// SPDX-License-Identifier: GPL-2.0 /* * Designware master SPI core controller driver * * Copyright (C) 2014 Stefan Roese * Copyright (C) 2020 Sean Anderson * * Very loosely based on the Linux driver: * drivers/spi/spi-dw.c, which is: * Copyright (c) 2009, Intel Corporation. */ #define LOG_CATEGORY UCLASS_SPI #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Register offsets */ #define DW_SPI_CTRLR0 0x00 #define DW_SPI_CTRLR1 0x04 #define DW_SPI_SSIENR 0x08 #define DW_SPI_MWCR 0x0c #define DW_SPI_SER 0x10 #define DW_SPI_BAUDR 0x14 #define DW_SPI_TXFTLR 0x18 #define DW_SPI_RXFTLR 0x1c #define DW_SPI_TXFLR 0x20 #define DW_SPI_RXFLR 0x24 #define DW_SPI_SR 0x28 #define DW_SPI_IMR 0x2c #define DW_SPI_ISR 0x30 #define DW_SPI_RISR 0x34 #define DW_SPI_TXOICR 0x38 #define DW_SPI_RXOICR 0x3c #define DW_SPI_RXUICR 0x40 #define DW_SPI_MSTICR 0x44 #define DW_SPI_ICR 0x48 #define DW_SPI_DMACR 0x4c #define DW_SPI_DMATDLR 0x50 #define DW_SPI_DMARDLR 0x54 #define DW_SPI_IDR 0x58 #define DW_SPI_VERSION 0x5c #define DW_SPI_DR 0x60 /* Bit fields in CTRLR0 */ /* * Only present when SSI_MAX_XFER_SIZE=16. This is the default, and the only * option before version 3.23a. */ #define CTRLR0_DFS_MASK GENMASK(3, 0) #define CTRLR0_FRF_MASK GENMASK(5, 4) #define CTRLR0_FRF_SPI 0x0 #define CTRLR0_FRF_SSP 0x1 #define CTRLR0_FRF_MICROWIRE 0x2 #define CTRLR0_FRF_RESV 0x3 #define CTRLR0_MODE_MASK GENMASK(7, 6) #define CTRLR0_MODE_SCPH 0x1 #define CTRLR0_MODE_SCPOL 0x2 #define CTRLR0_TMOD_MASK GENMASK(9, 8) #define CTRLR0_TMOD_TR 0x0 /* xmit & recv */ #define CTRLR0_TMOD_TO 0x1 /* xmit only */ #define CTRLR0_TMOD_RO 0x2 /* recv only */ #define CTRLR0_TMOD_EPROMREAD 0x3 /* eeprom read mode */ #define CTRLR0_SLVOE_OFFSET 10 #define CTRLR0_SRL_OFFSET 11 #define CTRLR0_CFS_MASK GENMASK(15, 12) /* Only present when SSI_MAX_XFER_SIZE=32 */ #define CTRLR0_DFS_32_MASK GENMASK(20, 16) /* The next field is only present on versions after 4.00a */ #define CTRLR0_SPI_FRF_MASK GENMASK(22, 21) #define CTRLR0_SPI_FRF_BYTE 0x0 #define CTRLR0_SPI_FRF_DUAL 0x1 #define CTRLR0_SPI_FRF_QUAD 0x2 /* Bit fields in CTRLR0 based on DWC_ssi_databook.pdf v1.01a */ #define DWC_SSI_CTRLR0_DFS_MASK GENMASK(4, 0) #define DWC_SSI_CTRLR0_FRF_MASK GENMASK(7, 6) #define DWC_SSI_CTRLR0_MODE_MASK GENMASK(9, 8) #define DWC_SSI_CTRLR0_TMOD_MASK GENMASK(11, 10) #define DWC_SSI_CTRLR0_SRL_OFFSET 13 #define DWC_SSI_CTRLR0_SPI_FRF_MASK GENMASK(23, 22) /* Bit fields in SR, 7 bits */ #define SR_MASK GENMASK(6, 0) /* cover 7 bits */ #define SR_BUSY BIT(0) #define SR_TF_NOT_FULL BIT(1) #define SR_TF_EMPT BIT(2) #define SR_RF_NOT_EMPT BIT(3) #define SR_RF_FULL BIT(4) #define SR_TX_ERR BIT(5) #define SR_DCOL BIT(6) #define RX_TIMEOUT 1000 /* timeout in ms */ struct dw_spi_plat { s32 frequency; /* Default clock frequency, -1 for none */ void __iomem *regs; }; struct dw_spi_priv { struct clk clk; struct reset_ctl_bulk resets; struct gpio_desc cs_gpio; /* External chip-select gpio */ u32 (*update_cr0)(struct dw_spi_priv *priv); void __iomem *regs; unsigned long bus_clk_rate; unsigned int freq; /* Default frequency */ unsigned int mode; const void *tx; const void *tx_end; void *rx; void *rx_end; u32 fifo_len; /* depth of the FIFO buffer */ u32 max_xfer; /* Maximum transfer size (in bits) */ int bits_per_word; int len; u8 cs; /* chip select pin */ u8 tmode; /* TR/TO/RO/EEPROM */ u8 type; /* SPI/SSP/MicroWire */ }; static inline u32 dw_read(struct dw_spi_priv *priv, u32 offset) { return __raw_readl(priv->regs + offset); } static inline void dw_write(struct dw_spi_priv *priv, u32 offset, u32 val) { __raw_writel(val, priv->regs + offset); } static u32 dw_spi_dw16_update_cr0(struct dw_spi_priv *priv) { return FIELD_PREP(CTRLR0_DFS_MASK, priv->bits_per_word - 1) | FIELD_PREP(CTRLR0_FRF_MASK, priv->type) | FIELD_PREP(CTRLR0_MODE_MASK, priv->mode) | FIELD_PREP(CTRLR0_TMOD_MASK, priv->tmode); } static u32 dw_spi_dw32_update_cr0(struct dw_spi_priv *priv) { return FIELD_PREP(CTRLR0_DFS_32_MASK, priv->bits_per_word - 1) | FIELD_PREP(CTRLR0_FRF_MASK, priv->type) | FIELD_PREP(CTRLR0_MODE_MASK, priv->mode) | FIELD_PREP(CTRLR0_TMOD_MASK, priv->tmode); } static u32 dw_spi_dwc_update_cr0(struct dw_spi_priv *priv) { return FIELD_PREP(DWC_SSI_CTRLR0_DFS_MASK, priv->bits_per_word - 1) | FIELD_PREP(DWC_SSI_CTRLR0_FRF_MASK, priv->type) | FIELD_PREP(DWC_SSI_CTRLR0_MODE_MASK, priv->mode) | FIELD_PREP(DWC_SSI_CTRLR0_TMOD_MASK, priv->tmode); } static int dw_spi_apb_init(struct udevice *bus, struct dw_spi_priv *priv) { /* If we read zeros from DFS, then we need to use DFS_32 instead */ dw_write(priv, DW_SPI_SSIENR, 0); dw_write(priv, DW_SPI_CTRLR0, 0xffffffff); if (FIELD_GET(CTRLR0_DFS_MASK, dw_read(priv, DW_SPI_CTRLR0))) { priv->max_xfer = 16; priv->update_cr0 = dw_spi_dw16_update_cr0; } else { priv->max_xfer = 32; priv->update_cr0 = dw_spi_dw32_update_cr0; } return 0; } static int dw_spi_apb_k210_init(struct udevice *bus, struct dw_spi_priv *priv) { /* * The Canaan Kendryte K210 SoC DW apb_ssi v4 spi controller is * documented to have a 32 word deep TX and RX FIFO, which * spi_hw_init() detects. However, when the RX FIFO is filled up to * 32 entries (RXFLR = 32), an RX FIFO overrun error occurs. Avoid * this problem by force setting fifo_len to 31. */ priv->fifo_len = 31; return dw_spi_apb_init(bus, priv); } static int dw_spi_dwc_init(struct udevice *bus, struct dw_spi_priv *priv) { priv->max_xfer = 32; priv->update_cr0 = dw_spi_dwc_update_cr0; return 0; } static int request_gpio_cs(struct udevice *bus) { #if CONFIG_IS_ENABLED(DM_GPIO) && !defined(CONFIG_SPL_BUILD) struct dw_spi_priv *priv = dev_get_priv(bus); int ret; /* External chip select gpio line is optional */ ret = gpio_request_by_name(bus, "cs-gpios", 0, &priv->cs_gpio, GPIOD_IS_OUT | GPIOD_IS_OUT_ACTIVE); if (ret == -ENOENT) return 0; if (ret < 0) { dev_err(bus, "Couldn't request gpio! (error %d)\n", ret); return ret; } if (dm_gpio_is_valid(&priv->cs_gpio)) { dm_gpio_set_dir_flags(&priv->cs_gpio, GPIOD_IS_OUT | GPIOD_IS_OUT_ACTIVE); } dev_dbg(bus, "Using external gpio for CS management\n"); #endif return 0; } static int dw_spi_of_to_plat(struct udevice *bus) { struct dw_spi_plat *plat = dev_get_plat(bus); plat->regs = dev_read_addr_ptr(bus); if (!plat->regs) return -EINVAL; /* Use 500KHz as a suitable default */ plat->frequency = dev_read_u32_default(bus, "spi-max-frequency", 500000); if (dev_read_bool(bus, "spi-slave")) return -EINVAL; dev_info(bus, "max-frequency=%d\n", plat->frequency); return request_gpio_cs(bus); } /* Restart the controller, disable all interrupts, clean rx fifo */ static void spi_hw_init(struct udevice *bus, struct dw_spi_priv *priv) { dw_write(priv, DW_SPI_SSIENR, 0); dw_write(priv, DW_SPI_IMR, 0); dw_write(priv, DW_SPI_SSIENR, 1); /* * Try to detect the FIFO depth if not set by interface driver, * the depth could be from 2 to 256 from HW spec */ if (!priv->fifo_len) { u32 fifo; for (fifo = 1; fifo < 256; fifo++) { dw_write(priv, DW_SPI_TXFTLR, fifo); if (fifo != dw_read(priv, DW_SPI_TXFTLR)) break; } priv->fifo_len = (fifo == 1) ? 0 : fifo; dw_write(priv, DW_SPI_TXFTLR, 0); } dev_dbg(bus, "fifo_len=%d\n", priv->fifo_len); } /* * We define dw_spi_get_clk function as 'weak' as some targets * (like SOCFPGA_GEN5 and SOCFPGA_ARRIA10) don't use standard clock API * and implement dw_spi_get_clk their own way in their clock manager. */ __weak int dw_spi_get_clk(struct udevice *bus, ulong *rate) { struct dw_spi_priv *priv = dev_get_priv(bus); int ret; ret = clk_get_by_index(bus, 0, &priv->clk); if (ret) return ret; ret = clk_enable(&priv->clk); if (ret && ret != -ENOSYS && ret != -ENOTSUPP) return ret; *rate = clk_get_rate(&priv->clk); if (!*rate) goto err_rate; dev_dbg(bus, "Got clock via device tree: %lu Hz\n", *rate); return 0; err_rate: clk_disable(&priv->clk); clk_free(&priv->clk); return -EINVAL; } static int dw_spi_reset(struct udevice *bus) { int ret; struct dw_spi_priv *priv = dev_get_priv(bus); ret = reset_get_bulk(bus, &priv->resets); if (ret) { /* * Return 0 if error due to !CONFIG_DM_RESET and reset * DT property is not present. */ if (ret == -ENOENT || ret == -ENOTSUPP) return 0; dev_warn(bus, "Couldn't find/assert reset device (error %d)\n", ret); return ret; } ret = reset_deassert_bulk(&priv->resets); if (ret) { reset_release_bulk(&priv->resets); dev_err(bus, "Failed to de-assert reset for SPI (error %d)\n", ret); return ret; } return 0; } typedef int (*dw_spi_init_t)(struct udevice *bus, struct dw_spi_priv *priv); static int dw_spi_probe(struct udevice *bus) { dw_spi_init_t init = (dw_spi_init_t)dev_get_driver_data(bus); struct dw_spi_plat *plat = dev_get_plat(bus); struct dw_spi_priv *priv = dev_get_priv(bus); int ret; u32 version; priv->regs = plat->regs; priv->freq = plat->frequency; ret = dw_spi_get_clk(bus, &priv->bus_clk_rate); if (ret) return ret; ret = dw_spi_reset(bus); if (ret) return ret; if (!init) return -EINVAL; ret = init(bus, priv); if (ret) return ret; version = dw_read(priv, DW_SPI_VERSION); dev_dbg(bus, "ssi_version_id=%c.%c%c%c ssi_max_xfer_size=%u\n", version >> 24, version >> 16, version >> 8, version, priv->max_xfer); /* Currently only bits_per_word == 8 supported */ priv->bits_per_word = 8; priv->tmode = 0; /* Tx & Rx */ /* Basic HW init */ spi_hw_init(bus, priv); return 0; } /* Return the max entries we can fill into tx fifo */ static inline u32 tx_max(struct dw_spi_priv *priv) { u32 tx_left, tx_room, rxtx_gap; tx_left = (priv->tx_end - priv->tx) / (priv->bits_per_word >> 3); tx_room = priv->fifo_len - dw_read(priv, DW_SPI_TXFLR); /* * Another concern is about the tx/rx mismatch, we * thought about using (priv->fifo_len - rxflr - txflr) as * one maximum value for tx, but it doesn't cover the * data which is out of tx/rx fifo and inside the * shift registers. So a control from sw point of * view is taken. */ rxtx_gap = ((priv->rx_end - priv->rx) - (priv->tx_end - priv->tx)) / (priv->bits_per_word >> 3); return min3(tx_left, tx_room, (u32)(priv->fifo_len - rxtx_gap)); } /* Return the max entries we should read out of rx fifo */ static inline u32 rx_max(struct dw_spi_priv *priv) { u32 rx_left = (priv->rx_end - priv->rx) / (priv->bits_per_word >> 3); return min_t(u32, rx_left, dw_read(priv, DW_SPI_RXFLR)); } static void dw_writer(struct dw_spi_priv *priv) { u32 max = tx_max(priv); u32 txw = 0xFFFFFFFF; while (max--) { /* Set the tx word if the transfer's original "tx" is not null */ if (priv->tx_end - priv->len) { if (priv->bits_per_word == 8) txw = *(u8 *)(priv->tx); else txw = *(u16 *)(priv->tx); } dw_write(priv, DW_SPI_DR, txw); log_content("tx=0x%02x\n", txw); priv->tx += priv->bits_per_word >> 3; } } static void dw_reader(struct dw_spi_priv *priv) { u32 max = rx_max(priv); u16 rxw; while (max--) { rxw = dw_read(priv, DW_SPI_DR); log_content("rx=0x%02x\n", rxw); /* Care about rx if the transfer's original "rx" is not null */ if (priv->rx_end - priv->len) { if (priv->bits_per_word == 8) *(u8 *)(priv->rx) = rxw; else *(u16 *)(priv->rx) = rxw; } priv->rx += priv->bits_per_word >> 3; } } static int poll_transfer(struct dw_spi_priv *priv) { do { dw_writer(priv); dw_reader(priv); } while (priv->rx_end > priv->rx); return 0; } /* * We define external_cs_manage function as 'weak' as some targets * (like MSCC Ocelot) don't control the external CS pin using a GPIO * controller. These SoCs use specific registers to control by * software the SPI pins (and especially the CS). */ __weak void external_cs_manage(struct udevice *dev, bool on) { #if CONFIG_IS_ENABLED(DM_GPIO) && !defined(CONFIG_SPL_BUILD) struct dw_spi_priv *priv = dev_get_priv(dev->parent); if (!dm_gpio_is_valid(&priv->cs_gpio)) return; dm_gpio_set_value(&priv->cs_gpio, on ? 1 : 0); #endif } static int dw_spi_xfer(struct udevice *dev, unsigned int bitlen, const void *dout, void *din, unsigned long flags) { struct udevice *bus = dev->parent; struct dw_spi_priv *priv = dev_get_priv(bus); const u8 *tx = dout; u8 *rx = din; int ret = 0; u32 cr0 = 0; u32 val; u32 cs; /* spi core configured to do 8 bit transfers */ if (bitlen % 8) { dev_err(dev, "Non byte aligned SPI transfer.\n"); return -1; } /* Start the transaction if necessary. */ if (flags & SPI_XFER_BEGIN) external_cs_manage(dev, false); if (rx && tx) priv->tmode = CTRLR0_TMOD_TR; else if (rx) priv->tmode = CTRLR0_TMOD_RO; else /* * In transmit only mode (CTRL0_TMOD_TO) input FIFO never gets * any data which breaks our logic in poll_transfer() above. */ priv->tmode = CTRLR0_TMOD_TR; cr0 = priv->update_cr0(priv); priv->len = bitlen >> 3; priv->tx = (void *)tx; priv->tx_end = priv->tx + priv->len; priv->rx = rx; priv->rx_end = priv->rx + priv->len; /* Disable controller before writing control registers */ dw_write(priv, DW_SPI_SSIENR, 0); dev_dbg(dev, "cr0=%08x rx=%p tx=%p len=%d [bytes]\n", cr0, rx, tx, priv->len); /* Reprogram cr0 only if changed */ if (dw_read(priv, DW_SPI_CTRLR0) != cr0) dw_write(priv, DW_SPI_CTRLR0, cr0); /* * Configure the desired SS (slave select 0...3) in the controller * The DW SPI controller will activate and deactivate this CS * automatically. So no cs_activate() etc is needed in this driver. */ cs = spi_chip_select(dev); dw_write(priv, DW_SPI_SER, 1 << cs); /* Enable controller after writing control registers */ dw_write(priv, DW_SPI_SSIENR, 1); /* Start transfer in a polling loop */ ret = poll_transfer(priv); /* * Wait for current transmit operation to complete. * Otherwise if some data still exists in Tx FIFO it can be * silently flushed, i.e. dropped on disabling of the controller, * which happens when writing 0 to DW_SPI_SSIENR which happens * in the beginning of new transfer. */ if (readl_poll_timeout(priv->regs + DW_SPI_SR, val, (val & SR_TF_EMPT) && !(val & SR_BUSY), RX_TIMEOUT * 1000)) { ret = -ETIMEDOUT; } /* Stop the transaction if necessary */ if (flags & SPI_XFER_END) external_cs_manage(dev, true); return ret; } /* * This function is necessary for reading SPI flash with the native CS * c.f. https://lkml.org/lkml/2015/12/23/132 */ static int dw_spi_exec_op(struct spi_slave *slave, const struct spi_mem_op *op) { bool read = op->data.dir == SPI_MEM_DATA_IN; int pos, i, ret = 0; struct udevice *bus = slave->dev->parent; struct dw_spi_priv *priv = dev_get_priv(bus); u8 op_len = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes; u8 op_buf[op_len]; u32 cr0; if (read) priv->tmode = CTRLR0_TMOD_EPROMREAD; else priv->tmode = CTRLR0_TMOD_TO; cr0 = priv->update_cr0(priv); dev_dbg(bus, "cr0=%08x buf=%p len=%u [bytes]\n", cr0, op->data.buf.in, op->data.nbytes); dw_write(priv, DW_SPI_SSIENR, 0); dw_write(priv, DW_SPI_CTRLR0, cr0); if (read) dw_write(priv, DW_SPI_CTRLR1, op->data.nbytes - 1); dw_write(priv, DW_SPI_SSIENR, 1); /* From spi_mem_exec_op */ pos = 0; op_buf[pos++] = op->cmd.opcode; if (op->addr.nbytes) { for (i = 0; i < op->addr.nbytes; i++) op_buf[pos + i] = op->addr.val >> (8 * (op->addr.nbytes - i - 1)); pos += op->addr.nbytes; } if (op->dummy.nbytes) memset(op_buf + pos, 0xff, op->dummy.nbytes); external_cs_manage(slave->dev, false); priv->tx = &op_buf; priv->tx_end = priv->tx + op_len; priv->rx = NULL; priv->rx_end = NULL; while (priv->tx != priv->tx_end) dw_writer(priv); /* * XXX: The following are tight loops! Enabling debug messages may cause * them to fail because we are not reading/writing the fifo fast enough. */ if (read) { priv->rx = op->data.buf.in; priv->rx_end = priv->rx + op->data.nbytes; dw_write(priv, DW_SPI_SER, 1 << spi_chip_select(slave->dev)); while (priv->rx != priv->rx_end) dw_reader(priv); } else { u32 val; priv->tx = op->data.buf.out; priv->tx_end = priv->tx + op->data.nbytes; /* Fill up the write fifo before starting the transfer */ dw_writer(priv); dw_write(priv, DW_SPI_SER, 1 << spi_chip_select(slave->dev)); while (priv->tx != priv->tx_end) dw_writer(priv); if (readl_poll_timeout(priv->regs + DW_SPI_SR, val, (val & SR_TF_EMPT) && !(val & SR_BUSY), RX_TIMEOUT * 1000)) { ret = -ETIMEDOUT; } } dw_write(priv, DW_SPI_SER, 0); external_cs_manage(slave->dev, true); dev_dbg(bus, "%u bytes xfered\n", op->data.nbytes); return ret; } /* The size of ctrl1 limits data transfers to 64K */ static int dw_spi_adjust_op_size(struct spi_slave *slave, struct spi_mem_op *op) { op->data.nbytes = min(op->data.nbytes, (unsigned int)SZ_64K); return 0; } static const struct spi_controller_mem_ops dw_spi_mem_ops = { .exec_op = dw_spi_exec_op, .adjust_op_size = dw_spi_adjust_op_size, }; static int dw_spi_set_speed(struct udevice *bus, uint speed) { struct dw_spi_plat *plat = dev_get_plat(bus); struct dw_spi_priv *priv = dev_get_priv(bus); u16 clk_div; if (speed > plat->frequency) speed = plat->frequency; /* Disable controller before writing control registers */ dw_write(priv, DW_SPI_SSIENR, 0); /* clk_div doesn't support odd number */ clk_div = priv->bus_clk_rate / speed; clk_div = (clk_div + 1) & 0xfffe; dw_write(priv, DW_SPI_BAUDR, clk_div); /* Enable controller after writing control registers */ dw_write(priv, DW_SPI_SSIENR, 1); priv->freq = speed; dev_dbg(bus, "speed=%d clk_div=%d\n", priv->freq, clk_div); return 0; } static int dw_spi_set_mode(struct udevice *bus, uint mode) { struct dw_spi_priv *priv = dev_get_priv(bus); /* * Can't set mode yet. Since this depends on if rx, tx, or * rx & tx is requested. So we have to defer this to the * real transfer function. */ priv->mode = mode; dev_dbg(bus, "mode=%d\n", priv->mode); return 0; } static int dw_spi_remove(struct udevice *bus) { struct dw_spi_priv *priv = dev_get_priv(bus); int ret; ret = reset_release_bulk(&priv->resets); if (ret) return ret; #if CONFIG_IS_ENABLED(CLK) ret = clk_disable(&priv->clk); if (ret) return ret; clk_free(&priv->clk); if (ret) return ret; #endif return 0; } static const struct dm_spi_ops dw_spi_ops = { .xfer = dw_spi_xfer, .mem_ops = &dw_spi_mem_ops, .set_speed = dw_spi_set_speed, .set_mode = dw_spi_set_mode, /* * cs_info is not needed, since we require all chip selects to be * in the device tree explicitly */ }; static const struct udevice_id dw_spi_ids[] = { /* Generic compatible strings */ { .compatible = "snps,dw-apb-ssi", .data = (ulong)dw_spi_apb_init }, { .compatible = "snps,dw-apb-ssi-3.20a", .data = (ulong)dw_spi_apb_init }, { .compatible = "snps,dw-apb-ssi-3.22a", .data = (ulong)dw_spi_apb_init }, /* First version with SSI_MAX_XFER_SIZE */ { .compatible = "snps,dw-apb-ssi-3.23a", .data = (ulong)dw_spi_apb_init }, /* First version with Dual/Quad SPI; unused by this driver */ { .compatible = "snps,dw-apb-ssi-4.00a", .data = (ulong)dw_spi_apb_init }, { .compatible = "snps,dw-apb-ssi-4.01", .data = (ulong)dw_spi_apb_init }, { .compatible = "snps,dwc-ssi-1.01a", .data = (ulong)dw_spi_dwc_init }, /* Compatible strings for specific SoCs */ /* * Both the Cyclone V and Arria V share a device tree and have the same * version of this device. This compatible string is used for those * devices, and is not used for sofpgas in general. */ { .compatible = "altr,socfpga-spi", .data = (ulong)dw_spi_apb_init }, { .compatible = "altr,socfpga-arria10-spi", .data = (ulong)dw_spi_apb_init }, { .compatible = "canaan,k210-spi", .data = (ulong)dw_spi_apb_k210_init}, { .compatible = "canaan,k210-ssi", .data = (ulong)dw_spi_dwc_init }, { .compatible = "intel,stratix10-spi", .data = (ulong)dw_spi_apb_init }, { .compatible = "intel,agilex-spi", .data = (ulong)dw_spi_apb_init }, { .compatible = "mscc,ocelot-spi", .data = (ulong)dw_spi_apb_init }, { .compatible = "mscc,jaguar2-spi", .data = (ulong)dw_spi_apb_init }, { .compatible = "snps,axs10x-spi", .data = (ulong)dw_spi_apb_init }, { .compatible = "snps,hsdk-spi", .data = (ulong)dw_spi_apb_init }, { } }; U_BOOT_DRIVER(dw_spi) = { .name = "dw_spi", .id = UCLASS_SPI, .of_match = dw_spi_ids, .ops = &dw_spi_ops, .of_to_plat = dw_spi_of_to_plat, .plat_auto = sizeof(struct dw_spi_plat), .priv_auto = sizeof(struct dw_spi_priv), .probe = dw_spi_probe, .remove = dw_spi_remove, };