// SPDX-License-Identifier: GPL-2.0+ /* * ASPEED FMC/SPI Controller driver * * Copyright (c) 2022 ASPEED Corporation. * Copyright (c) 2022 IBM Corporation. * * Author: * Chin-Ting Kuo * Cedric Le Goater */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define ASPEED_SPI_MAX_CS 5 #define CTRL_IO_SINGLE_DATA 0 #define CTRL_IO_QUAD_DATA BIT(30) #define CTRL_IO_DUAL_DATA BIT(29) #define CTRL_IO_MODE_USER GENMASK(1, 0) #define CTRL_IO_MODE_CMD_READ BIT(0) #define CTRL_IO_MODE_CMD_WRITE BIT(1) #define CTRL_STOP_ACTIVE BIT(2) struct aspeed_spi_regs { u32 conf; /* 0x00 CE Type Setting */ u32 ctrl; /* 0x04 CE Control */ u32 intr_ctrl; /* 0x08 Interrupt Control and Status */ u32 cmd_ctrl; /* 0x0c Command Control */ u32 ce_ctrl[ASPEED_SPI_MAX_CS]; /* 0x10 .. 0x20 CEx Control */ u32 _reserved0[3]; /* .. */ u32 segment_addr[ASPEED_SPI_MAX_CS]; /* 0x30 .. 0x40 Segment Address */ u32 _reserved1[3]; /* .. */ u32 soft_rst_cmd_ctrl; /* 0x50 Auto Soft-Reset Command Control */ u32 _reserved2[11]; /* .. */ u32 dma_ctrl; /* 0x80 DMA Control/Status */ u32 dma_flash_addr; /* 0x84 DMA Flash Side Address */ u32 dma_dram_addr; /* 0x88 DMA DRAM Side Address */ u32 dma_len; /* 0x8c DMA Length Register */ u32 dma_checksum; /* 0x90 Checksum Calculation Result */ u32 timings[ASPEED_SPI_MAX_CS]; /* 0x94 Read Timing Compensation */ }; struct aspeed_spi_plat { u8 max_cs; void __iomem *ahb_base; /* AHB address base for all flash devices. */ fdt_size_t ahb_sz; /* Overall AHB window size for all flash device. */ u32 hclk_rate; /* AHB clock rate */ }; struct aspeed_spi_flash { void __iomem *ahb_base; u32 ahb_decoded_sz; u32 ce_ctrl_user; u32 ce_ctrl_read; u32 max_freq; }; struct aspeed_spi_priv { u32 num_cs; struct aspeed_spi_regs *regs; struct aspeed_spi_info *info; struct aspeed_spi_flash flashes[ASPEED_SPI_MAX_CS]; bool fixed_decoded_range; }; struct aspeed_spi_info { u32 io_mode_mask; u32 max_bus_width; u32 min_decoded_sz; u32 clk_ctrl_mask; void (*set_4byte)(struct udevice *bus, u32 cs); u32 (*segment_start)(struct udevice *bus, u32 reg); u32 (*segment_end)(struct udevice *bus, u32 reg); u32 (*segment_reg)(u32 start, u32 end); int (*adjust_decoded_sz)(struct udevice *bus); u32 (*get_clk_setting)(struct udevice *dev, uint hz); }; struct aspeed_spi_decoded_range { u32 cs; u32 ahb_base; u32 sz; }; static const struct aspeed_spi_info ast2400_spi_info; static const struct aspeed_spi_info ast2500_fmc_info; static const struct aspeed_spi_info ast2500_spi_info; static int aspeed_spi_decoded_range_config(struct udevice *bus); static int aspeed_spi_trim_decoded_size(struct udevice *bus); static u32 aspeed_spi_get_io_mode(u32 bus_width) { switch (bus_width) { case 1: return CTRL_IO_SINGLE_DATA; case 2: return CTRL_IO_DUAL_DATA; case 4: return CTRL_IO_QUAD_DATA; default: /* keep in default value */ return CTRL_IO_SINGLE_DATA; } } static u32 ast2400_spi_segment_start(struct udevice *bus, u32 reg) { struct aspeed_spi_plat *plat = dev_get_plat(bus); u32 start_offset = ((reg >> 16) & 0xff) << 23; if (start_offset == 0) return (u32)plat->ahb_base; return (u32)plat->ahb_base + start_offset; } static u32 ast2400_spi_segment_end(struct udevice *bus, u32 reg) { struct aspeed_spi_plat *plat = dev_get_plat(bus); u32 end_offset = ((reg >> 24) & 0xff) << 23; /* Meaningless end_offset, set to physical ahb base. */ if (end_offset == 0) return (u32)plat->ahb_base; return (u32)plat->ahb_base + end_offset; } static u32 ast2400_spi_segment_reg(u32 start, u32 end) { if (start == end) return 0; return ((((start) >> 23) & 0xff) << 16) | ((((end) >> 23) & 0xff) << 24); } static void ast2400_fmc_chip_set_4byte(struct udevice *bus, u32 cs) { struct aspeed_spi_priv *priv = dev_get_priv(bus); u32 reg_val; reg_val = readl(&priv->regs->ctrl); reg_val |= 0x1 << cs; writel(reg_val, &priv->regs->ctrl); } static void ast2400_spi_chip_set_4byte(struct udevice *bus, u32 cs) { struct aspeed_spi_priv *priv = dev_get_priv(bus); struct aspeed_spi_flash *flash = &priv->flashes[cs]; flash->ce_ctrl_read |= BIT(13); writel(flash->ce_ctrl_read, &priv->regs->ctrl); } /* Transfer maximum clock frequency to register setting */ static u32 ast2400_get_clk_setting(struct udevice *dev, uint max_hz) { struct aspeed_spi_plat *plat = dev_get_plat(dev->parent); struct aspeed_spi_priv *priv = dev_get_priv(dev->parent); struct dm_spi_slave_plat *slave_plat = dev_get_parent_plat(dev); u32 hclk_clk = plat->hclk_rate; u32 hclk_div = 0x0000; /* default value */ u32 i; bool found = false; /* HCLK/1 .. HCLK/16 */ u32 hclk_masks[] = {15, 7, 14, 6, 13, 5, 12, 4, 11, 3, 10, 2, 9, 1, 8, 0}; /* FMC/SPIR10[11:8] */ for (i = 0; i < ARRAY_SIZE(hclk_masks); i++) { if (hclk_clk / (i + 1) <= max_hz) { found = true; break; } } if (found) { hclk_div = hclk_masks[i] << 8; priv->flashes[slave_plat->cs].max_freq = hclk_clk / (i + 1); } dev_dbg(dev, "found: %s, hclk: %d, max_clk: %d\n", found ? "yes" : "no", hclk_clk, max_hz); if (found) { dev_dbg(dev, "h_div: %d (mask %x), speed: %d\n", i + 1, hclk_masks[i], priv->flashes[slave_plat->cs].max_freq); } return hclk_div; } static u32 ast2500_spi_segment_start(struct udevice *bus, u32 reg) { struct aspeed_spi_plat *plat = dev_get_plat(bus); u32 start_offset = ((reg >> 16) & 0xff) << 23; if (start_offset == 0) return (u32)plat->ahb_base; return (u32)plat->ahb_base + start_offset; } static u32 ast2500_spi_segment_end(struct udevice *bus, u32 reg) { struct aspeed_spi_plat *plat = dev_get_plat(bus); u32 end_offset = ((reg >> 24) & 0xff) << 23; /* Meaningless end_offset, set to physical ahb base. */ if (end_offset == 0) return (u32)plat->ahb_base; return (u32)plat->ahb_base + end_offset; } static u32 ast2500_spi_segment_reg(u32 start, u32 end) { if (start == end) return 0; return ((((start) >> 23) & 0xff) << 16) | ((((end) >> 23) & 0xff) << 24); } static void ast2500_spi_chip_set_4byte(struct udevice *bus, u32 cs) { struct aspeed_spi_priv *priv = dev_get_priv(bus); u32 reg_val; reg_val = readl(&priv->regs->ctrl); reg_val |= 0x1 << cs; writel(reg_val, &priv->regs->ctrl); } /* * For AST2500, the minimum address decoded size for each CS * is 8MB instead of zero. This address decoded size is * mandatory for each CS no matter whether it will be used. * This is a HW limitation. */ static int ast2500_adjust_decoded_size(struct udevice *bus) { struct aspeed_spi_plat *plat = dev_get_plat(bus); struct aspeed_spi_priv *priv = dev_get_priv(bus); struct aspeed_spi_flash *flashes = &priv->flashes[0]; int ret; int i; int cs; u32 pre_sz; u32 lack_sz; /* Assign min_decoded_sz to unused CS. */ for (cs = priv->num_cs; cs < plat->max_cs; cs++) flashes[cs].ahb_decoded_sz = priv->info->min_decoded_sz; /* * If command mode or normal mode is used, the start address of a * decoded range should be multiple of its related flash size. * Namely, the total decoded size from flash 0 to flash N should * be multiple of the size of flash (N + 1). */ for (cs = priv->num_cs - 1; cs >= 0; cs--) { pre_sz = 0; for (i = 0; i < cs; i++) pre_sz += flashes[i].ahb_decoded_sz; if (flashes[cs].ahb_decoded_sz != 0 && (pre_sz % flashes[cs].ahb_decoded_sz) != 0) { lack_sz = flashes[cs].ahb_decoded_sz - (pre_sz % flashes[cs].ahb_decoded_sz); flashes[0].ahb_decoded_sz += lack_sz; } } ret = aspeed_spi_trim_decoded_size(bus); if (ret != 0) return ret; return 0; } static u32 ast2500_get_clk_setting(struct udevice *dev, uint max_hz) { struct aspeed_spi_plat *plat = dev_get_plat(dev->parent); struct aspeed_spi_priv *priv = dev_get_priv(dev->parent); struct dm_spi_slave_plat *slave_plat = dev_get_parent_plat(dev); u32 hclk_clk = plat->hclk_rate; u32 hclk_div = 0x0000; /* default value */ u32 i; bool found = false; /* HCLK/1 .. HCLK/16 */ u32 hclk_masks[] = {15, 7, 14, 6, 13, 5, 12, 4, 11, 3, 10, 2, 9, 1, 8, 0}; /* FMC/SPIR10[11:8] */ for (i = 0; i < ARRAY_SIZE(hclk_masks); i++) { if (hclk_clk / (i + 1) <= max_hz) { found = true; priv->flashes[slave_plat->cs].max_freq = hclk_clk / (i + 1); break; } } if (found) { hclk_div = hclk_masks[i] << 8; goto end; } for (i = 0; i < ARRAY_SIZE(hclk_masks); i++) { if (hclk_clk / ((i + 1) * 4) <= max_hz) { found = true; priv->flashes[slave_plat->cs].max_freq = hclk_clk / ((i + 1) * 4); break; } } if (found) hclk_div = BIT(13) | (hclk_masks[i] << 8); end: dev_dbg(dev, "found: %s, hclk: %d, max_clk: %d\n", found ? "yes" : "no", hclk_clk, max_hz); if (found) { dev_dbg(dev, "h_div: %d (mask %x), speed: %d\n", i + 1, hclk_masks[i], priv->flashes[slave_plat->cs].max_freq); } return hclk_div; } static u32 ast2600_spi_segment_start(struct udevice *bus, u32 reg) { struct aspeed_spi_plat *plat = dev_get_plat(bus); u32 start_offset = (reg << 16) & 0x0ff00000; if (start_offset == 0) return (u32)plat->ahb_base; return (u32)plat->ahb_base + start_offset; } static u32 ast2600_spi_segment_end(struct udevice *bus, u32 reg) { struct aspeed_spi_plat *plat = dev_get_plat(bus); u32 end_offset = reg & 0x0ff00000; /* Meaningless end_offset, set to physical ahb base. */ if (end_offset == 0) return (u32)plat->ahb_base; return (u32)plat->ahb_base + end_offset + 0x100000; } static u32 ast2600_spi_segment_reg(u32 start, u32 end) { if (start == end) return 0; return ((start & 0x0ff00000) >> 16) | ((end - 0x100000) & 0x0ff00000); } static void ast2600_spi_chip_set_4byte(struct udevice *bus, u32 cs) { struct aspeed_spi_priv *priv = dev_get_priv(bus); u32 reg_val; reg_val = readl(&priv->regs->ctrl); reg_val |= 0x11 << cs; writel(reg_val, &priv->regs->ctrl); } static int ast2600_adjust_decoded_size(struct udevice *bus) { struct aspeed_spi_plat *plat = dev_get_plat(bus); struct aspeed_spi_priv *priv = dev_get_priv(bus); struct aspeed_spi_flash *flashes = &priv->flashes[0]; int ret; int i; int cs; u32 pre_sz; u32 lack_sz; /* Close unused CS. */ for (cs = priv->num_cs; cs < plat->max_cs; cs++) flashes[cs].ahb_decoded_sz = 0; /* * If command mode or normal mode is used, the start address of a * decoded range should be multiple of its related flash size. * Namely, the total decoded size from flash 0 to flash N should * be multiple of the size of flash (N + 1). */ for (cs = priv->num_cs - 1; cs >= 0; cs--) { pre_sz = 0; for (i = 0; i < cs; i++) pre_sz += flashes[i].ahb_decoded_sz; if (flashes[cs].ahb_decoded_sz != 0 && (pre_sz % flashes[cs].ahb_decoded_sz) != 0) { lack_sz = flashes[cs].ahb_decoded_sz - (pre_sz % flashes[cs].ahb_decoded_sz); flashes[0].ahb_decoded_sz += lack_sz; } } ret = aspeed_spi_trim_decoded_size(bus); if (ret != 0) return ret; return 0; } static u32 ast2600_get_clk_setting(struct udevice *dev, uint max_hz) { struct aspeed_spi_plat *plat = dev_get_plat(dev->parent); struct aspeed_spi_priv *priv = dev_get_priv(dev->parent); struct dm_spi_slave_plat *slave_plat = dev_get_parent_plat(dev); u32 hclk_clk = plat->hclk_rate; u32 hclk_div = 0x0400; /* default value */ u32 i, j; bool found = false; /* HCLK/1 .. HCLK/16 */ u32 hclk_masks[] = {15, 7, 14, 6, 13, 5, 12, 4, 11, 3, 10, 2, 9, 1, 8, 0}; /* FMC/SPIR10[27:24] */ for (j = 0; j < 0xf; j++) { /* FMC/SPIR10[11:8] */ for (i = 0; i < ARRAY_SIZE(hclk_masks); i++) { if (i == 0 && j == 0) continue; if (hclk_clk / (i + 1 + (j * 16)) <= max_hz) { found = true; break; } } if (found) { hclk_div = ((j << 24) | hclk_masks[i] << 8); priv->flashes[slave_plat->cs].max_freq = hclk_clk / (i + 1 + j * 16); break; } } dev_dbg(dev, "found: %s, hclk: %d, max_clk: %d\n", found ? "yes" : "no", hclk_clk, max_hz); if (found) { dev_dbg(dev, "base_clk: %d, h_div: %d (mask %x), speed: %d\n", j, i + 1, hclk_masks[i], priv->flashes[slave_plat->cs].max_freq); } return hclk_div; } /* * As the flash size grows up, we need to trim some decoded * size if needed for the sake of conforming the maximum * decoded size. We trim the decoded size from the largest * CS in order to avoid affecting the default boot up sequence * from CS0 where command mode or normal mode is used. * Notice, if a CS decoded size is trimmed, command mode may * not work perfectly on that CS. */ static int aspeed_spi_trim_decoded_size(struct udevice *bus) { struct aspeed_spi_plat *plat = dev_get_plat(bus); struct aspeed_spi_priv *priv = dev_get_priv(bus); struct aspeed_spi_flash *flashes = &priv->flashes[0]; u32 total_sz; int cs = plat->max_cs - 1; u32 i; do { total_sz = 0; for (i = 0; i < plat->max_cs; i++) total_sz += flashes[i].ahb_decoded_sz; if (flashes[cs].ahb_decoded_sz <= priv->info->min_decoded_sz) cs--; if (cs < 0) return -ENOMEM; if (total_sz > plat->ahb_sz) { flashes[cs].ahb_decoded_sz -= priv->info->min_decoded_sz; total_sz -= priv->info->min_decoded_sz; } } while (total_sz > plat->ahb_sz); return 0; } static int aspeed_spi_read_from_ahb(void __iomem *ahb_base, void *buf, size_t len) { size_t offset = 0; if (IS_ALIGNED((uintptr_t)ahb_base, sizeof(uintptr_t)) && IS_ALIGNED((uintptr_t)buf, sizeof(uintptr_t))) { readsl(ahb_base, buf, len >> 2); offset = len & ~0x3; len -= offset; } readsb(ahb_base, (u8 *)buf + offset, len); return 0; } static int aspeed_spi_write_to_ahb(void __iomem *ahb_base, const void *buf, size_t len) { size_t offset = 0; if (IS_ALIGNED((uintptr_t)ahb_base, sizeof(uintptr_t)) && IS_ALIGNED((uintptr_t)buf, sizeof(uintptr_t))) { writesl(ahb_base, buf, len >> 2); offset = len & ~0x3; len -= offset; } writesb(ahb_base, (u8 *)buf + offset, len); return 0; } /* * Currently, only support 1-1-1, 1-1-2 or 1-1-4 * SPI NOR flash operation format. */ static bool aspeed_spi_supports_op(struct spi_slave *slave, const struct spi_mem_op *op) { struct udevice *bus = slave->dev->parent; struct aspeed_spi_priv *priv = dev_get_priv(bus); if (op->cmd.buswidth > 1) return false; if (op->addr.nbytes != 0) { if (op->addr.buswidth > 1) return false; if (op->addr.nbytes < 3 || op->addr.nbytes > 4) return false; } if (op->dummy.nbytes != 0) { if (op->dummy.buswidth > 1 || op->dummy.nbytes > 7) return false; } if (op->data.nbytes != 0 && op->data.buswidth > priv->info->max_bus_width) return false; if (!spi_mem_default_supports_op(slave, op)) return false; return true; } static int aspeed_spi_exec_op_user_mode(struct spi_slave *slave, const struct spi_mem_op *op) { struct udevice *dev = slave->dev; struct udevice *bus = dev->parent; struct aspeed_spi_priv *priv = dev_get_priv(bus); struct dm_spi_slave_plat *slave_plat = dev_get_parent_plat(slave->dev); u32 cs = slave_plat->cs; u32 ce_ctrl_reg = (u32)&priv->regs->ce_ctrl[cs]; u32 ce_ctrl_val; struct aspeed_spi_flash *flash = &priv->flashes[cs]; u8 dummy_data[16] = {0}; u8 addr[4] = {0}; int i; dev_dbg(dev, "cmd:%x(%d),addr:%llx(%d),dummy:%d(%d),data_len:0x%x(%d)\n", op->cmd.opcode, op->cmd.buswidth, op->addr.val, op->addr.buswidth, op->dummy.nbytes, op->dummy.buswidth, op->data.nbytes, op->data.buswidth); if (priv->info == &ast2400_spi_info) ce_ctrl_reg = (u32)&priv->regs->ctrl; /* * Set controller to 4-byte address mode * if flash is in 4-byte address mode. */ if (op->cmd.opcode == SPINOR_OP_EN4B) priv->info->set_4byte(bus, cs); /* Start user mode */ ce_ctrl_val = flash->ce_ctrl_user; writel(ce_ctrl_val, ce_ctrl_reg); ce_ctrl_val &= (~CTRL_STOP_ACTIVE); writel(ce_ctrl_val, ce_ctrl_reg); /* Send command */ aspeed_spi_write_to_ahb(flash->ahb_base, &op->cmd.opcode, 1); /* Send address */ for (i = op->addr.nbytes; i > 0; i--) { addr[op->addr.nbytes - i] = ((u32)op->addr.val >> ((i - 1) * 8)) & 0xff; } /* Change io_mode */ ce_ctrl_val &= ~priv->info->io_mode_mask; ce_ctrl_val |= aspeed_spi_get_io_mode(op->addr.buswidth); writel(ce_ctrl_val, ce_ctrl_reg); aspeed_spi_write_to_ahb(flash->ahb_base, addr, op->addr.nbytes); /* Send dummy cycles */ aspeed_spi_write_to_ahb(flash->ahb_base, dummy_data, op->dummy.nbytes); /* Change io_mode */ ce_ctrl_val &= ~priv->info->io_mode_mask; ce_ctrl_val |= aspeed_spi_get_io_mode(op->data.buswidth); writel(ce_ctrl_val, ce_ctrl_reg); /* Send data */ if (op->data.dir == SPI_MEM_DATA_OUT) { aspeed_spi_write_to_ahb(flash->ahb_base, op->data.buf.out, op->data.nbytes); } else { aspeed_spi_read_from_ahb(flash->ahb_base, op->data.buf.in, op->data.nbytes); } ce_ctrl_val |= CTRL_STOP_ACTIVE; writel(ce_ctrl_val, ce_ctrl_reg); /* Restore controller setting. */ writel(flash->ce_ctrl_read, ce_ctrl_reg); return 0; } static int aspeed_spi_dirmap_create(struct spi_mem_dirmap_desc *desc) { int ret = 0; struct udevice *dev = desc->slave->dev; struct udevice *bus = dev->parent; struct aspeed_spi_priv *priv = dev_get_priv(bus); struct dm_spi_slave_plat *slave_plat = dev_get_parent_plat(dev); const struct aspeed_spi_info *info = priv->info; struct spi_mem_op op_tmpl = desc->info.op_tmpl; u32 i; u32 cs = slave_plat->cs; u32 cmd_io_conf; u32 ce_ctrl_reg; if (desc->info.op_tmpl.data.dir == SPI_MEM_DATA_OUT) { /* * dirmap_write is not supported currently due to a HW * limitation for command write mode: The written data * length should be multiple of 4-byte. */ return -EOPNOTSUPP; } ce_ctrl_reg = (u32)&priv->regs->ce_ctrl[cs]; if (info == &ast2400_spi_info) ce_ctrl_reg = (u32)&priv->regs->ctrl; if (desc->info.length > 0x1000000) priv->info->set_4byte(bus, cs); /* AST2400 SPI1 doesn't have decoded address segment register. */ if (info != &ast2400_spi_info) { priv->flashes[cs].ahb_decoded_sz = desc->info.length; for (i = 0; i < priv->num_cs; i++) { dev_dbg(dev, "cs: %d, sz: 0x%x\n", i, priv->flashes[cs].ahb_decoded_sz); } ret = aspeed_spi_decoded_range_config(bus); if (ret) return ret; } cmd_io_conf = aspeed_spi_get_io_mode(op_tmpl.data.buswidth) | op_tmpl.cmd.opcode << 16 | ((op_tmpl.dummy.nbytes) & 0x3) << 6 | ((op_tmpl.dummy.nbytes) & 0x4) << 14 | CTRL_IO_MODE_CMD_READ; priv->flashes[cs].ce_ctrl_read &= priv->info->clk_ctrl_mask; priv->flashes[cs].ce_ctrl_read |= cmd_io_conf; writel(priv->flashes[cs].ce_ctrl_read, ce_ctrl_reg); dev_dbg(dev, "read bus width: %d ce_ctrl_val: 0x%08x\n", op_tmpl.data.buswidth, priv->flashes[cs].ce_ctrl_read); return ret; } static ssize_t aspeed_spi_dirmap_read(struct spi_mem_dirmap_desc *desc, u64 offs, size_t len, void *buf) { struct udevice *dev = desc->slave->dev; struct aspeed_spi_priv *priv = dev_get_priv(dev->parent); struct dm_spi_slave_plat *slave_plat = dev_get_parent_plat(dev); u32 cs = slave_plat->cs; int ret; dev_dbg(dev, "read op:0x%x, addr:0x%llx, len:0x%x\n", desc->info.op_tmpl.cmd.opcode, offs, len); if (priv->flashes[cs].ahb_decoded_sz < offs + len || (offs % 4) != 0) { ret = aspeed_spi_exec_op_user_mode(desc->slave, &desc->info.op_tmpl); if (ret != 0) return 0; } else { memcpy_fromio(buf, priv->flashes[cs].ahb_base + offs, len); } return len; } static struct aspeed_spi_flash *aspeed_spi_get_flash(struct udevice *dev) { struct udevice *bus = dev->parent; struct dm_spi_slave_plat *slave_plat = dev_get_parent_plat(dev); struct aspeed_spi_plat *plat = dev_get_plat(bus); struct aspeed_spi_priv *priv = dev_get_priv(bus); u32 cs = slave_plat->cs; if (cs >= plat->max_cs) { dev_err(dev, "invalid CS %u\n", cs); return NULL; } return &priv->flashes[cs]; } static void aspeed_spi_decoded_base_calculate(struct udevice *bus) { struct aspeed_spi_plat *plat = dev_get_plat(bus); struct aspeed_spi_priv *priv = dev_get_priv(bus); u32 cs; if (priv->fixed_decoded_range) return; priv->flashes[0].ahb_base = plat->ahb_base; for (cs = 1; cs < plat->max_cs; cs++) { priv->flashes[cs].ahb_base = priv->flashes[cs - 1].ahb_base + priv->flashes[cs - 1].ahb_decoded_sz; } } static void aspeed_spi_decoded_range_set(struct udevice *bus) { struct aspeed_spi_plat *plat = dev_get_plat(bus); struct aspeed_spi_priv *priv = dev_get_priv(bus); u32 decoded_reg_val; u32 start_addr, end_addr; u32 cs; for (cs = 0; cs < plat->max_cs; cs++) { start_addr = (u32)priv->flashes[cs].ahb_base; end_addr = (u32)priv->flashes[cs].ahb_base + priv->flashes[cs].ahb_decoded_sz; decoded_reg_val = priv->info->segment_reg(start_addr, end_addr); writel(decoded_reg_val, &priv->regs->segment_addr[cs]); dev_dbg(bus, "cs: %d, decoded_reg: 0x%x, start: 0x%x, end: 0x%x\n", cs, decoded_reg_val, start_addr, end_addr); } } static int aspeed_spi_decoded_range_config(struct udevice *bus) { int ret = 0; struct aspeed_spi_priv *priv = dev_get_priv(bus); if (priv->info->adjust_decoded_sz && !priv->fixed_decoded_range) { ret = priv->info->adjust_decoded_sz(bus); if (ret != 0) return ret; } aspeed_spi_decoded_base_calculate(bus); aspeed_spi_decoded_range_set(bus); return ret; } static int aspeed_spi_decoded_ranges_sanity(struct udevice *bus) { struct aspeed_spi_plat *plat = dev_get_plat(bus); struct aspeed_spi_priv *priv = dev_get_priv(bus); u32 cs; u32 total_sz = 0; /* Check overall size. */ for (cs = 0; cs < plat->max_cs; cs++) total_sz += priv->flashes[cs].ahb_decoded_sz; if (total_sz > plat->ahb_sz) { dev_err(bus, "invalid total size 0x%08x\n", total_sz); return -EINVAL; } /* Check each decoded range size for AST2500. */ if (priv->info == &ast2500_fmc_info || priv->info == &ast2500_spi_info) { for (cs = 0; cs < plat->max_cs; cs++) { if (priv->flashes[cs].ahb_decoded_sz < priv->info->min_decoded_sz) { dev_err(bus, "insufficient decoded range.\n"); return -EINVAL; } } } /* * Check overlay. Here, we assume the deccded ranges and * address base are monotonic increasing with CE#. */ for (cs = plat->max_cs - 1; cs > 0; cs--) { if ((u32)priv->flashes[cs].ahb_base != 0 && (u32)priv->flashes[cs].ahb_base < (u32)priv->flashes[cs - 1].ahb_base + priv->flashes[cs - 1].ahb_decoded_sz) { dev_err(bus, "decoded range overlay 0x%08x 0x%08x\n", (u32)priv->flashes[cs].ahb_base, (u32)priv->flashes[cs - 1].ahb_base); return -EINVAL; } } return 0; } static int aspeed_spi_read_fixed_decoded_ranges(struct udevice *bus) { int ret = 0; struct aspeed_spi_plat *plat = dev_get_plat(bus); struct aspeed_spi_priv *priv = dev_get_priv(bus); const char *range_prop = "decoded-ranges"; struct aspeed_spi_decoded_range ranges[ASPEED_SPI_MAX_CS]; const struct property *prop; u32 prop_sz; u32 count; u32 i; priv->fixed_decoded_range = false; prop = dev_read_prop(bus, range_prop, &prop_sz); if (!prop) return 0; count = prop_sz / sizeof(struct aspeed_spi_decoded_range); if (count > plat->max_cs || count < priv->num_cs) { dev_err(bus, "invalid '%s' property %d %d\n", range_prop, count, priv->num_cs); return -EINVAL; } ret = dev_read_u32_array(bus, range_prop, (u32 *)ranges, count * 3); if (ret) return ret; for (i = 0; i < count; i++) { priv->flashes[ranges[i].cs].ahb_base = (void __iomem *)ranges[i].ahb_base; priv->flashes[ranges[i].cs].ahb_decoded_sz = ranges[i].sz; } for (i = 0; i < plat->max_cs; i++) { dev_dbg(bus, "ahb_base: 0x%p, size: 0x%08x\n", priv->flashes[i].ahb_base, priv->flashes[i].ahb_decoded_sz); } ret = aspeed_spi_decoded_ranges_sanity(bus); if (ret != 0) return ret; priv->fixed_decoded_range = true; return 0; } /* * Initialize SPI controller for each chip select. * Here, only the minimum decode range is configured * in order to get device (SPI NOR flash) information * at the early stage. */ static int aspeed_spi_ctrl_init(struct udevice *bus) { int ret; struct aspeed_spi_plat *plat = dev_get_plat(bus); struct aspeed_spi_priv *priv = dev_get_priv(bus); u32 cs; u32 reg_val; u32 decoded_sz; /* Enable write capability for all CS. */ reg_val = readl(&priv->regs->conf); if (priv->info == &ast2400_spi_info) { writel(reg_val | BIT(0), &priv->regs->conf); } else { writel(reg_val | (GENMASK(plat->max_cs - 1, 0) << 16), &priv->regs->conf); } memset(priv->flashes, 0x0, sizeof(struct aspeed_spi_flash) * ASPEED_SPI_MAX_CS); /* Initial user mode. */ for (cs = 0; cs < priv->num_cs; cs++) { priv->flashes[cs].ce_ctrl_user &= priv->info->clk_ctrl_mask; priv->flashes[cs].ce_ctrl_user |= (CTRL_STOP_ACTIVE | CTRL_IO_MODE_USER); } /* * SPI1 on AST2400 only supports CS0. * It is unnecessary to configure segment address register. */ if (priv->info == &ast2400_spi_info) { priv->flashes[cs].ahb_base = plat->ahb_base; priv->flashes[cs].ahb_decoded_sz = 0x10000000; return 0; } ret = aspeed_spi_read_fixed_decoded_ranges(bus); if (ret != 0) return ret; if (!priv->fixed_decoded_range) { /* Assign basic AHB decoded size for each CS. */ for (cs = 0; cs < plat->max_cs; cs++) { reg_val = readl(&priv->regs->segment_addr[cs]); decoded_sz = priv->info->segment_end(bus, reg_val) - priv->info->segment_start(bus, reg_val); if (decoded_sz < priv->info->min_decoded_sz) decoded_sz = priv->info->min_decoded_sz; priv->flashes[cs].ahb_decoded_sz = decoded_sz; } } ret = aspeed_spi_decoded_range_config(bus); return ret; } static const struct aspeed_spi_info ast2400_fmc_info = { .io_mode_mask = 0x70000000, .max_bus_width = 2, .min_decoded_sz = 0x800000, .clk_ctrl_mask = 0x00002f00, .set_4byte = ast2400_fmc_chip_set_4byte, .segment_start = ast2400_spi_segment_start, .segment_end = ast2400_spi_segment_end, .segment_reg = ast2400_spi_segment_reg, .get_clk_setting = ast2400_get_clk_setting, }; static const struct aspeed_spi_info ast2400_spi_info = { .io_mode_mask = 0x70000000, .max_bus_width = 2, .min_decoded_sz = 0x800000, .clk_ctrl_mask = 0x00000f00, .set_4byte = ast2400_spi_chip_set_4byte, .segment_start = ast2400_spi_segment_start, .segment_end = ast2400_spi_segment_end, .segment_reg = ast2400_spi_segment_reg, .get_clk_setting = ast2400_get_clk_setting, }; static const struct aspeed_spi_info ast2500_fmc_info = { .io_mode_mask = 0x70000000, .max_bus_width = 2, .min_decoded_sz = 0x800000, .clk_ctrl_mask = 0x00002f00, .set_4byte = ast2500_spi_chip_set_4byte, .segment_start = ast2500_spi_segment_start, .segment_end = ast2500_spi_segment_end, .segment_reg = ast2500_spi_segment_reg, .adjust_decoded_sz = ast2500_adjust_decoded_size, .get_clk_setting = ast2500_get_clk_setting, }; /* * There are some different between FMC and SPI controllers. * For example, DMA operation, but this isn't implemented currently. */ static const struct aspeed_spi_info ast2500_spi_info = { .io_mode_mask = 0x70000000, .max_bus_width = 2, .min_decoded_sz = 0x800000, .clk_ctrl_mask = 0x00002f00, .set_4byte = ast2500_spi_chip_set_4byte, .segment_start = ast2500_spi_segment_start, .segment_end = ast2500_spi_segment_end, .segment_reg = ast2500_spi_segment_reg, .adjust_decoded_sz = ast2500_adjust_decoded_size, .get_clk_setting = ast2500_get_clk_setting, }; static const struct aspeed_spi_info ast2600_fmc_info = { .io_mode_mask = 0xf0000000, .max_bus_width = 4, .min_decoded_sz = 0x200000, .clk_ctrl_mask = 0x0f000f00, .set_4byte = ast2600_spi_chip_set_4byte, .segment_start = ast2600_spi_segment_start, .segment_end = ast2600_spi_segment_end, .segment_reg = ast2600_spi_segment_reg, .adjust_decoded_sz = ast2600_adjust_decoded_size, .get_clk_setting = ast2600_get_clk_setting, }; static const struct aspeed_spi_info ast2600_spi_info = { .io_mode_mask = 0xf0000000, .max_bus_width = 4, .min_decoded_sz = 0x200000, .clk_ctrl_mask = 0x0f000f00, .set_4byte = ast2600_spi_chip_set_4byte, .segment_start = ast2600_spi_segment_start, .segment_end = ast2600_spi_segment_end, .segment_reg = ast2600_spi_segment_reg, .adjust_decoded_sz = ast2600_adjust_decoded_size, .get_clk_setting = ast2600_get_clk_setting, }; static int aspeed_spi_claim_bus(struct udevice *dev) { struct udevice *bus = dev->parent; struct dm_spi_slave_plat *slave_plat = dev_get_parent_plat(dev); struct aspeed_spi_priv *priv = dev_get_priv(dev->parent); struct aspeed_spi_flash *flash = &priv->flashes[slave_plat->cs]; u32 clk_setting; dev_dbg(bus, "%s: claim bus CS%u\n", bus->name, slave_plat->cs); if (flash->max_freq == 0) { clk_setting = priv->info->get_clk_setting(dev, slave_plat->max_hz); flash->ce_ctrl_user &= ~(priv->info->clk_ctrl_mask); flash->ce_ctrl_user |= clk_setting; flash->ce_ctrl_read &= ~(priv->info->clk_ctrl_mask); flash->ce_ctrl_read |= clk_setting; } return 0; } static int aspeed_spi_release_bus(struct udevice *dev) { struct udevice *bus = dev->parent; struct dm_spi_slave_plat *slave_plat = dev_get_parent_plat(dev); dev_dbg(bus, "%s: release bus CS%u\n", bus->name, slave_plat->cs); if (!aspeed_spi_get_flash(dev)) return -ENODEV; return 0; } static int aspeed_spi_set_mode(struct udevice *bus, uint mode) { dev_dbg(bus, "%s: setting mode to %x\n", bus->name, mode); return 0; } static int aspeed_spi_set_speed(struct udevice *bus, uint hz) { dev_dbg(bus, "%s: setting speed to %u\n", bus->name, hz); /* * ASPEED SPI controller supports multiple CS with different * clock frequency. We cannot distinguish which CS here. * Thus, the related implementation is postponed to claim_bus. */ return 0; } static int apseed_spi_of_to_plat(struct udevice *bus) { struct aspeed_spi_plat *plat = dev_get_plat(bus); struct aspeed_spi_priv *priv = dev_get_priv(bus); int ret; struct clk hclk; priv->regs = devfdt_get_addr_index_ptr(bus, 0); if (!priv->regs) { dev_err(bus, "wrong ctrl base\n"); return -EINVAL; } plat->ahb_base = devfdt_get_addr_size_index_ptr(bus, 1, &plat->ahb_sz); if (!plat->ahb_base) { dev_err(bus, "wrong AHB base\n"); return -EINVAL; } plat->max_cs = dev_read_u32_default(bus, "num-cs", ASPEED_SPI_MAX_CS); if (plat->max_cs > ASPEED_SPI_MAX_CS) return -EINVAL; ret = clk_get_by_index(bus, 0, &hclk); if (ret < 0) { dev_err(bus, "%s could not get clock: %d\n", bus->name, ret); return ret; } plat->hclk_rate = clk_get_rate(&hclk); clk_free(&hclk); dev_dbg(bus, "ctrl_base = 0x%x, ahb_base = 0x%p, size = 0x%llx\n", (u32)priv->regs, plat->ahb_base, (fdt64_t)plat->ahb_sz); dev_dbg(bus, "hclk = %dMHz, max_cs = %d\n", plat->hclk_rate / 1000000, plat->max_cs); return 0; } static int aspeed_spi_probe(struct udevice *bus) { int ret; struct aspeed_spi_priv *priv = dev_get_priv(bus); struct udevice *dev; priv->info = (struct aspeed_spi_info *)dev_get_driver_data(bus); priv->num_cs = 0; for (device_find_first_child(bus, &dev); dev; device_find_next_child(&dev)) { priv->num_cs++; } if (priv->num_cs > ASPEED_SPI_MAX_CS) return -EINVAL; ret = aspeed_spi_ctrl_init(bus); return ret; } static const struct spi_controller_mem_ops aspeed_spi_mem_ops = { .supports_op = aspeed_spi_supports_op, .exec_op = aspeed_spi_exec_op_user_mode, .dirmap_create = aspeed_spi_dirmap_create, .dirmap_read = aspeed_spi_dirmap_read, }; static const struct dm_spi_ops aspeed_spi_ops = { .claim_bus = aspeed_spi_claim_bus, .release_bus = aspeed_spi_release_bus, .set_speed = aspeed_spi_set_speed, .set_mode = aspeed_spi_set_mode, .mem_ops = &aspeed_spi_mem_ops, }; static const struct udevice_id aspeed_spi_ids[] = { { .compatible = "aspeed,ast2400-fmc", .data = (ulong)&ast2400_fmc_info, }, { .compatible = "aspeed,ast2400-spi", .data = (ulong)&ast2400_spi_info, }, { .compatible = "aspeed,ast2500-fmc", .data = (ulong)&ast2500_fmc_info, }, { .compatible = "aspeed,ast2500-spi", .data = (ulong)&ast2500_spi_info, }, { .compatible = "aspeed,ast2600-fmc", .data = (ulong)&ast2600_fmc_info, }, { .compatible = "aspeed,ast2600-spi", .data = (ulong)&ast2600_spi_info, }, { } }; U_BOOT_DRIVER(aspeed_spi) = { .name = "aspeed_spi_smc", .id = UCLASS_SPI, .of_match = aspeed_spi_ids, .ops = &aspeed_spi_ops, .of_to_plat = apseed_spi_of_to_plat, .plat_auto = sizeof(struct aspeed_spi_plat), .priv_auto = sizeof(struct aspeed_spi_priv), .probe = aspeed_spi_probe, };