by * spi_mem_dirmap_create(). */ void spi_mem_dirmap_destroy(struct spi_mem_dirmap_desc *desc) { struct udevice *bus = desc->slave->dev->parent; struct dm_spi_ops *ops = spi_get_ops(bus); if (!desc->nodirmap && ops->mem_ops && ops->mem_ops->dirmap_destroy) ops->mem_ops->dirmap_destroy(desc); kfree(desc); } EXPORT_SYMBOL_GPL(spi_mem_dirmap_destroy); #ifndef __UBOOT__ static void devm_spi_mem_dirmap_release(struct udevice *dev, void *res) { struct spi_mem_dirmap_desc *desc = *(struct spi_mem_dirmap_desc **)res; spi_mem_dirmap_destroy(desc); } /** * devm_spi_mem_dirmap_create() - Create a direct mapping descriptor and attach * it to a device * @dev: device the dirmap desc will be attached to * @mem: SPI mem device this direct mapping should be created for * @info: direct mapping information * * devm_ variant of the spi_mem_dirmap_create() function. See * spi_mem_dirmap_create() for more details. * * Return: a valid pointer in case of success, and ERR_PTR() otherwise. */ struct spi_mem_dirmap_desc * devm_spi_mem_dirmap_create(struct udevice *dev, struct spi_slave *slave, const struct spi_mem_dirmap_info *info) { struct spi_mem_dirmap_desc **ptr, *desc; ptr = devres_alloc(devm_spi_mem_dirmap_release, sizeof(*ptr), GFP_KERNEL); if (!ptr) return ERR_PTR(-ENOMEM); desc = spi_mem_dirmap_create(slave, info); if (IS_ERR(desc)) { devres_free(ptr); } else { *ptr = desc; devres_add(dev, ptr); } return desc; } EXPORT_SYMBOL_GPL(devm_spi_mem_dirmap_create); static int devm_spi_mem_dirmap_match(struct udevice *dev, void *res, void *data) { struct spi_mem_dirmap_desc **ptr = res; if (WARN_ON(!ptr || !*ptr)) return 0; return *ptr == data; } /** * devm_spi_mem_dirmap_destroy() - Destroy a direct mapping descriptor attached * to a device * @dev: device the dirmap desc is attached to * @desc: the direct mapping descriptor to destroy * * devm_ variant of the spi_mem_dirmap_destroy() function. See * spi_mem_dirmap_destroy() for more details. */ void devm_spi_mem_dirmap_destroy(struct udevice *dev, struct spi_mem_dirmap_desc *desc) { devres_release(dev, devm_spi_mem_dirmap_release, devm_spi_mem_dirmap_match, desc); } EXPORT_SYMBOL_GPL(devm_spi_mem_dirmap_destroy); #endif /* __UBOOT__ */ /** * spi_mem_dirmap_read() - Read data through a direct mapping * @desc: direct mapping descriptor * @offs: offset to start reading from. Note that this is not an absolute * offset, but the offset within the direct mapping which already has * its own offset * @len: length in bytes * @buf: destination buffer. This buffer must be DMA-able * * This function reads data from a memory device using a direct mapping * previously instantiated with spi_mem_dirmap_create(). * * Return: the amount of data read from the memory device or a negative error * code. Note that the returned size might be smaller than @len, and the caller * is responsible for calling spi_mem_dirmap_read() again when that happens. */ ssize_t spi_mem_dirmap_read(struct spi_mem_dirmap_desc *desc, u64 offs, size_t len, void *buf) { struct udevice *bus = desc->slave->dev->parent; struct dm_spi_ops *ops = spi_get_ops(bus); ssize_t ret; if (desc->info.op_tmpl.data.dir != SPI_MEM_DATA_IN) return -EINVAL; if (!len) return 0; if (desc->nodirmap) ret = spi_mem_no_dirmap_read(desc, offs, len, buf); else if (ops->mem_ops && ops->mem_ops->dirmap_read) ret = ops->mem_ops->dirmap_read(desc, offs, len, buf); else ret = -EOPNOTSUPP; return ret; } EXPORT_SYMBOL_GPL(spi_mem_dirmap_read); /** * spi_mem_dirmap_write() - Write data through a direct mapping * @desc: direct mapping descriptor * @offs: offset to start writing from. Note that this is not an absolute * offset, but the offset within the direct mapping which already has * its own offset * @len: length in bytes * @buf: source buffer. This buffer must be DMA-able * * This function writes data to a memory device using a direct mapping * previously instantiated with spi_mem_dirmap_create(). * * Return: the amount of data written to the memory device or a negative error * code. Note that the returned size might be smaller than @len, and the caller * is responsible for calling spi_mem_dirmap_write() again when that happens. */ ssize_t spi_mem_dirmap_write(struct spi_mem_dirmap_desc *desc, u64 offs, size_t len, const void *buf) { struct udevice *bus = desc->slave->dev->parent; struct dm_spi_ops *ops = spi_get_ops(bus); ssize_t ret; if (desc->info.op_tmpl.data.dir != SPI_MEM_DATA_OUT) return -EINVAL; if (!len) return 0; if (desc->nodirmap) ret = spi_mem_no_dirmap_write(desc, offs, len, buf); else if (ops->mem_ops && ops->mem_ops->dirmap_write) ret = ops->mem_ops->dirmap_write(desc, offs, len, buf); else ret = -EOPNOTSUPP; return ret; } EXPORT_SYMBOL_GPL(spi_mem_dirmap_write); #ifndef __UBOOT__ static inline struct spi_mem_driver *to_spi_mem_drv(struct device_driver *drv) { return container_of(drv, struct spi_mem_driver, spidrv.driver); } static int spi_mem_probe(struct spi_device *spi) { struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver); struct spi_mem *mem; mem = devm_kzalloc(&spi->dev, sizeof(*mem), GFP_KERNEL); if (!mem) return -ENOMEM; mem->spi = spi; spi_set_drvdata(spi, mem); return memdrv->probe(mem); } static int spi_mem_remove(struct spi_device *spi) { struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver); struct spi_mem *mem = spi_get_drvdata(spi); if (memdrv->remove) return memdrv->remove(mem); return 0; } static void spi_mem_shutdown(struct spi_device *spi) { struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver); struct spi_mem *mem = spi_get_drvdata(spi); if (memdrv->shutdown) memdrv->shutdown(mem); } /** * spi_mem_driver_register_with_owner() - Register a SPI memory driver * @memdrv: the SPI memory driver to register * @owner: the owner of this driver * * Registers a SPI memory driver. * * Return: 0 in case of success, a negative error core otherwise. */ int spi_mem_driver_register_with_owner(struct spi_mem_driver *memdrv, struct module *owner) { memdrv->spidrv.probe = spi_mem_probe; memdrv->spidrv.remove = spi_mem_remove; memdrv->spidrv.shutdown = spi_mem_shutdown; return __spi_register_driver(owner, &memdrv->spidrv); } EXPORT_SYMBOL_GPL(spi_mem_driver_register_with_owner); /** * spi_mem_driver_unregister_with_owner() - Unregister a SPI memory driver * @memdrv: the SPI memory driver to unregister * * Unregisters a SPI memory driver. */ void spi_mem_driver_unregister(struct spi_mem_driver *memdrv) { spi_unregister_driver(&memdrv->spidrv); } EXPORT_SYMBOL_GPL(spi_mem_driver_unregister); #endif /* __UBOOT__ */