// SPDX-License-Identifier: GPL-2.0 // // Mediatek SPI-NOR controller driver // // Copyright (C) 2020 SkyLake Huang // // Some parts are based on drivers/spi/spi-mtk-nor.c of linux version #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define DRIVER_NAME "mtk-spi-nor" #define MTK_NOR_REG_CMD 0x00 #define MTK_NOR_CMD_WRSR BIT(5) #define MTK_NOR_CMD_WRITE BIT(4) #define MTK_NOR_CMD_PROGRAM BIT(2) #define MTK_NOR_CMD_RDSR BIT(1) #define MTK_NOR_CMD_READ BIT(0) #define MTK_NOR_CMD_MASK GENMASK(5, 0) #define MTK_NOR_REG_PRG_CNT 0x04 #define MTK_NOR_REG_RDSR 0x08 #define MTK_NOR_REG_RDATA 0x0c #define MTK_NOR_REG_RADR0 0x10 #define MTK_NOR_REG_RADR(n) (MTK_NOR_REG_RADR0 + 4 * (n)) #define MTK_NOR_REG_RADR3 0xc8 #define MTK_NOR_REG_WDATA 0x1c #define MTK_NOR_REG_PRGDATA0 0x20 #define MTK_NOR_REG_PRGDATA(n) (MTK_NOR_REG_PRGDATA0 + 4 * (n)) #define MTK_NOR_REG_PRGDATA_MAX 5 #define MTK_NOR_REG_SHIFT0 0x38 #define MTK_NOR_REG_SHIFT(n) (MTK_NOR_REG_SHIFT0 + 4 * (n)) #define MTK_NOR_REG_SHIFT_MAX 9 #define MTK_NOR_REG_CFG1 0x60 #define MTK_NOR_FAST_READ BIT(0) #define MTK_NOR_REG_CFG2 0x64 #define MTK_NOR_WR_CUSTOM_OP_EN BIT(4) #define MTK_NOR_WR_BUF_EN BIT(0) #define MTK_NOR_REG_PP_DATA 0x98 #define MTK_NOR_REG_IRQ_STAT 0xa8 #define MTK_NOR_REG_IRQ_EN 0xac #define MTK_NOR_IRQ_DMA BIT(7) #define MTK_NOR_IRQ_WRSR BIT(5) #define MTK_NOR_IRQ_MASK GENMASK(7, 0) #define MTK_NOR_REG_CFG3 0xb4 #define MTK_NOR_DISABLE_WREN BIT(7) #define MTK_NOR_DISABLE_SR_POLL BIT(5) #define MTK_NOR_REG_WP 0xc4 #define MTK_NOR_ENABLE_SF_CMD 0x30 #define MTK_NOR_REG_BUSCFG 0xcc #define MTK_NOR_4B_ADDR BIT(4) #define MTK_NOR_QUAD_ADDR BIT(3) #define MTK_NOR_QUAD_READ BIT(2) #define MTK_NOR_DUAL_ADDR BIT(1) #define MTK_NOR_DUAL_READ BIT(0) #define MTK_NOR_BUS_MODE_MASK GENMASK(4, 0) #define MTK_NOR_REG_DMA_CTL 0x718 #define MTK_NOR_DMA_START BIT(0) #define MTK_NOR_REG_DMA_FADR 0x71c #define MTK_NOR_REG_DMA_DADR 0x720 #define MTK_NOR_REG_DMA_END_DADR 0x724 #define MTK_NOR_PRG_MAX_SIZE 6 // Reading DMA src/dst addresses have to be 16-byte aligned #define MTK_NOR_DMA_ALIGN 16 #define MTK_NOR_DMA_ALIGN_MASK (MTK_NOR_DMA_ALIGN - 1) // and we allocate a bounce buffer if destination address isn't aligned. #define MTK_NOR_BOUNCE_BUF_SIZE PAGE_SIZE // Buffered page program can do one 128-byte transfer #define MTK_NOR_PP_SIZE 128 #define CLK_TO_US(priv, clkcnt) DIV_ROUND_UP(clkcnt, (priv)->spi_freq / 1000000) #define MTK_NOR_UNLOCK_ALL 0x0 struct mtk_snor_priv { struct device *dev; void __iomem *base; u8 *buffer; struct clk spi_clk; struct clk ctlr_clk; unsigned int spi_freq; bool wbuf_en; }; static inline void mtk_snor_rmw(struct mtk_snor_priv *priv, u32 reg, u32 set, u32 clr) { u32 val = readl(priv->base + reg); val &= ~clr; val |= set; writel(val, priv->base + reg); } static inline int mtk_snor_cmd_exec(struct mtk_snor_priv *priv, u32 cmd, ulong clk) { unsigned long long delay = CLK_TO_US(priv, clk); u32 reg; int ret; writel(cmd, priv->base + MTK_NOR_REG_CMD); delay = (delay + 1) * 200; ret = readl_poll_timeout(priv->base + MTK_NOR_REG_CMD, reg, !(reg & cmd), delay); if (ret < 0) dev_err(priv->dev, "command %u timeout.\n", cmd); return ret; } static void mtk_snor_set_addr(struct mtk_snor_priv *priv, const struct spi_mem_op *op) { u32 addr = op->addr.val; int i; for (i = 0; i < 3; i++) { writeb(addr & 0xff, priv->base + MTK_NOR_REG_RADR(i)); addr >>= 8; } if (op->addr.nbytes == 4) { writeb(addr & 0xff, priv->base + MTK_NOR_REG_RADR3); mtk_snor_rmw(priv, MTK_NOR_REG_BUSCFG, MTK_NOR_4B_ADDR, 0); } else { mtk_snor_rmw(priv, MTK_NOR_REG_BUSCFG, 0, MTK_NOR_4B_ADDR); } } static bool need_bounce(const struct spi_mem_op *op) { return ((uintptr_t)op->data.buf.in & MTK_NOR_DMA_ALIGN_MASK); } static int mtk_snor_adjust_op_size(struct spi_slave *slave, struct spi_mem_op *op) { if (!op->data.nbytes) return 0; if (op->addr.nbytes == 3 || op->addr.nbytes == 4) { if (op->data.dir == SPI_MEM_DATA_IN) { //&& // limit size to prevent timeout calculation overflow if (op->data.nbytes > 0x400000) op->data.nbytes = 0x400000; if (op->addr.val & MTK_NOR_DMA_ALIGN_MASK || op->data.nbytes < MTK_NOR_DMA_ALIGN) op->data.nbytes = 1; else if (!need_bounce(op)) op->data.nbytes &= ~MTK_NOR_DMA_ALIGN_MASK; else if (op->data.nbytes > MTK_NOR_BOUNCE_BUF_SIZE) op->data.nbytes = MTK_NOR_BOUNCE_BUF_SIZE; return 0; } else if (op->data.dir == SPI_MEM_DATA_OUT) { if (op->data.nbytes >= MTK_NOR_PP_SIZE) op->data.nbytes = MTK_NOR_PP_SIZE; else op->data.nbytes = 1; return 0; } } return 0; } static bool mtk_snor_supports_op(struct spi_slave *slave, const struct spi_mem_op *op) { /* This controller only supports 1-1-1 write mode */ if (op->data.dir == SPI_MEM_DATA_OUT && (op->cmd.buswidth != 1 || op->data.buswidth != 1)) return false; return true; } static void mtk_snor_setup_bus(struct mtk_snor_priv *priv, const struct spi_mem_op *op) { u32 reg = 0; if (op->addr.nbytes == 4) reg |= MTK_NOR_4B_ADDR; if (op->data.buswidth == 4) { reg |= MTK_NOR_QUAD_READ; writeb(op->cmd.opcode, priv->base + MTK_NOR_REG_PRGDATA(4)); if (op->addr.buswidth == 4) reg |= MTK_NOR_QUAD_ADDR; } else if (op->data.buswidth == 2) { reg |= MTK_NOR_DUAL_READ; writeb(op->cmd.opcode, priv->base + MTK_NOR_REG_PRGDATA(3)); if (op->addr.buswidth == 2) reg |= MTK_NOR_DUAL_ADDR; } else { if (op->cmd.opcode == 0x0b) mtk_snor_rmw(priv, MTK_NOR_REG_CFG1, MTK_NOR_FAST_READ, 0); else mtk_snor_rmw(priv, MTK_NOR_REG_CFG1, 0, MTK_NOR_FAST_READ); } mtk_snor_rmw(priv, MTK_NOR_REG_BUSCFG, reg, MTK_NOR_BUS_MODE_MASK); } static int mtk_snor_dma_exec(struct mtk_snor_priv *priv, u32 from, unsigned int length, dma_addr_t dma_addr) { int ret = 0; ulong delay; u32 reg; writel(from, priv->base + MTK_NOR_REG_DMA_FADR); writel(dma_addr, priv->base + MTK_NOR_REG_DMA_DADR); writel(dma_addr + length, priv->base + MTK_NOR_REG_DMA_END_DADR); mtk_snor_rmw(priv, MTK_NOR_REG_DMA_CTL, MTK_NOR_DMA_START, 0); delay = CLK_TO_US(priv, (length + 5) * BITS_PER_BYTE); delay = (delay + 1) * 100; ret = readl_poll_timeout(priv->base + MTK_NOR_REG_DMA_CTL, reg, !(reg & MTK_NOR_DMA_START), delay); if (ret < 0) dev_err(priv->dev, "dma read timeout.\n"); return ret; } static int mtk_snor_read_bounce(struct mtk_snor_priv *priv, const struct spi_mem_op *op) { unsigned int rdlen; int ret; if (op->data.nbytes & MTK_NOR_DMA_ALIGN_MASK) rdlen = (op->data.nbytes + MTK_NOR_DMA_ALIGN) & ~MTK_NOR_DMA_ALIGN_MASK; else rdlen = op->data.nbytes; ret = mtk_snor_dma_exec(priv, op->addr.val, rdlen, (dma_addr_t)priv->buffer); if (!ret) memcpy(op->data.buf.in, priv->buffer, op->data.nbytes); return ret; } static int mtk_snor_read_dma(struct mtk_snor_priv *priv, const struct spi_mem_op *op) { int ret; dma_addr_t dma_addr; if (need_bounce(op)) return mtk_snor_read_bounce(priv, op); dma_addr = dma_map_single(op->data.buf.in, op->data.nbytes, DMA_FROM_DEVICE); if (dma_mapping_error(priv->dev, dma_addr)) return -EINVAL; ret = mtk_snor_dma_exec(priv, op->addr.val, op->data.nbytes, dma_addr); dma_unmap_single(dma_addr, op->data.nbytes, DMA_FROM_DEVICE); return ret; } static int mtk_snor_read_pio(struct mtk_snor_priv *priv, const struct spi_mem_op *op) { u8 *buf = op->data.buf.in; int ret; ret = mtk_snor_cmd_exec(priv, MTK_NOR_CMD_READ, 6 * BITS_PER_BYTE); if (!ret) buf[0] = readb(priv->base + MTK_NOR_REG_RDATA); return ret; } static int mtk_snor_write_buffer_enable(struct mtk_snor_priv *priv) { int ret; u32 val; if (priv->wbuf_en) return 0; val = readl(priv->base + MTK_NOR_REG_CFG2); writel(val | MTK_NOR_WR_BUF_EN, priv->base + MTK_NOR_REG_CFG2); ret = readl_poll_timeout(priv->base + MTK_NOR_REG_CFG2, val, val & MTK_NOR_WR_BUF_EN, 10000); if (!ret) priv->wbuf_en = true; return ret; } static int mtk_snor_write_buffer_disable(struct mtk_snor_priv *priv) { int ret; u32 val; if (!priv->wbuf_en) return 0; val = readl(priv->base + MTK_NOR_REG_CFG2); writel(val & ~MTK_NOR_WR_BUF_EN, priv->base + MTK_NOR_REG_CFG2); ret = readl_poll_timeout(priv->base + MTK_NOR_REG_CFG2, val, !(val & MTK_NOR_WR_BUF_EN), 10000); if (!ret) priv->wbuf_en = false; return ret; } static int mtk_snor_pp_buffered(struct mtk_snor_priv *priv, const struct spi_mem_op *op) { const u8 *buf = op->data.buf.out; u32 val; int ret, i; ret = mtk_snor_write_buffer_enable(priv); if (ret < 0) return ret; for (i = 0; i < op->data.nbytes; i += 4) { val = buf[i + 3] << 24 | buf[i + 2] << 16 | buf[i + 1] << 8 | buf[i]; writel(val, priv->base + MTK_NOR_REG_PP_DATA); } mtk_snor_cmd_exec(priv, MTK_NOR_CMD_WRITE, (op->data.nbytes + 5) * BITS_PER_BYTE); return mtk_snor_write_buffer_disable(priv); } static int mtk_snor_pp_unbuffered(struct mtk_snor_priv *priv, const struct spi_mem_op *op) { const u8 *buf = op->data.buf.out; int ret; ret = mtk_snor_write_buffer_disable(priv); if (ret < 0) return ret; writeb(buf[0], priv->base + MTK_NOR_REG_WDATA); return mtk_snor_cmd_exec(priv, MTK_NOR_CMD_WRITE, 6 * BITS_PER_BYTE); } static int mtk_snor_cmd_program(struct mtk_snor_priv *priv, const struct spi_mem_op *op) { u32 tx_len = 0; u32 trx_len = 0; int reg_offset = MTK_NOR_REG_PRGDATA_MAX; void __iomem *reg; u8 *txbuf; int tx_cnt = 0; u8 *rxbuf = op->data.buf.in; int i = 0; tx_len = 1 + op->addr.nbytes + op->dummy.nbytes; trx_len = tx_len + op->data.nbytes; if (op->data.dir == SPI_MEM_DATA_OUT) tx_len += op->data.nbytes; txbuf = kmalloc_array(tx_len, sizeof(u8), GFP_KERNEL); memset(txbuf, 0x0, tx_len * sizeof(u8)); /* Join all bytes to be transferred */ txbuf[tx_cnt] = op->cmd.opcode; tx_cnt++; for (i = op->addr.nbytes; i > 0; i--, tx_cnt++) txbuf[tx_cnt] = ((u8 *)&op->addr.val)[i - 1]; for (i = op->dummy.nbytes; i > 0; i--, tx_cnt++) txbuf[tx_cnt] = 0x0; if (op->data.dir == SPI_MEM_DATA_OUT) for (i = op->data.nbytes; i > 0; i--, tx_cnt++) txbuf[tx_cnt] = ((u8 *)op->data.buf.out)[i - 1]; for (i = MTK_NOR_REG_PRGDATA_MAX; i >= 0; i--) writeb(0, priv->base + MTK_NOR_REG_PRGDATA(i)); for (i = 0; i < tx_len; i++, reg_offset--) writeb(txbuf[i], priv->base + MTK_NOR_REG_PRGDATA(reg_offset)); kfree(txbuf); writel(trx_len * BITS_PER_BYTE, priv->base + MTK_NOR_REG_PRG_CNT); mtk_snor_cmd_exec(priv, MTK_NOR_CMD_PROGRAM, trx_len * BITS_PER_BYTE); reg_offset = op->data.nbytes - 1; for (i = 0; i < op->data.nbytes; i++, reg_offset--) { reg = priv->base + MTK_NOR_REG_SHIFT(reg_offset); rxbuf[i] = readb(reg); } return 0; } static int mtk_snor_exec_op(struct spi_slave *slave, const struct spi_mem_op *op) { struct udevice *bus = dev_get_parent(slave->dev); struct mtk_snor_priv *priv = dev_get_priv(bus); int ret; if (op->data.dir == SPI_MEM_NO_DATA || op->addr.nbytes == 0) { return mtk_snor_cmd_program(priv, op); } else if (op->data.dir == SPI_MEM_DATA_OUT) { mtk_snor_set_addr(priv, op); writeb(op->cmd.opcode, priv->base + MTK_NOR_REG_PRGDATA0); if (op->data.nbytes == MTK_NOR_PP_SIZE) return mtk_snor_pp_buffered(priv, op); return mtk_snor_pp_unbuffered(priv, op); } else if (op->data.dir == SPI_MEM_DATA_IN) { ret = mtk_snor_write_buffer_disable(priv); if (ret < 0) return ret; mtk_snor_setup_bus(priv, op); if (op->data.nbytes == 1) { mtk_snor_set_addr(priv, op); return mtk_snor_read_pio(priv, op); } else { return mtk_snor_read_dma(priv, op); } } return -ENOTSUPP; } static int mtk_snor_probe(struct udevice *bus) { struct mtk_snor_priv *priv = dev_get_priv(bus); u8 *buffer; int ret; u32 reg; priv->base = devfdt_get_addr_ptr(bus); if (!priv->base) return -EINVAL; ret = clk_get_by_name(bus, "spi", &priv->spi_clk); if (ret < 0) return ret; ret = clk_get_by_name(bus, "sf", &priv->ctlr_clk); if (ret < 0) return ret; buffer = devm_kmalloc(bus, MTK_NOR_BOUNCE_BUF_SIZE + MTK_NOR_DMA_ALIGN, GFP_KERNEL); if (!buffer) return -ENOMEM; if ((ulong)buffer & MTK_NOR_DMA_ALIGN_MASK) buffer = (u8 *)(((ulong)buffer + MTK_NOR_DMA_ALIGN) & ~MTK_NOR_DMA_ALIGN_MASK); priv->buffer = buffer; clk_enable(&priv->spi_clk); clk_enable(&priv->ctlr_clk); priv->spi_freq = clk_get_rate(&priv->spi_clk); printf("spi frequency: %d Hz\n", priv->spi_freq); /* With this setting, we issue one command at a time to * accommodate to SPI-mem framework. */ writel(MTK_NOR_ENABLE_SF_CMD, priv->base + MTK_NOR_REG_WP); mtk_snor_rmw(priv, MTK_NOR_REG_CFG2, MTK_NOR_WR_CUSTOM_OP_EN, 0); mtk_snor_rmw(priv, MTK_NOR_REG_CFG3, MTK_NOR_DISABLE_WREN | MTK_NOR_DISABLE_SR_POLL, 0); /* Unlock all blocks using write status command. * SPI-MEM hasn't implemented unlock procedure on MXIC devices. * We may remove this later. */ writel(2 * BITS_PER_BYTE, priv->base + MTK_NOR_REG_PRG_CNT); writel(MTK_NOR_UNLOCK_ALL, priv->base + MTK_NOR_REG_PRGDATA(5)); writel(MTK_NOR_IRQ_WRSR, priv->base + MTK_NOR_REG_IRQ_EN); writel(MTK_NOR_CMD_WRSR, priv->base + MTK_NOR_REG_CMD); ret = readl_poll_timeout(priv->base + MTK_NOR_REG_IRQ_STAT, reg, !(reg & MTK_NOR_IRQ_WRSR), ((3 * BITS_PER_BYTE) + 1) * 200); return 0; } static int mtk_snor_set_speed(struct udevice *bus, uint speed) { /* MTK's SNOR controller does not have a bus clock divider. * We setup maximum bus clock in dts. */ return 0; } static int mtk_snor_set_mode(struct udevice *bus, uint mode) { /* We set up mode later for each transmission. */ return 0; } static const struct spi_controller_mem_ops mtk_snor_mem_ops = { .adjust_op_size = mtk_snor_adjust_op_size, .supports_op = mtk_snor_supports_op, .exec_op = mtk_snor_exec_op }; static const struct dm_spi_ops mtk_snor_ops = { .mem_ops = &mtk_snor_mem_ops, .set_speed = mtk_snor_set_speed, .set_mode = mtk_snor_set_mode, }; static const struct udevice_id mtk_snor_ids[] = { { .compatible = "mediatek,mtk-snor" }, {} }; U_BOOT_DRIVER(mtk_snor) = { .name = "mtk_snor", .id = UCLASS_SPI, .of_match = mtk_snor_ids, .ops = &mtk_snor_ops, .priv_auto = sizeof(struct mtk_snor_priv), .probe = mtk_snor_probe, };