// SPDX-License-Identifier: GPL-2.0+ /* * Copyright 2020-2021 Broadcom */ #include #include #include #include #include #include #include #include #include /* Delay required to change the mode of operation */ #define BUSY_DELAY_US 1 #define BUSY_TIMEOUT_US 200000 #define DWORD_ALIGNED(a) (!(((ulong)(a)) & 3)) /* Chip attributes */ #define QSPI_AXI_CLK 175000000 #define SPBR_MIN 8U #define SPBR_MAX 255U #define NUM_CDRAM 16U #define CDRAM_PCS0 2 #define CDRAM_CONT BIT(7) #define CDRAM_BITS_EN BIT(6) #define CDRAM_QUAD_MODE BIT(8) #define CDRAM_RBIT_INPUT BIT(10) #define MSPI_SPE BIT(6) #define MSPI_CONT_AFTER_CMD BIT(7) #define MSPI_MSTR BIT(7) /* Register fields */ #define MSPI_SPCR0_MSB_BITS_8 0x00000020 #define BSPI_RAF_CONTROL_START_MASK 0x00000001 #define BSPI_RAF_STATUS_SESSION_BUSY_MASK 0x00000001 #define BSPI_RAF_STATUS_FIFO_EMPTY_MASK 0x00000002 #define BSPI_STRAP_OVERRIDE_DATA_QUAD_SHIFT 3 #define BSPI_STRAP_OVERRIDE_4BYTE_SHIFT 2 #define BSPI_STRAP_OVERRIDE_DATA_DUAL_SHIFT 1 #define BSPI_STRAP_OVERRIDE_SHIFT 0 #define BSPI_BPC_DATA_SHIFT 0 #define BSPI_BPC_MODE_SHIFT 8 #define BSPI_BPC_ADDR_SHIFT 16 #define BSPI_BPC_CMD_SHIFT 24 #define BSPI_BPP_ADDR_SHIFT 16 /* MSPI registers */ #define MSPI_SPCR0_LSB_REG 0x000 #define MSPI_SPCR0_MSB_REG 0x004 #define MSPI_SPCR1_LSB_REG 0x008 #define MSPI_SPCR1_MSB_REG 0x00c #define MSPI_NEWQP_REG 0x010 #define MSPI_ENDQP_REG 0x014 #define MSPI_SPCR2_REG 0x018 #define MSPI_STATUS_REG 0x020 #define MSPI_CPTQP_REG 0x024 #define MSPI_TX_REG 0x040 #define MSPI_RX_REG 0x0c0 #define MSPI_CDRAM_REG 0x140 #define MSPI_WRITE_LOCK_REG 0x180 #define MSPI_DISABLE_FLUSH_GEN_REG 0x184 /* BSPI registers */ #define BSPI_REVISION_ID_REG 0x000 #define BSPI_SCRATCH_REG 0x004 #define BSPI_MAST_N_BOOT_CTRL_REG 0x008 #define BSPI_BUSY_STATUS_REG 0x00c #define BSPI_INTR_STATUS_REG 0x010 #define BSPI_B0_STATUS_REG 0x014 #define BSPI_B0_CTRL_REG 0x018 #define BSPI_B1_STATUS_REG 0x01c #define BSPI_B1_CTRL_REG 0x020 #define BSPI_STRAP_OVERRIDE_CTRL_REG 0x024 #define BSPI_FLEX_MODE_ENABLE_REG 0x028 #define BSPI_BITS_PER_CYCLE_REG 0x02C #define BSPI_BITS_PER_PHASE_REG 0x030 #define BSPI_CMD_AND_MODE_BYTE_REG 0x034 #define BSPI_FLASH_UPPER_ADDR_BYTE_REG 0x038 #define BSPI_XOR_VALUE_REG 0x03C #define BSPI_XOR_ENABLE_REG 0x040 #define BSPI_PIO_MODE_ENABLE_REG 0x044 #define BSPI_PIO_IODIR_REG 0x048 #define BSPI_PIO_DATA_REG 0x04C /* RAF registers */ #define BSPI_RAF_START_ADDRESS_REG 0x00 #define BSPI_RAF_NUM_WORDS_REG 0x04 #define BSPI_RAF_CTRL_REG 0x08 #define BSPI_RAF_FULLNESS_REG 0x0C #define BSPI_RAF_WATERMARK_REG 0x10 #define BSPI_RAF_STATUS_REG 0x14 #define BSPI_RAF_READ_DATA_REG 0x18 #define BSPI_RAF_WORD_CNT_REG 0x1C #define BSPI_RAF_CURR_ADDR_REG 0x20 #define XFER_DUAL BIT(30) #define XFER_QUAD BIT(31) #define FLUSH_BIT BIT(0) #define MAST_N_BOOT_BIT BIT(0) #define WRITE_LOCK_BIT BIT(0) #define CEIL(m, n) (((m) + (n) - 1) / (n)) #define UPPER_BYTE_MASK 0xFF000000 #define SIZE_16MB 0x001000000 /* * struct bcmspi_priv - qspi private structure * * @bspi_addr: bspi read address * @bspi_4byte_addr: bspi 4 byte address mode * @mspi: mspi registers block address * @bspi: bspi registers block address * @bspi_raf: bspi raf registers block address */ struct bcmspi_priv { u32 bspi_addr; bool bspi_4byte_addr; fdt_addr_t mspi; fdt_addr_t bspi; fdt_addr_t bspi_raf; }; /* BSPI mode */ static void bspi_flush_prefetch_buffers(struct bcmspi_priv *priv) { writel(0, priv->bspi + BSPI_B0_CTRL_REG); writel(0, priv->bspi + BSPI_B1_CTRL_REG); writel(FLUSH_BIT, priv->bspi + BSPI_B0_CTRL_REG); writel(FLUSH_BIT, priv->bspi + BSPI_B1_CTRL_REG); } static int bspi_enable(struct bcmspi_priv *priv) { /* Disable write lock */ writel(0, priv->mspi + MSPI_WRITE_LOCK_REG); /* Flush prefetch buffers */ bspi_flush_prefetch_buffers(priv); /* Switch to BSPI */ writel(0, priv->bspi + BSPI_MAST_N_BOOT_CTRL_REG); return 0; } static int bspi_disable(struct bcmspi_priv *priv) { int ret; uint val; if ((readl(priv->bspi + BSPI_MAST_N_BOOT_CTRL_REG) & 1) == 0) { ret = readl_poll_timeout(priv->bspi + BSPI_BUSY_STATUS_REG, val, !(val & 1), BUSY_TIMEOUT_US); if (ret) { printf("%s: Failed to disable bspi, device busy\n", __func__); return ret; } /* Switch to MSPI */ writel(MAST_N_BOOT_BIT, priv->bspi + BSPI_MAST_N_BOOT_CTRL_REG); udelay(BUSY_DELAY_US); val = readl(priv->bspi + BSPI_MAST_N_BOOT_CTRL_REG); if (!(val & 1)) { printf("%s: Failed to enable mspi\n", __func__); return -EBUSY; } } /* Enable write lock */ writel(WRITE_LOCK_BIT, priv->mspi + MSPI_WRITE_LOCK_REG); return 0; } static int bspi_read_via_raf(struct bcmspi_priv *priv, u8 *rx, uint bytes) { u32 status; uint words; int aligned; int ret; /* * Flush data from the previous session (unlikely) * Read outstanding bits in the poll condition to empty FIFO */ ret = readl_poll_timeout(priv->bspi_raf + BSPI_RAF_STATUS_REG, status, (!readl(priv->bspi_raf + BSPI_RAF_READ_DATA_REG) && status & BSPI_RAF_STATUS_FIFO_EMPTY_MASK) && !(status & BSPI_RAF_STATUS_SESSION_BUSY_MASK), BUSY_TIMEOUT_US); if (ret) { printf("%s: Failed to flush fifo\n", __func__); return ret; } /* Transfer is in words */ words = CEIL(bytes, 4); /* Setup hardware */ if (priv->bspi_4byte_addr) { u32 val = priv->bspi_addr & UPPER_BYTE_MASK; if (val != readl(priv->bspi + BSPI_FLASH_UPPER_ADDR_BYTE_REG)) { writel(val, priv->bspi + BSPI_FLASH_UPPER_ADDR_BYTE_REG); bspi_flush_prefetch_buffers(priv); } } writel(priv->bspi_addr & ~UPPER_BYTE_MASK, priv->bspi_raf + BSPI_RAF_START_ADDRESS_REG); writel(words, priv->bspi_raf + BSPI_RAF_NUM_WORDS_REG); writel(0, priv->bspi_raf + BSPI_RAF_WATERMARK_REG); /* Start reading */ writel(BSPI_RAF_CONTROL_START_MASK, priv->bspi_raf + BSPI_RAF_CTRL_REG); aligned = DWORD_ALIGNED(rx); while (bytes) { status = readl(priv->bspi_raf + BSPI_RAF_STATUS_REG); if (!(status & BSPI_RAF_STATUS_FIFO_EMPTY_MASK)) { /* RAF is LE only, convert data to host endianness */ u32 data = le32_to_cpu(readl(priv->bspi_raf + BSPI_RAF_READ_DATA_REG)); /* Check if we can use the whole word */ if (aligned && bytes >= 4) { *(u32 *)rx = data; rx += 4; bytes -= 4; } else { uint chunk = min(bytes, 4U); /* Read out bytes one by one */ while (chunk) { *rx++ = (u8)data; data >>= 8; chunk--; bytes--; } } continue; } if (!(status & BSPI_RAF_STATUS_SESSION_BUSY_MASK)) { /* FIFO is empty and the session is done */ break; } } return 0; } static int bspi_read(struct bcmspi_priv *priv, u8 *rx, uint bytes) { int ret; /* Transfer data */ while (bytes > 0) { /* Special handing since RAF cannot go across 16MB boundary */ uint trans = bytes; /* Divide into multiple transfers if it goes across the 16MB boundary */ if (priv->bspi_4byte_addr && (priv->bspi_addr >> 24) != ((priv->bspi_addr + bytes) >> 24)) trans = SIZE_16MB - (priv->bspi_addr & ~UPPER_BYTE_MASK); ret = bspi_read_via_raf(priv, rx, trans); if (ret) return ret; priv->bspi_addr += trans; rx += trans; bytes -= trans; } bspi_flush_prefetch_buffers(priv); return 0; } static void bspi_set_flex_mode(struct bcmspi_priv *priv, const struct spi_mem_op *op) { int bpp = (op->dummy.nbytes * 8) / op->dummy.buswidth; int cmd = op->cmd.opcode; int bpc = ilog2(op->data.buswidth) << BSPI_BPC_DATA_SHIFT | ilog2(op->addr.buswidth) << BSPI_BPC_ADDR_SHIFT | ilog2(op->cmd.buswidth) << BSPI_BPC_CMD_SHIFT; int so = BIT(BSPI_STRAP_OVERRIDE_SHIFT) | (op->data.buswidth > 1) << BSPI_STRAP_OVERRIDE_DATA_DUAL_SHIFT | (op->addr.nbytes > 3) << BSPI_STRAP_OVERRIDE_4BYTE_SHIFT | (op->data.buswidth > 3) << BSPI_STRAP_OVERRIDE_DATA_QUAD_SHIFT; /* Disable flex mode first */ writel(0, priv->bspi + BSPI_FLEX_MODE_ENABLE_REG); /* Configure single, dual or quad mode */ writel(bpc, priv->bspi + BSPI_BITS_PER_CYCLE_REG); /* Opcode */ writel(cmd, priv->bspi + BSPI_CMD_AND_MODE_BYTE_REG); /* Count of dummy cycles */ writel(bpp, priv->bspi + BSPI_BITS_PER_PHASE_REG); /* Enable 4-byte address */ if (priv->bspi_4byte_addr) { setbits_le32(priv->bspi + BSPI_BITS_PER_PHASE_REG, BIT(BSPI_BPP_ADDR_SHIFT)); } else { clrbits_le32(priv->bspi + BSPI_BITS_PER_PHASE_REG, BIT(BSPI_BPP_ADDR_SHIFT)); writel(0, priv->bspi + BSPI_FLASH_UPPER_ADDR_BYTE_REG); } /* Enable flex mode to take effect */ writel(1, priv->bspi + BSPI_FLEX_MODE_ENABLE_REG); /* Flush prefetch buffers since 32MB window BSPI could be used */ bspi_flush_prefetch_buffers(priv); /* Override the strap settings */ writel(so, priv->bspi + BSPI_STRAP_OVERRIDE_CTRL_REG); } static int bspi_exec_op(struct spi_slave *slave, const struct spi_mem_op *op) { struct udevice *bus = dev_get_parent(slave->dev); struct bcmspi_priv *priv = dev_get_priv(bus); int ret = -ENOTSUPP; /* BSPI read */ if (op->data.dir == SPI_MEM_DATA_IN && op->data.nbytes && op->addr.nbytes) { priv->bspi_4byte_addr = (op->addr.nbytes > 3); priv->bspi_addr = op->addr.val; bspi_set_flex_mode(priv, op); ret = bspi_read(priv, op->data.buf.in, op->data.nbytes); } return ret; } static const struct spi_controller_mem_ops bspi_mem_ops = { .exec_op = bspi_exec_op, }; /* MSPI mode */ static int mspi_exec(struct bcmspi_priv *priv, uint bytes, const u8 *tx, u8 *rx, ulong flags) { u32 cdr = CDRAM_PCS0 | CDRAM_CONT; bool use_16bits = !(bytes & 1); if (flags & XFER_QUAD) { cdr |= CDRAM_QUAD_MODE; if (!tx) cdr |= CDRAM_RBIT_INPUT; } while (bytes) { uint chunk; uint queues; uint i; uint val; int ret; if (use_16bits) { chunk = min(bytes, NUM_CDRAM * 2); queues = (chunk + 1) / 2; bytes -= chunk; /* Fill CDRAMs */ for (i = 0; i < queues; i++) writel(cdr | CDRAM_BITS_EN, priv->mspi + MSPI_CDRAM_REG + 4 * i); /* Fill TXRAMs */ for (i = 0; i < chunk; i++) writel(tx ? tx[i] : 0xff, priv->mspi + MSPI_TX_REG + 4 * i); } else { /* Determine how many bytes to process this time */ chunk = min(bytes, NUM_CDRAM); queues = chunk; bytes -= chunk; /* Fill CDRAMs and TXRAMS */ for (i = 0; i < chunk; i++) { writel(cdr, priv->mspi + MSPI_CDRAM_REG + 4 * i); writel(tx ? tx[i] : 0xff, priv->mspi + MSPI_TX_REG + 8 * i); } } /* Setup queue pointers */ writel(0, priv->mspi + MSPI_NEWQP_REG); writel(queues - 1, priv->mspi + MSPI_ENDQP_REG); /* Deassert CS if requested and it's the last transfer */ if (bytes == 0 && (flags & SPI_XFER_END)) clrbits_le32(priv->mspi + MSPI_CDRAM_REG + ((queues - 1) << 2), CDRAM_CONT); /* Kick off */ writel(0, priv->mspi + MSPI_STATUS_REG); if (bytes == 0 && (flags & SPI_XFER_END)) writel(MSPI_SPE, priv->mspi + MSPI_SPCR2_REG); else writel(MSPI_SPE | MSPI_CONT_AFTER_CMD, priv->mspi + MSPI_SPCR2_REG); ret = readl_poll_timeout(priv->mspi + MSPI_STATUS_REG, val, (val & 1), BUSY_TIMEOUT_US); if (ret) { printf("%s: Failed to disable bspi, device busy\n", __func__); return ret; } /* Read data out */ if (rx) { if (use_16bits) { for (i = 0; i < chunk; i++) rx[i] = readl(priv->mspi + MSPI_RX_REG + 4 * i) & 0xff; } else { for (i = 0; i < chunk; i++) rx[i] = readl(priv->mspi + MSPI_RX_REG + 8 * i + 4) & 0xff; } } /* Advance pointers */ if (tx) tx += chunk; if (rx) rx += chunk; } return 0; } static int mspi_xfer(struct udevice *dev, uint bitlen, const void *dout, void *din, ulong flags) { struct udevice *bus = dev_get_parent(dev); struct bcmspi_priv *priv = dev_get_priv(bus); uint bytes; int ret = 0; /* we can only transfer multiples of 8 bits */ if (bitlen % 8) return -EPROTONOSUPPORT; bytes = bitlen / 8; if (flags & SPI_XFER_BEGIN) { /* Switch to MSPI */ ret = bspi_disable(priv); if (ret) return ret; } /* MSPI: Transfer */ if (bytes) ret = mspi_exec(priv, bytes, dout, din, flags); if (flags & SPI_XFER_END) { /* Switch back to BSPI */ ret = bspi_enable(priv); if (ret) return ret; } return ret; } /* iProc interface */ static int iproc_qspi_set_speed(struct udevice *bus, uint speed) { struct bcmspi_priv *priv = dev_get_priv(bus); uint spbr; /* MSPI: SCK configuration */ spbr = (QSPI_AXI_CLK - 1) / (2 * speed) + 1; writel(max(min(spbr, SPBR_MAX), SPBR_MIN), priv->mspi + MSPI_SPCR0_LSB_REG); return 0; } static int iproc_qspi_set_mode(struct udevice *bus, uint mode) { struct bcmspi_priv *priv = dev_get_priv(bus); /* MSPI: set master bit and mode */ writel(MSPI_MSTR /* Master */ | (mode & 3), priv->mspi + MSPI_SPCR0_MSB_REG); return 0; } static int iproc_qspi_claim_bus(struct udevice *dev) { /* Nothing to do */ return 0; } static int iproc_qspi_release_bus(struct udevice *dev) { struct udevice *bus = dev_get_parent(dev); struct bcmspi_priv *priv = dev_get_priv(bus); /* Make sure no operation is in progress */ writel(0, priv->mspi + MSPI_SPCR2_REG); udelay(BUSY_DELAY_US); return 0; } static int iproc_qspi_of_to_plat(struct udevice *bus) { struct bcmspi_priv *priv = dev_get_priv(bus); priv->bspi = dev_read_addr_name(bus, "bspi"); if (IS_ERR((void *)priv->bspi)) { printf("%s: Failed to get bspi base address\n", __func__); return PTR_ERR((void *)priv->bspi); } priv->bspi_raf = dev_read_addr_name(bus, "bspi_raf"); if (IS_ERR((void *)priv->bspi_raf)) { printf("%s: Failed to get bspi_raf base address\n", __func__); return PTR_ERR((void *)priv->bspi_raf); } priv->mspi = dev_read_addr_name(bus, "mspi"); if (IS_ERR((void *)priv->mspi)) { printf("%s: Failed to get mspi base address\n", __func__); return PTR_ERR((void *)priv->mspi); } return 0; } static int iproc_qspi_probe(struct udevice *bus) { struct bcmspi_priv *priv = dev_get_priv(bus); /* configure mspi */ writel(0, priv->mspi + MSPI_SPCR1_LSB_REG); writel(0, priv->mspi + MSPI_SPCR1_MSB_REG); writel(0, priv->mspi + MSPI_NEWQP_REG); writel(0, priv->mspi + MSPI_ENDQP_REG); writel(0, priv->mspi + MSPI_SPCR2_REG); /* configure bspi */ bspi_enable(priv); return 0; } static const struct dm_spi_ops iproc_qspi_ops = { .claim_bus = iproc_qspi_claim_bus, .release_bus = iproc_qspi_release_bus, .xfer = mspi_xfer, .set_speed = iproc_qspi_set_speed, .set_mode = iproc_qspi_set_mode, .mem_ops = &bspi_mem_ops, }; static const struct udevice_id iproc_qspi_ids[] = { { .compatible = "brcm,iproc-qspi" }, { } }; U_BOOT_DRIVER(iproc_qspi) = { .name = "iproc_qspi", .id = UCLASS_SPI, .of_match = iproc_qspi_ids, .ops = &iproc_qspi_ops, .of_to_plat = iproc_qspi_of_to_plat, .priv_auto = sizeof(struct bcmspi_priv), .probe = iproc_qspi_probe, };