// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2020 Marvell International Ltd. */ #include #include #include #define DEVICE_TYPE DDR4_SPD_KEY_BYTE_DEVICE_TYPE // same for DDR3 and DDR4 #define MODULE_TYPE DDR4_SPD_KEY_BYTE_MODULE_TYPE // same for DDR3 and DDR4 #define BUS_WIDTH(t) (((t) == DDR4_DRAM) ? \ DDR4_SPD_MODULE_MEMORY_BUS_WIDTH : \ DDR3_SPD_MEMORY_BUS_WIDTH) /* * Allow legacy code to encode bus number in the upper bits of the address * These are only supported in read_spd() */ #define OCTEON_TWSI_BUS_IN_ADDR_BIT 12 #define OCTEON_TWSI_BUS_IN_ADDR_MASK (15 << OCTEON_TWSI_BUS_IN_ADDR_BIT) #define OCTEON_TWSI_GET_BUS(addr) \ (((addr) >> OCTEON_TWSI_BUS_IN_ADDR_BIT) & 0xf) const char *ddr3_dimm_types[] = { /* 0000 */ "Undefined", /* 0001 */ "RDIMM", /* 0010 */ "UDIMM", /* 0011 */ "SO-DIMM", /* 0100 */ "Micro-DIMM", /* 0101 */ "Mini-RDIMM", /* 0110 */ "Mini-UDIMM", /* 0111 */ "Mini-CDIMM", /* 1000 */ "72b-SO-UDIMM", /* 1001 */ "72b-SO-RDIMM", /* 1010 */ "72b-SO-CDIMM" /* 1011 */ "LRDIMM", /* 1100 */ "16b-SO-DIMM", /* 1101 */ "32b-SO-DIMM", /* 1110 */ "Reserved", /* 1111 */ "Reserved" }; const char *ddr4_dimm_types[] = { /* 0000 */ "Extended", /* 0001 */ "RDIMM", /* 0010 */ "UDIMM", /* 0011 */ "SO-DIMM", /* 0100 */ "LRDIMM", /* 0101 */ "Mini-RDIMM", /* 0110 */ "Mini-UDIMM", /* 0111 */ "Reserved", /* 1000 */ "72b-SO-RDIMM", /* 1001 */ "72b-SO-UDIMM", /* 1010 */ "Reserved", /* 1011 */ "Reserved", /* 1100 */ "16b-SO-DIMM", /* 1101 */ "32b-SO-DIMM", /* 1110 */ "Reserved", /* 1111 */ "Reserved" }; static u16 ddr3_crc16(u8 *ptr, int count) { /* From DDR3 SPD specification */ int crc, i; crc = 0; while (--count >= 0) { crc = crc ^ (int)*ptr++ << 8; for (i = 0; i < 8; ++i) { if (crc & 0x8000) crc = crc << 1 ^ 0x1021; else crc = crc << 1; } } return (crc & 0xFFFF); } static int validate_spd_checksum_ddr4(struct dimm_config *dimm_config, int dimm_index, int twsi_addr, int silent) { u8 *spd_data = dimm_config->spd_data[dimm_index]; int crc_bytes = 126; u16 crc_comp; /* Check byte 0 to see how many bytes checksum is over */ if (spd_data[0] & 0x80) crc_bytes = 117; crc_comp = ddr3_crc16(spd_data, crc_bytes); if (spd_data[126] == (crc_comp & 0xff) && spd_data[127] == (crc_comp >> 8)) return 1; if (!silent) { printf("DDR4 SPD CRC error, spd addr: 0x%x, calculated crc: 0x%04x, read crc: 0x%02x%02x\n", twsi_addr, crc_comp, spd_data[127], spd_data[126]); } return 0; } static int validate_spd_checksum(struct ddr_priv *priv, struct dimm_config *dimm_config, int dimm_index, int twsi_addr, int silent, u8 rv) { if (ddr_verbose(priv)) debug("Validating DIMM at address 0x%x\n", twsi_addr); if (rv >= 0x8 && rv <= 0xA) printf("%s: Error: DDR2 support disabled\n", __func__); if (rv == 0xB) printf("%s: Error: DDR3 support disabled\n", __func__); if (rv == 0xC) { return validate_spd_checksum_ddr4(dimm_config, dimm_index, twsi_addr, silent); } if (!silent) { printf("Unrecognized DIMM type: 0x%x at spd address: 0x%x\n", rv, twsi_addr); } return 0; } /* * Read an DIMM SPD value, either using TWSI to read it from the DIMM, or * from a provided array. */ int read_spd(struct dimm_config *dimm_config, int dimm_index, int spd_field) { dimm_index = !!dimm_index; if (spd_field >= SPD_EEPROM_SIZE) { printf("ERROR: Trying to read unsupported SPD EEPROM value %d\n", spd_field); } /* * If pointer to data is provided, use it, otherwise read from SPD * over twsi */ if (dimm_config->spd_ptrs[dimm_index]) return dimm_config->spd_ptrs[dimm_index][spd_field]; else if (dimm_config->spd_addrs[dimm_index]) return dimm_config->spd_data[dimm_index][spd_field]; return -1; } int read_spd_init(struct dimm_config *dimm_config, int dimm_index) { u8 busno = OCTEON_TWSI_GET_BUS(dimm_config->spd_addrs[dimm_index]); u8 cmdno = dimm_config->spd_addrs[dimm_index]; struct udevice *dev_i2c; u8 *spd_data; int ret; if (dimm_config->spd_cached[dimm_index]) return 0; dimm_config->spd_cached[dimm_index] = 1; spd_data = dimm_config->spd_data[dimm_index]; ret = i2c_get_chip_for_busnum(busno, cmdno, 2, &dev_i2c); if (ret) { debug("Cannot find SPL EEPROM: %d\n", ret); return -ENODEV; } ret = dm_i2c_read(dev_i2c, 0, spd_data, SPD_EEPROM_SIZE); return ret; } int validate_dimm(struct ddr_priv *priv, struct dimm_config *dimm_config, int dimm_index) { int spd_addr; dimm_index = !!dimm_index; /* Normalize to 0/1 */ spd_addr = dimm_config->spd_addrs[dimm_index]; debug("Validating dimm %d, spd addr: 0x%02x spd ptr: %p\n", dimm_index, dimm_config->spd_addrs[dimm_index], dimm_config->spd_ptrs[dimm_index]); /* Only validate 'real' dimms, assume compiled in values are OK */ if (!dimm_config->spd_ptrs[dimm_index]) { int val0, val1; int dimm_type; int ret; ret = read_spd_init(dimm_config, dimm_index); if (ret) return 0; dimm_type = read_spd(dimm_config, dimm_index, DDR2_SPD_MEM_TYPE) & 0xff; switch (dimm_type) { case 0x0B: /* DDR3 */ if (ddr_verbose(priv)) printf("Validating DDR3 DIMM %d\n", dimm_index); val0 = read_spd(dimm_config, dimm_index, DDR3_SPD_DENSITY_BANKS); val1 = read_spd(dimm_config, dimm_index, DDR3_SPD_ADDRESSING_ROW_COL_BITS); if (val0 < 0 && val1 < 0) { if (ddr_verbose(priv)) printf("Error reading SPD for DIMM %d\n", dimm_index); return 0; /* Failed to read dimm */ } if (val0 == 0xff && val1 == 0xff) { if (ddr_verbose(priv)) printf("Blank or unreadable SPD for DIMM %d\n", dimm_index); /* Blank SPD or otherwise unreadable device */ return 0; } /* Don't treat bad checksums as fatal */ validate_spd_checksum(priv, dimm_config, dimm_index, spd_addr, 0, dimm_type); break; case 0x0C: /* DDR4 */ if (ddr_verbose(priv)) printf("Validating DDR4 DIMM %d\n", dimm_index); val0 = read_spd(dimm_config, dimm_index, DDR4_SPD_DENSITY_BANKS); val1 = read_spd(dimm_config, dimm_index, DDR4_SPD_ADDRESSING_ROW_COL_BITS); if (val0 < 0 && val1 < 0) { if (ddr_verbose(priv)) printf("Error reading SPD for DIMM %d\n", dimm_index); return 0; /* Failed to read dimm */ } if (val0 == 0xff && val1 == 0xff) { if (ddr_verbose(priv)) { printf("Blank or unreadable SPD for DIMM %d\n", dimm_index); } /* Blank SPD or otherwise unreadable device */ return 0; } /* Don't treat bad checksums as fatal */ validate_spd_checksum(priv, dimm_config, dimm_index, spd_addr, 0, dimm_type); break; case 0x00: /* Terminator detected. Fail silently. */ return 0; default: debug("Unknown DIMM type 0x%x for DIMM %d @ 0x%x\n", dimm_type, dimm_index, dimm_config->spd_addrs[dimm_index]); return 0; /* Failed to read dimm */ } } return 1; } int get_ddr_type(struct dimm_config *dimm_config, int upper_dimm) { int spd_ddr_type; spd_ddr_type = read_spd(dimm_config, upper_dimm, DEVICE_TYPE); debug("%s:%d spd_ddr_type=0x%02x\n", __func__, __LINE__, spd_ddr_type); /* we return only DDR4 or DDR3 */ return (spd_ddr_type == 0x0C) ? DDR4_DRAM : DDR3_DRAM; } static int get_dimm_ecc(struct dimm_config *dimm_config, int upper_dimm, int ddr_type) { return !!(read_spd(dimm_config, upper_dimm, BUS_WIDTH(ddr_type)) & 8); } int get_dimm_module_type(struct dimm_config *dimm_config, int upper_dimm, int ddr_type) { return read_spd(dimm_config, upper_dimm, MODULE_TYPE) & 0x0f; } char *printable_rank_spec(char *buffer, int num_ranks, int dram_width, int spd_package) { int die_count = ((spd_package >> 4) & 7) + 1; if (spd_package & 0x80) { // non-monolithic if ((spd_package & 3) == 2) { // 3DS sprintf(buffer, "%dS%dRx%d", num_ranks, die_count, dram_width); } else { // MLS char hchar = (die_count == 2) ? 'D' : 'Q'; sprintf(buffer, "%d%cRx%d", num_ranks, hchar, dram_width); } } else { sprintf(buffer, "%dRx%d", num_ranks, dram_width); } return buffer; } static void report_common_dimm(struct dimm_config *dimm_config, int upper_dimm, int dimm, const char **dimm_types, int ddr_type, char *volt_str, int if_num, int num_ranks, int dram_width, int spd_package) { unsigned int spd_module_type; char rank_spec[8]; int spd_ecc; spd_module_type = get_dimm_module_type(dimm_config, upper_dimm, ddr_type); spd_ecc = get_dimm_ecc(dimm_config, upper_dimm, ddr_type); printable_rank_spec(rank_spec, num_ranks, dram_width, spd_package); printf("LMC%d.DIMM%d: DDR%d %s %s %s, %s\n", if_num, dimm, ddr_type, dimm_types[spd_module_type], rank_spec, spd_ecc ? "ECC" : "non-ECC", volt_str); } static void report_ddr3_dimm(struct dimm_config *dimm_config, int upper_dimm, int dimm, int if_num) { int spd_voltage; char *volt_str; int spd_org = read_spd(dimm_config, upper_dimm, DDR3_SPD_MODULE_ORGANIZATION); int num_ranks = 1 + ((spd_org >> 3) & 0x7); int dram_width = 4 << ((spd_org >> 0) & 0x7); spd_voltage = read_spd(dimm_config, upper_dimm, DDR3_SPD_NOMINAL_VOLTAGE); if (spd_voltage == 0 || spd_voltage & 3) volt_str = "1.5V"; if (spd_voltage & 2) volt_str = "1.35V"; if (spd_voltage & 4) volt_str = "1.2xV"; report_common_dimm(dimm_config, upper_dimm, dimm, ddr3_dimm_types, DDR3_DRAM, volt_str, if_num, num_ranks, dram_width, /*spd_package*/0); } static void report_ddr4_dimm(struct dimm_config *dimm_config, int upper_dimm, int dimm, int if_num) { int spd_voltage; char *volt_str; int spd_package = 0xff & read_spd(dimm_config, upper_dimm, DDR4_SPD_PACKAGE_TYPE); int spd_org = 0xff & read_spd(dimm_config, upper_dimm, DDR4_SPD_MODULE_ORGANIZATION); int num_ranks = 1 + ((spd_org >> 3) & 0x7); int dram_width = 4 << ((spd_org >> 0) & 0x7); spd_voltage = read_spd(dimm_config, upper_dimm, DDR4_SPD_MODULE_NOMINAL_VOLTAGE); if (spd_voltage == 0x01 || spd_voltage & 0x02) volt_str = "1.2V"; if (spd_voltage == 0x04 || spd_voltage & 0x08) volt_str = "TBD1 V"; if (spd_voltage == 0x10 || spd_voltage & 0x20) volt_str = "TBD2 V"; report_common_dimm(dimm_config, upper_dimm, dimm, ddr4_dimm_types, DDR4_DRAM, volt_str, if_num, num_ranks, dram_width, spd_package); } void report_dimm(struct dimm_config *dimm_config, int upper_dimm, int dimm, int if_num) { int ddr_type; /* ddr_type only indicates DDR4 or DDR3 */ ddr_type = get_ddr_type(dimm_config, upper_dimm); if (ddr_type == DDR4_DRAM) report_ddr4_dimm(dimm_config, 0, dimm, if_num); else report_ddr3_dimm(dimm_config, 0, dimm, if_num); }