// SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause /* * Copyright (C) 2018, STMicroelectronics - All Rights Reserved */ #define LOG_CATEGORY UCLASS_RAM #include #include #include #include #include #include #include #include #include #include #include #include "stm32mp1_ddr.h" #include "stm32mp1_ddr_regs.h" /* DDR subsystem configuration */ struct stm32mp1_ddr_cfg { u8 nb_bytes; /* MEMC_DRAM_DATA_WIDTH */ }; static const char *const clkname[] = { "ddrc1", "ddrc2", "ddrcapb", "ddrphycapb", "ddrphyc" /* LAST clock => used for get_rate() */ }; int stm32mp1_ddr_clk_enable(struct ddr_info *priv, uint32_t mem_speed) { unsigned long ddrphy_clk; unsigned long ddr_clk; struct clk clk; int ret; unsigned int idx; for (idx = 0; idx < ARRAY_SIZE(clkname); idx++) { ret = clk_get_by_name(priv->dev, clkname[idx], &clk); if (!ret) ret = clk_enable(&clk); if (ret) { log_err("error for %s : %d\n", clkname[idx], ret); return ret; } } priv->clk = clk; ddrphy_clk = clk_get_rate(&priv->clk); log_debug("DDR: mem_speed (%d kHz), RCC %d kHz\n", mem_speed, (u32)(ddrphy_clk / 1000)); /* max 10% frequency delta */ ddr_clk = abs(ddrphy_clk - mem_speed * 1000); if (ddr_clk > (mem_speed * 100)) { log_err("DDR expected freq %d kHz, current is %d kHz\n", mem_speed, (u32)(ddrphy_clk / 1000)); return -EINVAL; } return 0; } __weak int board_stm32mp1_ddr_config_name_match(struct udevice *dev, const char *name) { return 0; /* Always match */ } static ofnode stm32mp1_ddr_get_ofnode(struct udevice *dev) { const char *name; ofnode node; dev_for_each_subnode(node, dev) { name = ofnode_get_property(node, "compatible", NULL); if (!board_stm32mp1_ddr_config_name_match(dev, name)) return node; } return dev_ofnode(dev); } static int stm32mp1_ddr_setup(struct udevice *dev) { struct ddr_info *priv = dev_get_priv(dev); int ret; unsigned int idx; struct clk axidcg; struct stm32mp1_ddr_config config; ofnode node = stm32mp1_ddr_get_ofnode(dev); #define PARAM(x, y, z) \ { .name = x, \ .offset = offsetof(struct stm32mp1_ddr_config, y), \ .size = sizeof(config.y) / sizeof(u32), \ } #define CTL_PARAM(x) PARAM("st,ctl-"#x, c_##x, NULL) #define PHY_PARAM(x) PARAM("st,phy-"#x, p_##x, NULL) const struct { const char *name; /* name in DT */ const u32 offset; /* offset in config struct */ const u32 size; /* size of parameters */ } param[] = { CTL_PARAM(reg), CTL_PARAM(timing), CTL_PARAM(map), CTL_PARAM(perf), PHY_PARAM(reg), PHY_PARAM(timing) }; config.info.speed = ofnode_read_u32_default(node, "st,mem-speed", 0); config.info.size = ofnode_read_u32_default(node, "st,mem-size", 0); config.info.name = ofnode_read_string(node, "st,mem-name"); if (!config.info.name) { dev_dbg(dev, "no st,mem-name\n"); return -EINVAL; } if (CONFIG_IS_ENABLED(DISPLAY_PRINT)) printf("RAM: %s\n", config.info.name); for (idx = 0; idx < ARRAY_SIZE(param); idx++) { ret = ofnode_read_u32_array(node, param[idx].name, (void *)((u32)&config + param[idx].offset), param[idx].size); dev_dbg(dev, "%s: %s[0x%x] = %d\n", __func__, param[idx].name, param[idx].size, ret); if (ret) { dev_err(dev, "Cannot read %s, error=%d\n", param[idx].name, ret); return -EINVAL; } } ret = clk_get_by_name(dev, "axidcg", &axidcg); if (ret) { dev_dbg(dev, "%s: Cannot found axidcg\n", __func__); return -EINVAL; } clk_disable(&axidcg); /* disable clock gating during init */ stm32mp1_ddr_init(priv, &config); clk_enable(&axidcg); /* enable clock gating */ /* check size */ dev_dbg(dev, "get_ram_size(%x, %x)\n", (u32)priv->info.base, (u32)STM32_DDR_SIZE); priv->info.size = get_ram_size((long *)priv->info.base, STM32_DDR_SIZE); dev_dbg(dev, "info.size: %x\n", (u32)priv->info.size); /* check memory access for all memory */ if (config.info.size != priv->info.size) { printf("DDR invalid size : 0x%x, expected 0x%x\n", priv->info.size, config.info.size); return -EINVAL; } return 0; } static u8 get_data_bus_width(struct stm32mp1_ddrctl *ctl) { u32 reg = readl(&ctl->mstr) & DDRCTRL_MSTR_DATA_BUS_WIDTH_MASK; u8 data_bus_width = reg >> DDRCTRL_MSTR_DATA_BUS_WIDTH_SHIFT; return data_bus_width; } static u8 get_nb_bank(struct stm32mp1_ddrctl *ctl) { /* Count bank address bits */ u8 bits = 0; u32 reg, val; reg = readl(&ctl->addrmap1); /* addrmap1.addrmap_bank_b1 */ val = (reg & GENMASK(5, 0)) >> 0; if (val <= 31) bits++; /* addrmap1.addrmap_bank_b2 */ val = (reg & GENMASK(13, 8)) >> 8; if (val <= 31) bits++; /* addrmap1.addrmap_bank_b3 */ val = (reg & GENMASK(21, 16)) >> 16; if (val <= 31) bits++; return bits; } static u8 get_nb_col(struct stm32mp1_ddrctl *ctl, u8 data_bus_width) { u8 bits; u32 reg, val; /* Count column address bits, start at 2 for b0 and b1 (fixed) */ bits = 2; reg = readl(&ctl->addrmap2); /* addrmap2.addrmap_col_b2 */ val = (reg & GENMASK(3, 0)) >> 0; if (val <= 7) bits++; /* addrmap2.addrmap_col_b3 */ val = (reg & GENMASK(11, 8)) >> 8; if (val <= 7) bits++; /* addrmap2.addrmap_col_b4 */ val = (reg & GENMASK(19, 16)) >> 16; if (val <= 7) bits++; /* addrmap2.addrmap_col_b5 */ val = (reg & GENMASK(27, 24)) >> 24; if (val <= 7) bits++; reg = readl(&ctl->addrmap3); /* addrmap3.addrmap_col_b6 */ val = (reg & GENMASK(4, 0)) >> 0; if (val <= 7) bits++; /* addrmap3.addrmap_col_b7 */ val = (reg & GENMASK(12, 8)) >> 8; if (val <= 7) bits++; /* addrmap3.addrmap_col_b8 */ val = (reg & GENMASK(20, 16)) >> 16; if (val <= 7) bits++; /* addrmap3.addrmap_col_b9 */ val = (reg & GENMASK(28, 24)) >> 24; if (val <= 7) bits++; reg = readl(&ctl->addrmap4); /* addrmap4.addrmap_col_b10 */ val = (reg & GENMASK(4, 0)) >> 0; if (val <= 7) bits++; /* addrmap4.addrmap_col_b11 */ val = (reg & GENMASK(12, 8)) >> 8; if (val <= 7) bits++; /* * column bits shift up: * 1 when half the data bus is used (data_bus_width = 1) * 2 when a quarter the data bus is used (data_bus_width = 2) * nothing to do for full data bus (data_bus_width = 0) */ bits += data_bus_width; return bits; } static u8 get_nb_row(struct stm32mp1_ddrctl *ctl) { /* Count row address bits */ u8 bits = 0; u32 reg, val; reg = readl(&ctl->addrmap5); /* addrmap5.addrmap_row_b0 */ val = (reg & GENMASK(3, 0)) >> 0; if (val <= 11) bits++; /* addrmap5.addrmap_row_b1 */ val = (reg & GENMASK(11, 8)) >> 8; if (val <= 11) bits++; /* addrmap5.addrmap_row_b2_10 */ val = (reg & GENMASK(19, 16)) >> 16; if (val <= 11) bits += 9; else printf("warning: addrmap5.addrmap_row_b2_10 not supported\n"); /* addrmap5.addrmap_row_b11 */ val = (reg & GENMASK(27, 24)) >> 24; if (val <= 11) bits++; reg = readl(&ctl->addrmap6); /* addrmap6.addrmap_row_b12 */ val = (reg & GENMASK(3, 0)) >> 0; if (val <= 11) bits++; /* addrmap6.addrmap_row_b13 */ val = (reg & GENMASK(11, 8)) >> 8; if (val <= 11) bits++; /* addrmap6.addrmap_row_b14 */ val = (reg & GENMASK(19, 16)) >> 16; if (val <= 11) bits++; /* addrmap6.addrmap_row_b15 */ val = (reg & GENMASK(27, 24)) >> 24; if (val <= 11) bits++; if (reg & BIT(31)) printf("warning: LPDDR3_6GB_12GB is not supported\n"); return bits; } /* * stm32mp1_ddr_size * * Get the current DRAM size from the DDR CTL registers * * @return: DRAM size */ u32 stm32mp1_ddr_size(struct udevice *dev) { u8 nb_bit; u32 ddr_size; u8 data_bus_width; struct ddr_info *priv = dev_get_priv(dev); struct stm32mp1_ddrctl *ctl = priv->ctl; struct stm32mp1_ddr_cfg *cfg = (struct stm32mp1_ddr_cfg *)dev_get_driver_data(dev); const u8 nb_bytes = cfg->nb_bytes; data_bus_width = get_data_bus_width(ctl); nb_bit = get_nb_bank(ctl) + get_nb_col(ctl, data_bus_width) + get_nb_row(ctl); if (nb_bit > 32) { nb_bit = 32; debug("invalid DDR configuration: %d bits\n", nb_bit); } ddr_size = (nb_bytes >> data_bus_width) << nb_bit; if (ddr_size > STM32_DDR_SIZE) { ddr_size = STM32_DDR_SIZE; debug("invalid DDR configuration: size = %x\n", ddr_size); } return ddr_size; } static int stm32mp1_ddr_probe(struct udevice *dev) { struct ddr_info *priv = dev_get_priv(dev); struct regmap *map; int ret; priv->dev = dev; ret = regmap_init_mem(dev_ofnode(dev), &map); if (ret) return log_ret(ret); priv->ctl = regmap_get_range(map, 0); priv->phy = regmap_get_range(map, 1); priv->rcc = STM32_RCC_BASE; priv->info.base = STM32_DDR_BASE; if (IS_ENABLED(CONFIG_SPL_BUILD)) { priv->info.size = 0; ret = stm32mp1_ddr_setup(dev); return log_ret(ret); } priv->info.size = stm32mp1_ddr_size(dev); return 0; } static int stm32mp1_ddr_get_info(struct udevice *dev, struct ram_info *info) { struct ddr_info *priv = dev_get_priv(dev); *info = priv->info; return 0; } static struct ram_ops stm32mp1_ddr_ops = { .get_info = stm32mp1_ddr_get_info, }; static const struct stm32mp1_ddr_cfg stm32mp13x_ddr_cfg = { .nb_bytes = 2, }; static const struct stm32mp1_ddr_cfg stm32mp15x_ddr_cfg = { .nb_bytes = 4, }; static const struct udevice_id stm32mp1_ddr_ids[] = { { .compatible = "st,stm32mp1-ddr", .data = (ulong)&stm32mp15x_ddr_cfg}, { .compatible = "st,stm32mp13-ddr", .data = (ulong)&stm32mp13x_ddr_cfg}, { } }; U_BOOT_DRIVER(ddr_stm32mp1) = { .name = "stm32mp1_ddr", .id = UCLASS_RAM, .of_match = stm32mp1_ddr_ids, .ops = &stm32mp1_ddr_ops, .probe = stm32mp1_ddr_probe, .priv_auto = sizeof(struct ddr_info), };