// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2012 * Altera Corporation */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "cadence_qspi.h" #include #define NSEC_PER_SEC 1000000000L #define CQSPI_STIG_READ 0 #define CQSPI_STIG_WRITE 1 #define CQSPI_READ 2 #define CQSPI_WRITE 3 __weak int cadence_qspi_apb_dma_read(struct cadence_spi_priv *priv, const struct spi_mem_op *op) { return 0; } __weak int cadence_qspi_versal_flash_reset(struct udevice *dev) { return 0; } static int cadence_spi_write_speed(struct udevice *bus, uint hz) { struct cadence_spi_priv *priv = dev_get_priv(bus); cadence_qspi_apb_config_baudrate_div(priv->regbase, priv->ref_clk_hz, hz); /* Reconfigure delay timing if speed is changed. */ cadence_qspi_apb_delay(priv->regbase, priv->ref_clk_hz, hz, priv->tshsl_ns, priv->tsd2d_ns, priv->tchsh_ns, priv->tslch_ns); return 0; } static int cadence_spi_read_id(struct cadence_spi_priv *priv, u8 len, u8 *idcode) { int err; struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(0x9F, 1), SPI_MEM_OP_NO_ADDR, SPI_MEM_OP_NO_DUMMY, SPI_MEM_OP_DATA_IN(len, idcode, 1)); err = cadence_qspi_apb_command_read_setup(priv, &op); if (!err) err = cadence_qspi_apb_command_read(priv, &op); return err; } /* Calibration sequence to determine the read data capture delay register */ static int spi_calibration(struct udevice *bus, uint hz) { struct cadence_spi_priv *priv = dev_get_priv(bus); void *base = priv->regbase; unsigned int idcode = 0, temp = 0; int err = 0, i, range_lo = -1, range_hi = -1; /* start with slowest clock (1 MHz) */ cadence_spi_write_speed(bus, 1000000); /* configure the read data capture delay register to 0 */ cadence_qspi_apb_readdata_capture(base, 1, 0); /* Enable QSPI */ cadence_qspi_apb_controller_enable(base); /* read the ID which will be our golden value */ err = cadence_spi_read_id(priv, 3, (u8 *)&idcode); if (err) { puts("SF: Calibration failed (read)\n"); return err; } /* use back the intended clock and find low range */ cadence_spi_write_speed(bus, hz); for (i = 0; i < CQSPI_READ_CAPTURE_MAX_DELAY; i++) { /* Disable QSPI */ cadence_qspi_apb_controller_disable(base); /* reconfigure the read data capture delay register */ cadence_qspi_apb_readdata_capture(base, 1, i); /* Enable back QSPI */ cadence_qspi_apb_controller_enable(base); /* issue a RDID to get the ID value */ err = cadence_spi_read_id(priv, 3, (u8 *)&temp); if (err) { puts("SF: Calibration failed (read)\n"); return err; } /* search for range lo */ if (range_lo == -1 && temp == idcode) { range_lo = i; continue; } /* search for range hi */ if (range_lo != -1 && temp != idcode) { range_hi = i - 1; break; } range_hi = i; } if (range_lo == -1) { puts("SF: Calibration failed (low range)\n"); return err; } /* Disable QSPI for subsequent initialization */ cadence_qspi_apb_controller_disable(base); /* configure the final value for read data capture delay register */ cadence_qspi_apb_readdata_capture(base, 1, (range_hi + range_lo) / 2); debug("SF: Read data capture delay calibrated to %i (%i - %i)\n", (range_hi + range_lo) / 2, range_lo, range_hi); /* just to ensure we do once only when speed or chip select change */ priv->qspi_calibrated_hz = hz; priv->qspi_calibrated_cs = spi_chip_select(bus); return 0; } static int cadence_spi_set_speed(struct udevice *bus, uint hz) { struct cadence_spi_priv *priv = dev_get_priv(bus); int err; if (!hz || hz > priv->max_hz) hz = priv->max_hz; /* Disable QSPI */ cadence_qspi_apb_controller_disable(priv->regbase); /* * If the device tree already provides a read delay value, use that * instead of calibrating. */ if (priv->read_delay >= 0) { cadence_spi_write_speed(bus, hz); cadence_qspi_apb_readdata_capture(priv->regbase, 1, priv->read_delay); } else if (priv->previous_hz != hz || priv->qspi_calibrated_hz != hz || priv->qspi_calibrated_cs != spi_chip_select(bus)) { /* * Calibration required for different current SCLK speed, * requested SCLK speed or chip select */ err = spi_calibration(bus, hz); if (err) return err; /* prevent calibration run when same as previous request */ priv->previous_hz = hz; } /* Enable QSPI */ cadence_qspi_apb_controller_enable(priv->regbase); debug("%s: speed=%d\n", __func__, hz); return 0; } static int cadence_spi_probe(struct udevice *bus) { struct cadence_spi_plat *plat = dev_get_plat(bus); struct cadence_spi_priv *priv = dev_get_priv(bus); struct clk clk; int ret; priv->regbase = plat->regbase; priv->ahbbase = plat->ahbbase; priv->is_dma = plat->is_dma; priv->is_decoded_cs = plat->is_decoded_cs; priv->fifo_depth = plat->fifo_depth; priv->fifo_width = plat->fifo_width; priv->trigger_address = plat->trigger_address; priv->read_delay = plat->read_delay; priv->ahbsize = plat->ahbsize; priv->max_hz = plat->max_hz; priv->page_size = plat->page_size; priv->block_size = plat->block_size; priv->tshsl_ns = plat->tshsl_ns; priv->tsd2d_ns = plat->tsd2d_ns; priv->tchsh_ns = plat->tchsh_ns; priv->tslch_ns = plat->tslch_ns; if (IS_ENABLED(CONFIG_ZYNQMP_FIRMWARE)) xilinx_pm_request(PM_REQUEST_NODE, PM_DEV_OSPI, ZYNQMP_PM_CAPABILITY_ACCESS, ZYNQMP_PM_MAX_QOS, ZYNQMP_PM_REQUEST_ACK_NO, NULL); if (priv->ref_clk_hz == 0) { ret = clk_get_by_index(bus, 0, &clk); if (ret) { #ifdef CONFIG_HAS_CQSPI_REF_CLK priv->ref_clk_hz = CONFIG_CQSPI_REF_CLK; #elif defined(CONFIG_ARCH_SOCFPGA) priv->ref_clk_hz = cm_get_qspi_controller_clk_hz(); #else return ret; #endif } else { priv->ref_clk_hz = clk_get_rate(&clk); clk_free(&clk); if (IS_ERR_VALUE(priv->ref_clk_hz)) return priv->ref_clk_hz; } } priv->resets = devm_reset_bulk_get_optional(bus); if (priv->resets) reset_deassert_bulk(priv->resets); if (!priv->qspi_is_init) { cadence_qspi_apb_controller_init(priv); priv->qspi_is_init = 1; } priv->wr_delay = 50 * DIV_ROUND_UP(NSEC_PER_SEC, priv->ref_clk_hz); /* Versal and Versal-NET use spi calibration to set read delay */ if (CONFIG_IS_ENABLED(ARCH_VERSAL) || CONFIG_IS_ENABLED(ARCH_VERSAL_NET)) if (priv->read_delay >= 0) priv->read_delay = -1; /* Reset ospi flash device */ return cadence_qspi_versal_flash_reset(bus); } static int cadence_spi_remove(struct udevice *dev) { struct cadence_spi_priv *priv = dev_get_priv(dev); int ret = 0; if (priv->resets) ret = reset_release_bulk(priv->resets); return ret; } static int cadence_spi_set_mode(struct udevice *bus, uint mode) { struct cadence_spi_priv *priv = dev_get_priv(bus); /* Disable QSPI */ cadence_qspi_apb_controller_disable(priv->regbase); /* Set SPI mode */ cadence_qspi_apb_set_clk_mode(priv->regbase, mode); /* Enable Direct Access Controller */ if (priv->use_dac_mode) cadence_qspi_apb_dac_mode_enable(priv->regbase); /* Enable QSPI */ cadence_qspi_apb_controller_enable(priv->regbase); return 0; } static int cadence_spi_mem_exec_op(struct spi_slave *spi, const struct spi_mem_op *op) { struct udevice *bus = spi->dev->parent; struct cadence_spi_priv *priv = dev_get_priv(bus); void *base = priv->regbase; int err = 0; u32 mode; /* Set Chip select */ cadence_qspi_apb_chipselect(base, spi_chip_select(spi->dev), priv->is_decoded_cs); if (op->data.dir == SPI_MEM_DATA_IN && op->data.buf.in) { /* * Performing reads in DAC mode forces to read minimum 4 bytes * which is unsupported on some flash devices during register * reads, prefer STIG mode for such small reads. */ if (op->data.nbytes <= CQSPI_STIG_DATA_LEN_MAX) mode = CQSPI_STIG_READ; else mode = CQSPI_READ; } else { if (op->data.nbytes <= CQSPI_STIG_DATA_LEN_MAX) mode = CQSPI_STIG_WRITE; else mode = CQSPI_WRITE; } switch (mode) { case CQSPI_STIG_READ: err = cadence_qspi_apb_command_read_setup(priv, op); if (!err) err = cadence_qspi_apb_command_read(priv, op); break; case CQSPI_STIG_WRITE: err = cadence_qspi_apb_command_write_setup(priv, op); if (!err) err = cadence_qspi_apb_command_write(priv, op); break; case CQSPI_READ: err = cadence_qspi_apb_read_setup(priv, op); if (!err) { if (priv->is_dma) err = cadence_qspi_apb_dma_read(priv, op); else err = cadence_qspi_apb_read_execute(priv, op); } break; case CQSPI_WRITE: err = cadence_qspi_apb_write_setup(priv, op); if (!err) err = cadence_qspi_apb_write_execute(priv, op); break; default: err = -1; break; } return err; } static bool cadence_spi_mem_supports_op(struct spi_slave *slave, const struct spi_mem_op *op) { bool all_true, all_false; /* * op->dummy.dtr is required for converting nbytes into ncycles. * Also, don't check the dtr field of the op phase having zero nbytes. */ all_true = op->cmd.dtr && (!op->addr.nbytes || op->addr.dtr) && (!op->dummy.nbytes || op->dummy.dtr) && (!op->data.nbytes || op->data.dtr); all_false = !op->cmd.dtr && !op->addr.dtr && !op->dummy.dtr && !op->data.dtr; /* Mixed DTR modes not supported. */ if (!(all_true || all_false)) return false; if (all_true) return spi_mem_dtr_supports_op(slave, op); else return spi_mem_default_supports_op(slave, op); } static int cadence_spi_of_to_plat(struct udevice *bus) { struct cadence_spi_plat *plat = dev_get_plat(bus); struct cadence_spi_priv *priv = dev_get_priv(bus); ofnode subnode; plat->regbase = devfdt_get_addr_index_ptr(bus, 0); plat->ahbbase = devfdt_get_addr_size_index_ptr(bus, 1, &plat->ahbsize); plat->is_decoded_cs = dev_read_bool(bus, "cdns,is-decoded-cs"); plat->fifo_depth = dev_read_u32_default(bus, "cdns,fifo-depth", 128); plat->fifo_width = dev_read_u32_default(bus, "cdns,fifo-width", 4); plat->trigger_address = dev_read_u32_default(bus, "cdns,trigger-address", 0); /* Use DAC mode only when MMIO window is at least 8M wide */ if (plat->ahbsize >= SZ_8M) priv->use_dac_mode = true; plat->is_dma = dev_read_bool(bus, "cdns,is-dma"); /* All other parameters are embedded in the child node */ subnode = dev_read_first_subnode(bus); if (!ofnode_valid(subnode)) { printf("Error: subnode with SPI flash config missing!\n"); return -ENODEV; } /* Use 500 KHz as a suitable default */ plat->max_hz = ofnode_read_u32_default(subnode, "spi-max-frequency", 500000); /* Read other parameters from DT */ plat->page_size = ofnode_read_u32_default(subnode, "page-size", 256); plat->block_size = ofnode_read_u32_default(subnode, "block-size", 16); plat->tshsl_ns = ofnode_read_u32_default(subnode, "cdns,tshsl-ns", 200); plat->tsd2d_ns = ofnode_read_u32_default(subnode, "cdns,tsd2d-ns", 255); plat->tchsh_ns = ofnode_read_u32_default(subnode, "cdns,tchsh-ns", 20); plat->tslch_ns = ofnode_read_u32_default(subnode, "cdns,tslch-ns", 20); /* * Read delay should be an unsigned value but we use a signed integer * so that negative values can indicate that the device tree did not * specify any signed values and we need to perform the calibration * sequence to find it out. */ plat->read_delay = ofnode_read_s32_default(subnode, "cdns,read-delay", -1); debug("%s: regbase=%p ahbbase=%p max-frequency=%d page-size=%d\n", __func__, plat->regbase, plat->ahbbase, plat->max_hz, plat->page_size); return 0; } static const struct spi_controller_mem_ops cadence_spi_mem_ops = { .exec_op = cadence_spi_mem_exec_op, .supports_op = cadence_spi_mem_supports_op, }; static const struct dm_spi_ops cadence_spi_ops = { .set_speed = cadence_spi_set_speed, .set_mode = cadence_spi_set_mode, .mem_ops = &cadence_spi_mem_ops, /* * cs_info is not needed, since we require all chip selects to be * in the device tree explicitly */ }; static const struct udevice_id cadence_spi_ids[] = { { .compatible = "cdns,qspi-nor" }, { .compatible = "ti,am654-ospi" }, { } }; U_BOOT_DRIVER(cadence_spi) = { .name = "cadence_spi", .id = UCLASS_SPI, .of_match = cadence_spi_ids, .ops = &cadence_spi_ops, .of_to_plat = cadence_spi_of_to_plat, .plat_auto = sizeof(struct cadence_spi_plat), .priv_auto = sizeof(struct cadence_spi_priv), .probe = cadence_spi_probe, .remove = cadence_spi_remove, .flags = DM_FLAG_OS_PREPARE, };