// SPDX-License-Identifier: GPL-2.0 /* * A driver for the I2C members of the Abracon AB x8xx RTC family, * and compatible: AB 1805 and AB 0805 * * Copyright 2014-2015 Macq S.A. * Copyright 2020 Linaro * * Author: Philippe De Muyter * Author: Alexandre Belloni * Author: Ying-Chun Liu (PaulLiu) * */ #include #include #include #include #include #include #define ABX8XX_REG_HTH 0x00 #define ABX8XX_REG_SC 0x01 #define ABX8XX_REG_MN 0x02 #define ABX8XX_REG_HR 0x03 #define ABX8XX_REG_DA 0x04 #define ABX8XX_REG_MO 0x05 #define ABX8XX_REG_YR 0x06 #define ABX8XX_REG_WD 0x07 #define ABX8XX_REG_AHTH 0x08 #define ABX8XX_REG_ASC 0x09 #define ABX8XX_REG_AMN 0x0a #define ABX8XX_REG_AHR 0x0b #define ABX8XX_REG_ADA 0x0c #define ABX8XX_REG_AMO 0x0d #define ABX8XX_REG_AWD 0x0e #define ABX8XX_REG_STATUS 0x0f #define ABX8XX_STATUS_AF BIT(2) #define ABX8XX_STATUS_BLF BIT(4) #define ABX8XX_STATUS_WDT BIT(6) #define ABX8XX_REG_CTRL1 0x10 #define ABX8XX_CTRL_WRITE BIT(0) #define ABX8XX_CTRL_ARST BIT(2) #define ABX8XX_CTRL_12_24 BIT(6) #define ABX8XX_REG_CTRL2 0x11 #define ABX8XX_CTRL2_RSVD BIT(5) #define ABX8XX_REG_IRQ 0x12 #define ABX8XX_IRQ_AIE BIT(2) #define ABX8XX_IRQ_IM_1_4 (0x3 << 5) #define ABX8XX_REG_CD_TIMER_CTL 0x18 #define ABX8XX_REG_OSC 0x1c #define ABX8XX_OSC_FOS BIT(3) #define ABX8XX_OSC_BOS BIT(4) #define ABX8XX_OSC_ACAL_512 BIT(5) #define ABX8XX_OSC_ACAL_1024 BIT(6) #define ABX8XX_OSC_OSEL BIT(7) #define ABX8XX_REG_OSS 0x1d #define ABX8XX_OSS_OF BIT(1) #define ABX8XX_OSS_OMODE BIT(4) #define ABX8XX_REG_WDT 0x1b #define ABX8XX_WDT_WDS BIT(7) #define ABX8XX_WDT_BMB_MASK 0x7c #define ABX8XX_WDT_BMB_SHIFT 2 #define ABX8XX_WDT_MAX_TIME (ABX8XX_WDT_BMB_MASK >> ABX8XX_WDT_BMB_SHIFT) #define ABX8XX_WDT_WRB_MASK 0x03 #define ABX8XX_WDT_WRB_1HZ 0x02 #define ABX8XX_REG_CFG_KEY 0x1f #define ABX8XX_CFG_KEY_OSC 0xa1 #define ABX8XX_CFG_KEY_MISC 0x9d #define ABX8XX_REG_ID0 0x28 #define ABX8XX_REG_OUT_CTRL 0x30 #define ABX8XX_OUT_CTRL_EXDS BIT(4) #define ABX8XX_REG_TRICKLE 0x20 #define ABX8XX_TRICKLE_CHARGE_ENABLE 0xa0 #define ABX8XX_TRICKLE_STANDARD_DIODE 0x8 #define ABX8XX_TRICKLE_SCHOTTKY_DIODE 0x4 #define ABX8XX_REG_EXTRAM 0x3f #define ABX8XX_EXTRAM_XADS GENMASK(1, 0) #define ABX8XX_SRAM_BASE 0x40 #define ABX8XX_SRAM_WIN_SIZE 0x40U #define ABX8XX_RAM_SIZE 256 #define RAM_ADDR_LOWER GENMASK(5, 0) #define RAM_ADDR_UPPER GENMASK(7, 6) static u8 trickle_resistors[] = {0, 3, 6, 11}; enum abx80x_chip {AB0801, AB0803, AB0804, AB0805, AB1801, AB1803, AB1804, AB1805, RV1805, ABX80X}; struct abx80x_cap { u16 pn; bool has_tc; bool has_wdog; }; static struct abx80x_cap abx80x_caps[] = { [AB0801] = {.pn = 0x0801}, [AB0803] = {.pn = 0x0803}, [AB0804] = {.pn = 0x0804, .has_tc = true, .has_wdog = true}, [AB0805] = {.pn = 0x0805, .has_tc = true, .has_wdog = true}, [AB1801] = {.pn = 0x1801}, [AB1803] = {.pn = 0x1803}, [AB1804] = {.pn = 0x1804, .has_tc = true, .has_wdog = true}, [AB1805] = {.pn = 0x1805, .has_tc = true, .has_wdog = true}, [RV1805] = {.pn = 0x1805, .has_tc = true, .has_wdog = true}, [ABX80X] = {.pn = 0} }; static int abx80x_rtc_xfer(struct udevice *dev, unsigned int offset, u8 *val, unsigned int bytes, bool write) { int ret; if (offset + bytes > ABX8XX_RAM_SIZE) return -EINVAL; while (bytes) { u8 extram, reg, len, lower, upper; lower = FIELD_GET(RAM_ADDR_LOWER, offset); upper = FIELD_GET(RAM_ADDR_UPPER, offset); extram = FIELD_PREP(ABX8XX_EXTRAM_XADS, upper); reg = ABX8XX_SRAM_BASE + lower; len = min(lower + bytes, ABX8XX_SRAM_WIN_SIZE) - lower; ret = dm_i2c_reg_write(dev, ABX8XX_REG_EXTRAM, extram); if (ret) return ret; if (write) ret = dm_i2c_write(dev, reg, val, len); else ret = dm_i2c_read(dev, reg, val, len); if (ret) return ret; offset += len; val += len; bytes -= len; } return 0; } static int abx80x_rtc_read(struct udevice *dev, unsigned int offset, u8 *val, unsigned int bytes) { return abx80x_rtc_xfer(dev, offset, val, bytes, false); } static int abx80x_rtc_write(struct udevice *dev, unsigned int offset, const u8 *val, unsigned int bytes) { return abx80x_rtc_xfer(dev, offset, (u8 *)val, bytes, true); } static int abx80x_is_rc_mode(struct udevice *dev) { int flags = 0; flags = dm_i2c_reg_read(dev, ABX8XX_REG_OSS); if (flags < 0) { log_err("Failed to read autocalibration attribute\n"); return flags; } return (flags & ABX8XX_OSS_OMODE) ? 1 : 0; } static int abx80x_enable_trickle_charger(struct udevice *dev, u8 trickle_cfg) { int err; /* * Write the configuration key register to enable access to the Trickle * register */ err = dm_i2c_reg_write(dev, ABX8XX_REG_CFG_KEY, ABX8XX_CFG_KEY_MISC); if (err < 0) { log_err("Unable to write configuration key\n"); return -EIO; } err = dm_i2c_reg_write(dev, ABX8XX_REG_TRICKLE, ABX8XX_TRICKLE_CHARGE_ENABLE | trickle_cfg); if (err < 0) { log_err("Unable to write trickle register\n"); return -EIO; } return 0; } static int abx80x_rtc_read_time(struct udevice *dev, struct rtc_time *tm) { unsigned char buf[8]; int err, flags, rc_mode = 0; /* Read the Oscillator Failure only in XT mode */ rc_mode = abx80x_is_rc_mode(dev); if (rc_mode < 0) return rc_mode; if (!rc_mode) { flags = dm_i2c_reg_read(dev, ABX8XX_REG_OSS); if (flags < 0) { log_err("Unable to read oscillator status.\n"); return flags; } if (flags & ABX8XX_OSS_OF) log_debug("Oscillator fail, data is not accurate.\n"); } err = dm_i2c_read(dev, ABX8XX_REG_HTH, buf, sizeof(buf)); if (err < 0) { log_err("Unable to read date\n"); return -EIO; } tm->tm_sec = bcd2bin(buf[ABX8XX_REG_SC] & 0x7F); tm->tm_min = bcd2bin(buf[ABX8XX_REG_MN] & 0x7F); tm->tm_hour = bcd2bin(buf[ABX8XX_REG_HR] & 0x3F); tm->tm_wday = buf[ABX8XX_REG_WD] & 0x7; tm->tm_mday = bcd2bin(buf[ABX8XX_REG_DA] & 0x3F); tm->tm_mon = bcd2bin(buf[ABX8XX_REG_MO] & 0x1F); tm->tm_year = bcd2bin(buf[ABX8XX_REG_YR]) + 2000; return 0; } static int abx80x_rtc_set_time(struct udevice *dev, const struct rtc_time *tm) { unsigned char buf[8]; int err, flags; if (tm->tm_year < 2000) return -EINVAL; buf[ABX8XX_REG_HTH] = 0; buf[ABX8XX_REG_SC] = bin2bcd(tm->tm_sec); buf[ABX8XX_REG_MN] = bin2bcd(tm->tm_min); buf[ABX8XX_REG_HR] = bin2bcd(tm->tm_hour); buf[ABX8XX_REG_DA] = bin2bcd(tm->tm_mday); buf[ABX8XX_REG_MO] = bin2bcd(tm->tm_mon); buf[ABX8XX_REG_YR] = bin2bcd(tm->tm_year - 2000); buf[ABX8XX_REG_WD] = tm->tm_wday; err = dm_i2c_write(dev, ABX8XX_REG_HTH, buf, sizeof(buf)); if (err < 0) { log_err("Unable to write to date registers\n"); return -EIO; } /* Clear the OF bit of Oscillator Status Register */ flags = dm_i2c_reg_read(dev, ABX8XX_REG_OSS); if (flags < 0) { log_err("Unable to read oscillator status.\n"); return flags; } err = dm_i2c_reg_write(dev, ABX8XX_REG_OSS, flags & ~ABX8XX_OSS_OF); if (err < 0) { log_err("Unable to write oscillator status register\n"); return err; } return 0; } static int abx80x_rtc_set_autocalibration(struct udevice *dev, int autocalibration) { int retval, flags = 0; if (autocalibration != 0 && autocalibration != 1024 && autocalibration != 512) { log_err("autocalibration value outside permitted range\n"); return -EINVAL; } flags = dm_i2c_reg_read(dev, ABX8XX_REG_OSC); if (flags < 0) return flags; if (autocalibration == 0) { flags &= ~(ABX8XX_OSC_ACAL_512 | ABX8XX_OSC_ACAL_1024); } else if (autocalibration == 1024) { /* 1024 autocalibration is 0x10 */ flags |= ABX8XX_OSC_ACAL_1024; flags &= ~(ABX8XX_OSC_ACAL_512); } else { /* 512 autocalibration is 0x11 */ flags |= (ABX8XX_OSC_ACAL_1024 | ABX8XX_OSC_ACAL_512); } /* Unlock write access to Oscillator Control Register */ retval = dm_i2c_reg_write(dev, ABX8XX_REG_CFG_KEY, ABX8XX_CFG_KEY_OSC); if (retval < 0) { log_err("Failed to write CONFIG_KEY register\n"); return retval; } retval = dm_i2c_reg_write(dev, ABX8XX_REG_OSC, flags); return retval; } static int abx80x_rtc_get_autocalibration(struct udevice *dev) { int flags = 0, autocalibration; flags = dm_i2c_reg_read(dev, ABX8XX_REG_OSC); if (flags < 0) return flags; if (flags & ABX8XX_OSC_ACAL_512) autocalibration = 512; else if (flags & ABX8XX_OSC_ACAL_1024) autocalibration = 1024; else autocalibration = 0; return autocalibration; } static struct rtc_time default_tm = { 0, 0, 0, 1, 1, 2000, 6, 0, 0 }; static int abx80x_rtc_reset(struct udevice *dev) { int ret = 0; int autocalib = abx80x_rtc_get_autocalibration(dev); if (autocalib != 0) abx80x_rtc_set_autocalibration(dev, 0); ret = abx80x_rtc_set_time(dev, &default_tm); if (ret != 0) { log_err("cannot set time to default_tm. error %d\n", ret); return ret; } return ret; } static const struct rtc_ops abx80x_rtc_ops = { .get = abx80x_rtc_read_time, .set = abx80x_rtc_set_time, .reset = abx80x_rtc_reset, .read = abx80x_rtc_read, .write = abx80x_rtc_write, }; static int abx80x_dt_trickle_cfg(struct udevice *dev) { const char *diode; int trickle_cfg = 0; int i, ret = 0; u32 tmp; diode = ofnode_read_string(dev_ofnode(dev), "abracon,tc-diode"); if (!diode) return ret; if (!strcmp(diode, "standard")) { trickle_cfg |= ABX8XX_TRICKLE_STANDARD_DIODE; } else if (!strcmp(diode, "schottky")) { trickle_cfg |= ABX8XX_TRICKLE_SCHOTTKY_DIODE; } else { log_err("Invalid tc-diode value: %s\n", diode); return -EINVAL; } ret = ofnode_read_u32(dev_ofnode(dev), "abracon,tc-resistor", &tmp); if (ret) return ret; for (i = 0; i < sizeof(trickle_resistors); i++) if (trickle_resistors[i] == tmp) break; if (i == sizeof(trickle_resistors)) { log_err("Invalid tc-resistor value: %u\n", tmp); return -EINVAL; } return (trickle_cfg | i); } static int abx80x_probe(struct udevice *dev) { int i, data, err, trickle_cfg = -EINVAL; unsigned char buf[7]; unsigned int part = dev->driver_data; unsigned int partnumber; unsigned int majrev, minrev; unsigned int lot; unsigned int wafer; unsigned int uid; err = dm_i2c_read(dev, ABX8XX_REG_ID0, buf, sizeof(buf)); if (err < 0) { log_err("Unable to read partnumber\n"); return -EIO; } partnumber = (buf[0] << 8) | buf[1]; majrev = buf[2] >> 3; minrev = buf[2] & 0x7; lot = ((buf[4] & 0x80) << 2) | ((buf[6] & 0x80) << 1) | buf[3]; uid = ((buf[4] & 0x7f) << 8) | buf[5]; wafer = (buf[6] & 0x7c) >> 2; log_debug("model %04x, revision %u.%u, lot %x, wafer %x, uid %x\n", partnumber, majrev, minrev, lot, wafer, uid); data = dm_i2c_reg_read(dev, ABX8XX_REG_CTRL1); if (data < 0) { log_err("Unable to read control register\n"); return -EIO; } err = dm_i2c_reg_write(dev, ABX8XX_REG_CTRL1, ((data & ~(ABX8XX_CTRL_12_24 | ABX8XX_CTRL_ARST)) | ABX8XX_CTRL_WRITE)); if (err < 0) { log_err("Unable to write control register\n"); return -EIO; } /* Configure RV1805 specifics */ if (part == RV1805) { /* * Avoid accidentally entering test mode. This can happen * on the RV1805 in case the reserved bit 5 in control2 * register is set. RV-1805-C3 datasheet indicates that * the bit should be cleared in section 11h - Control2. */ data = dm_i2c_reg_read(dev, ABX8XX_REG_CTRL2); if (data < 0) { log_err("Unable to read control2 register\n"); return -EIO; } err = dm_i2c_reg_write(dev, ABX8XX_REG_CTRL2, data & ~ABX8XX_CTRL2_RSVD); if (err < 0) { log_err("Unable to write control2 register\n"); return -EIO; } /* * Avoid extra power leakage. The RV1805 uses smaller * 10pin package and the EXTI input is not present. * Disable it to avoid leakage. */ data = dm_i2c_reg_read(dev, ABX8XX_REG_OUT_CTRL); if (data < 0) { log_err("Unable to read output control register\n"); return -EIO; } /* * Write the configuration key register to enable access to * the config2 register */ err = dm_i2c_reg_write(dev, ABX8XX_REG_CFG_KEY, ABX8XX_CFG_KEY_MISC); if (err < 0) { log_err("Unable to write configuration key\n"); return -EIO; } err = dm_i2c_reg_write(dev, ABX8XX_REG_OUT_CTRL, data | ABX8XX_OUT_CTRL_EXDS); if (err < 0) { log_err("Unable to write output control register\n"); return -EIO; } } /* part autodetection */ if (part == ABX80X) { for (i = 0; abx80x_caps[i].pn; i++) if (partnumber == abx80x_caps[i].pn) break; if (abx80x_caps[i].pn == 0) { log_err("Unknown part: %04x\n", partnumber); return -EINVAL; } part = i; } if (partnumber != abx80x_caps[part].pn) { log_err("partnumber mismatch %04x != %04x\n", partnumber, abx80x_caps[part].pn); return -EINVAL; } if (abx80x_caps[part].has_tc) trickle_cfg = abx80x_dt_trickle_cfg(dev); if (trickle_cfg > 0) { log_debug("Enabling trickle charger: %02x\n", trickle_cfg); abx80x_enable_trickle_charger(dev, trickle_cfg); } err = dm_i2c_reg_write(dev, ABX8XX_REG_CD_TIMER_CTL, BIT(2)); if (err) return err; return 0; } static const struct udevice_id abx80x_of_match[] = { { .compatible = "abracon,abx80x", .data = ABX80X }, { .compatible = "abracon,ab0801", .data = AB0801 }, { .compatible = "abracon,ab0803", .data = AB0803 }, { .compatible = "abracon,ab0804", .data = AB0804 }, { .compatible = "abracon,ab0805", .data = AB0805 }, { .compatible = "abracon,ab1801", .data = AB1801 }, { .compatible = "abracon,ab1803", .data = AB1803 }, { .compatible = "abracon,ab1804", .data = AB1804 }, { .compatible = "abracon,ab1805", .data = AB1805 }, { .compatible = "microcrystal,rv1805", .data = RV1805 }, { } }; U_BOOT_DRIVER(abx80x_rtc) = { .name = "rtc-abx80x", .id = UCLASS_RTC, .probe = abx80x_probe, .of_match = abx80x_of_match, .ops = &abx80x_rtc_ops, };