// SPDX-License-Identifier: GPL-2.0+ /* * Renesas RCar Gen3 RPC QSPI driver * * Copyright (C) 2018 Marek Vasut */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define RPC_CMNCR 0x0000 /* R/W */ #define RPC_CMNCR_MD BIT(31) #define RPC_CMNCR_SFDE BIT(24) #define RPC_CMNCR_MOIIO3(val) (((val) & 0x3) << 22) #define RPC_CMNCR_MOIIO2(val) (((val) & 0x3) << 20) #define RPC_CMNCR_MOIIO1(val) (((val) & 0x3) << 18) #define RPC_CMNCR_MOIIO0(val) (((val) & 0x3) << 16) #define RPC_CMNCR_MOIIO_HIZ (RPC_CMNCR_MOIIO0(3) | RPC_CMNCR_MOIIO1(3) | \ RPC_CMNCR_MOIIO2(3) | RPC_CMNCR_MOIIO3(3)) #define RPC_CMNCR_IO3FV(val) (((val) & 0x3) << 14) #define RPC_CMNCR_IO2FV(val) (((val) & 0x3) << 12) #define RPC_CMNCR_IO0FV(val) (((val) & 0x3) << 8) #define RPC_CMNCR_IOFV_HIZ (RPC_CMNCR_IO0FV(3) | RPC_CMNCR_IO2FV(3) | \ RPC_CMNCR_IO3FV(3)) #define RPC_CMNCR_CPHAT BIT(6) #define RPC_CMNCR_CPHAR BIT(5) #define RPC_CMNCR_SSLP BIT(4) #define RPC_CMNCR_CPOL BIT(3) #define RPC_CMNCR_BSZ(val) (((val) & 0x3) << 0) #define RPC_SSLDR 0x0004 /* R/W */ #define RPC_SSLDR_SPNDL(d) (((d) & 0x7) << 16) #define RPC_SSLDR_SLNDL(d) (((d) & 0x7) << 8) #define RPC_SSLDR_SCKDL(d) (((d) & 0x7) << 0) #define RPC_DRCR 0x000C /* R/W */ #define RPC_DRCR_SSLN BIT(24) #define RPC_DRCR_RBURST(v) (((v) & 0x1F) << 16) #define RPC_DRCR_RCF BIT(9) #define RPC_DRCR_RBE BIT(8) #define RPC_DRCR_SSLE BIT(0) #define RPC_DRCMR 0x0010 /* R/W */ #define RPC_DRCMR_CMD(c) (((c) & 0xFF) << 16) #define RPC_DRCMR_OCMD(c) (((c) & 0xFF) << 0) #define RPC_DREAR 0x0014 /* R/W */ #define RPC_DREAR_EAV(v) (((v) & 0xFF) << 16) #define RPC_DREAR_EAC(v) (((v) & 0x7) << 0) #define RPC_DROPR 0x0018 /* R/W */ #define RPC_DROPR_OPD3(o) (((o) & 0xFF) << 24) #define RPC_DROPR_OPD2(o) (((o) & 0xFF) << 16) #define RPC_DROPR_OPD1(o) (((o) & 0xFF) << 8) #define RPC_DROPR_OPD0(o) (((o) & 0xFF) << 0) #define RPC_DRENR 0x001C /* R/W */ #define RPC_DRENR_CDB(o) (u32)((((o) & 0x3) << 30)) #define RPC_DRENR_OCDB(o) (((o) & 0x3) << 28) #define RPC_DRENR_ADB(o) (((o) & 0x3) << 24) #define RPC_DRENR_OPDB(o) (((o) & 0x3) << 20) #define RPC_DRENR_SPIDB(o) (((o) & 0x3) << 16) #define RPC_DRENR_DME BIT(15) #define RPC_DRENR_CDE BIT(14) #define RPC_DRENR_OCDE BIT(12) #define RPC_DRENR_ADE(v) (((v) & 0xF) << 8) #define RPC_DRENR_OPDE(v) (((v) & 0xF) << 4) #define RPC_SMCR 0x0020 /* R/W */ #define RPC_SMCR_SSLKP BIT(8) #define RPC_SMCR_SPIRE BIT(2) #define RPC_SMCR_SPIWE BIT(1) #define RPC_SMCR_SPIE BIT(0) #define RPC_SMCMR 0x0024 /* R/W */ #define RPC_SMCMR_CMD(c) (((c) & 0xFF) << 16) #define RPC_SMCMR_OCMD(c) (((c) & 0xFF) << 0) #define RPC_SMADR 0x0028 /* R/W */ #define RPC_SMOPR 0x002C /* R/W */ #define RPC_SMOPR_OPD0(o) (((o) & 0xFF) << 0) #define RPC_SMOPR_OPD1(o) (((o) & 0xFF) << 8) #define RPC_SMOPR_OPD2(o) (((o) & 0xFF) << 16) #define RPC_SMOPR_OPD3(o) (((o) & 0xFF) << 24) #define RPC_SMENR 0x0030 /* R/W */ #define RPC_SMENR_CDB(o) (((o) & 0x3) << 30) #define RPC_SMENR_OCDB(o) (((o) & 0x3) << 28) #define RPC_SMENR_ADB(o) (((o) & 0x3) << 24) #define RPC_SMENR_OPDB(o) (((o) & 0x3) << 20) #define RPC_SMENR_SPIDB(o) (((o) & 0x3) << 16) #define RPC_SMENR_DME BIT(15) #define RPC_SMENR_CDE BIT(14) #define RPC_SMENR_OCDE BIT(12) #define RPC_SMENR_ADE(v) (((v) & 0xF) << 8) #define RPC_SMENR_OPDE(v) (((v) & 0xF) << 4) #define RPC_SMENR_SPIDE(v) (((v) & 0xF) << 0) #define RPC_SMRDR0 0x0038 /* R */ #define RPC_SMRDR1 0x003C /* R */ #define RPC_SMWDR0 0x0040 /* R/W */ #define RPC_SMWDR1 0x0044 /* R/W */ #define RPC_CMNSR 0x0048 /* R */ #define RPC_CMNSR_SSLF BIT(1) #define RPC_CMNSR_TEND BIT(0) #define RPC_DRDMCR 0x0058 /* R/W */ #define RPC_DRDMCR_DMCYC(v) (((v) & 0xF) << 0) #define RPC_DRDRENR 0x005C /* R/W */ #define RPC_DRDRENR_HYPE (0x5 << 12) #define RPC_DRDRENR_ADDRE BIT(8) #define RPC_DRDRENR_OPDRE BIT(4) #define RPC_DRDRENR_DRDRE BIT(0) #define RPC_SMDMCR 0x0060 /* R/W */ #define RPC_SMDMCR_DMCYC(v) (((v) & 0xF) << 0) #define RPC_SMDRENR 0x0064 /* R/W */ #define RPC_SMDRENR_HYPE (0x5 << 12) #define RPC_SMDRENR_ADDRE BIT(8) #define RPC_SMDRENR_OPDRE BIT(4) #define RPC_SMDRENR_SPIDRE BIT(0) #define RPC_PHYCNT 0x007C /* R/W */ #define RPC_PHYCNT_CAL BIT(31) #define PRC_PHYCNT_OCTA_AA BIT(22) #define PRC_PHYCNT_OCTA_SA BIT(23) #define PRC_PHYCNT_EXDS BIT(21) #define RPC_PHYCNT_OCT BIT(20) #define RPC_PHYCNT_STRTIM(v) (((v) & 0x7) << 15) #define RPC_PHYCNT_STRTIM2(v) ((((v) & 0x7) << 15) | (((v) & 0x8) << 24)) #define RPC_PHYCNT_WBUF2 BIT(4) #define RPC_PHYCNT_WBUF BIT(2) #define RPC_PHYCNT_MEM(v) (((v) & 0x3) << 0) #define RPC_PHYINT 0x0088 /* R/W */ #define RPC_PHYINT_RSTEN BIT(18) #define RPC_PHYINT_WPEN BIT(17) #define RPC_PHYINT_INTEN BIT(16) #define RPC_PHYINT_RST BIT(2) #define RPC_PHYINT_WP BIT(1) #define RPC_PHYINT_INT BIT(0) #define RPC_WBUF 0x8000 /* R/W size=4/8/16/32/64Bytes */ #define RPC_WBUF_SIZE 0x100 DECLARE_GLOBAL_DATA_PTR; struct rpc_spi_plat { fdt_addr_t regs; fdt_addr_t extr; s32 freq; /* Default clock freq, -1 for none */ }; struct rpc_spi_priv { fdt_addr_t regs; fdt_addr_t extr; struct clk clk; }; static int rpc_spi_wait_sslf(struct udevice *dev) { struct rpc_spi_priv *priv = dev_get_priv(dev->parent); return wait_for_bit_le32((void *)priv->regs + RPC_CMNSR, RPC_CMNSR_SSLF, false, 1000, false); } static int rpc_spi_wait_tend(struct udevice *dev) { struct rpc_spi_priv *priv = dev_get_priv(dev->parent); return wait_for_bit_le32((void *)priv->regs + RPC_CMNSR, RPC_CMNSR_TEND, true, 1000, false); } static void rpc_spi_flush_read_cache(struct udevice *dev) { struct udevice *bus = dev->parent; struct rpc_spi_priv *priv = dev_get_priv(bus); /* Flush read cache */ writel(RPC_DRCR_SSLN | RPC_DRCR_RBURST(0x1f) | RPC_DRCR_RCF | RPC_DRCR_RBE | RPC_DRCR_SSLE, priv->regs + RPC_DRCR); readl(priv->regs + RPC_DRCR); } static u32 rpc_spi_get_strobe_delay(void) { #ifndef CONFIG_RZA1 u32 cpu_type = rmobile_get_cpu_type(); /* * NOTE: RPC_PHYCNT_STRTIM value: * 0: On H3 ES1.x (not supported in mainline U-Boot) * 6: On M3 ES1.x * 7: On other R-Car Gen3 * 15: On R-Car Gen4 */ if (cpu_type == RMOBILE_CPU_TYPE_R8A7796 && rmobile_get_cpu_rev_integer() == 1) return RPC_PHYCNT_STRTIM(6); else if (cpu_type == RMOBILE_CPU_TYPE_R8A779F0 || cpu_type == RMOBILE_CPU_TYPE_R8A779G0) return RPC_PHYCNT_STRTIM2(15); else #endif return RPC_PHYCNT_STRTIM(7); } static int rpc_spi_claim_bus(struct udevice *dev, bool manual) { struct udevice *bus = dev->parent; struct rpc_spi_priv *priv = dev_get_priv(bus); /* NOTE: The 0x260 are undocumented bits, but they must be set. */ writel(RPC_PHYCNT_CAL | rpc_spi_get_strobe_delay() | 0x260, priv->regs + RPC_PHYCNT); writel((manual ? RPC_CMNCR_MD : 0) | RPC_CMNCR_SFDE | RPC_CMNCR_MOIIO_HIZ | RPC_CMNCR_IOFV_HIZ | RPC_CMNCR_BSZ(0), priv->regs + RPC_CMNCR); writel(RPC_SSLDR_SPNDL(7) | RPC_SSLDR_SLNDL(7) | RPC_SSLDR_SCKDL(7), priv->regs + RPC_SSLDR); rpc_spi_flush_read_cache(dev); return 0; } static int rpc_spi_release_bus(struct udevice *dev) { struct udevice *bus = dev->parent; struct rpc_spi_priv *priv = dev_get_priv(bus); /* NOTE: The 0x260 are undocumented bits, but they must be set. */ writel(rpc_spi_get_strobe_delay() | 0x260, priv->regs + RPC_PHYCNT); rpc_spi_flush_read_cache(dev); return 0; } static int rpc_spi_mem_exec_op(struct spi_slave *spi, const struct spi_mem_op *op) { struct udevice *bus = spi->dev->parent; struct rpc_spi_priv *priv = dev_get_priv(bus); const void *dout = op->data.buf.out ? op->data.buf.out : NULL; void *din = op->data.buf.in ? op->data.buf.in : NULL; int ret = 0; u32 offset = 0; u32 smenr, smcr; smenr = 0; offset = op->addr.val; switch (op->data.dir) { case SPI_MEM_DATA_IN: rpc_spi_claim_bus(spi->dev, false); writel(0, priv->regs + RPC_DRCMR); writel(RPC_DRCMR_CMD(op->cmd.opcode), priv->regs + RPC_DRCMR); smenr |= RPC_DRENR_CDE; writel(0, priv->regs + RPC_DREAR); if (op->addr.nbytes == 4) { writel(RPC_DREAR_EAV(offset >> 25) | RPC_DREAR_EAC(1), priv->regs + RPC_DREAR); smenr |= RPC_DRENR_ADE(0xF); } else if (op->addr.nbytes == 3) { smenr |= RPC_DRENR_ADE(0x7); } else { smenr |= RPC_DRENR_ADE(0); } writel(0, priv->regs + RPC_DRDMCR); if (op->dummy.nbytes) { writel(8 * op->dummy.nbytes - 1, priv->regs + RPC_DRDMCR); smenr |= RPC_DRENR_DME; } writel(0, priv->regs + RPC_DROPR); writel(smenr, priv->regs + RPC_DRENR); memcpy_fromio(din, (void *)(priv->extr + offset), op->data.nbytes); rpc_spi_release_bus(spi->dev); break; case SPI_MEM_DATA_OUT: case SPI_MEM_NO_DATA: rpc_spi_claim_bus(spi->dev, true); writel(0, priv->regs + RPC_SMCR); writel(0, priv->regs + RPC_SMCMR); writel(RPC_SMCMR_CMD(op->cmd.opcode), priv->regs + RPC_SMCMR); smenr |= RPC_SMENR_CDE; writel(0, priv->regs + RPC_SMADR); if (op->addr.nbytes == 4) smenr |= RPC_SMENR_ADE(0xF); else if (op->addr.nbytes == 3) smenr |= RPC_SMENR_ADE(0x7); else smenr |= RPC_SMENR_ADE(0); writel(offset, priv->regs + RPC_SMADR); writel(0, priv->regs + RPC_SMDMCR); if (op->dummy.nbytes) { writel(8 * op->dummy.nbytes - 1, priv->regs + RPC_SMDMCR); smenr |= RPC_SMENR_DME; } writel(0, priv->regs + RPC_SMOPR); writel(0, priv->regs + RPC_SMDRENR); if (dout && op->data.nbytes) { u32 *datout = (u32 *)dout; u32 wloop = DIV_ROUND_UP(op->data.nbytes, 4); smenr |= RPC_SMENR_SPIDE(0xF); while (wloop--) { smcr = RPC_SMCR_SPIWE | RPC_SMCR_SPIE; if (wloop >= 1) smcr |= RPC_SMCR_SSLKP; writel(smenr, priv->regs + RPC_SMENR); writel(*datout, priv->regs + RPC_SMWDR0); writel(smcr, priv->regs + RPC_SMCR); ret = rpc_spi_wait_tend(spi->dev); if (ret) { rpc_spi_release_bus(spi->dev); return ret; } datout++; smenr &= (~RPC_SMENR_CDE & ~RPC_SMENR_ADE(0xF)); } ret = rpc_spi_wait_sslf(spi->dev); } else { writel(smenr, priv->regs + RPC_SMENR); writel(RPC_SMCR_SPIE, priv->regs + RPC_SMCR); ret = rpc_spi_wait_tend(spi->dev); } rpc_spi_release_bus(spi->dev); break; default: break; } return ret; } static int rpc_spi_set_speed(struct udevice *bus, uint speed) { /* This is a SPI NOR controller, do nothing. */ return 0; } static int rpc_spi_set_mode(struct udevice *bus, uint mode) { /* This is a SPI NOR controller, do nothing. */ return 0; } static const struct spi_controller_mem_ops rpc_spi_mem_ops = { .exec_op = rpc_spi_mem_exec_op }; static int rpc_spi_bind(struct udevice *parent) { const void *fdt = gd->fdt_blob; ofnode node; int ret, off; /* * Check if there are any SPI NOR child nodes, if so, bind as * this controller will be operated in SPI mode. */ dev_for_each_subnode(node, parent) { off = ofnode_to_offset(node); ret = fdt_node_check_compatible(fdt, off, "spi-flash"); if (!ret) return 0; ret = fdt_node_check_compatible(fdt, off, "jedec,spi-nor"); if (!ret) return 0; } return -ENODEV; } static int rpc_spi_probe(struct udevice *dev) { struct rpc_spi_plat *plat = dev_get_plat(dev); struct rpc_spi_priv *priv = dev_get_priv(dev); priv->regs = plat->regs; priv->extr = plat->extr; #if CONFIG_IS_ENABLED(CLK) clk_enable(&priv->clk); #endif return 0; } static int rpc_spi_of_to_plat(struct udevice *bus) { struct rpc_spi_plat *plat = dev_get_plat(bus); plat->regs = dev_read_addr_index(bus, 0); plat->extr = dev_read_addr_index(bus, 1); #if CONFIG_IS_ENABLED(CLK) struct rpc_spi_priv *priv = dev_get_priv(bus); int ret; ret = clk_get_by_index(bus, 0, &priv->clk); if (ret < 0) { printf("%s: Could not get clock for %s: %d\n", __func__, bus->name, ret); return ret; } #endif plat->freq = dev_read_u32_default(bus, "spi-max-freq", 50000000); return 0; } static const struct dm_spi_ops rpc_spi_ops = { .set_speed = rpc_spi_set_speed, .set_mode = rpc_spi_set_mode, .mem_ops = &rpc_spi_mem_ops }; static const struct udevice_id rpc_spi_ids[] = { { .compatible = "renesas,r7s72100-rpc-if" }, { .compatible = "renesas,rcar-gen3-rpc-if" }, { } }; U_BOOT_DRIVER(rpc_spi) = { .name = "rpc_spi", .id = UCLASS_SPI, .of_match = rpc_spi_ids, .ops = &rpc_spi_ops, .of_to_plat = rpc_spi_of_to_plat, .plat_auto = sizeof(struct rpc_spi_plat), .priv_auto = sizeof(struct rpc_spi_priv), .bind = rpc_spi_bind, .probe = rpc_spi_probe, };