// SPDX-License-Identifier: BSD-3-Clause /* * Cadence DDR Driver * * Copyright (C) 2012-2022 Cadence Design Systems, Inc. * Copyright (C) 2018-2022 Texas Instruments Incorporated - https://www.ti.com/ */ #include #include "cps_drv_lpddr4.h" #include "lpddr4_if.h" #include "lpddr4.h" #include "lpddr4_structs_if.h" static u32 lpddr4_pollphyindepirq(const lpddr4_privatedata *pd, lpddr4_intr_phyindepinterrupt irqbit, u32 delay); static u32 lpddr4_pollandackirq(const lpddr4_privatedata *pd); static u32 lpddr4_startsequencecontroller(const lpddr4_privatedata *pd); static u32 lpddr4_writemmrregister(const lpddr4_privatedata *pd, u32 writemoderegval); static void lpddr4_checkcatrainingerror(lpddr4_ctlregs *ctlregbase, lpddr4_debuginfo *debuginfo, bool *errfoundptr); static void lpddr4_checkgatelvlerror(lpddr4_ctlregs *ctlregbase, lpddr4_debuginfo *debuginfo, bool *errfoundptr); static void lpddr4_checkreadlvlerror(lpddr4_ctlregs *ctlregbase, lpddr4_debuginfo *debuginfo, bool *errfoundptr); static void lpddr4_checkdqtrainingerror(lpddr4_ctlregs *ctlregbase, lpddr4_debuginfo *debuginfo, bool *errfoundptr); static u8 lpddr4_seterror(volatile u32 *reg, u32 errbitmask, u8 *errfoundptr, const u32 errorinfobits); static void lpddr4_setphysnapsettings(lpddr4_ctlregs *ctlregbase, const bool errorfound); static void lpddr4_setphyadrsnapsettings(lpddr4_ctlregs *ctlregbase, const bool errorfound); static void readpdwakeup(const lpddr4_ctlfspnum *fspnum, lpddr4_ctlregs *ctlregbase, u32 *cycles); static void readsrshortwakeup(const lpddr4_ctlfspnum *fspnum, lpddr4_ctlregs *ctlregbase, u32 *cycles); static void readsrlongwakeup(const lpddr4_ctlfspnum *fspnum, lpddr4_ctlregs *ctlregbase, u32 *cycles); static void readsrlonggatewakeup(const lpddr4_ctlfspnum *fspnum, lpddr4_ctlregs *ctlregbase, u32 *cycles); static void readsrdpshortwakeup(const lpddr4_ctlfspnum *fspnum, lpddr4_ctlregs *ctlregbase, u32 *cycles); static void readsrdplongwakeup(const lpddr4_ctlfspnum *fspnum, lpddr4_ctlregs *ctlregbase, u32 *cycles); static void readsrdplonggatewakeup(const lpddr4_ctlfspnum *fspnum, lpddr4_ctlregs *ctlregbase, u32 *cycles); static void lpddr4_readlpiwakeuptime(lpddr4_ctlregs *ctlregbase, const lpddr4_lpiwakeupparam *lpiwakeupparam, const lpddr4_ctlfspnum *fspnum, u32 *cycles); static void writepdwakeup(const lpddr4_ctlfspnum *fspnum, lpddr4_ctlregs *ctlregbase, const u32 *cycles); static void writesrshortwakeup(const lpddr4_ctlfspnum *fspnum, lpddr4_ctlregs *ctlregbase, const u32 *cycles); static void writesrlongwakeup(const lpddr4_ctlfspnum *fspnum, lpddr4_ctlregs *ctlregbase, const u32 *cycles); static void writesrlonggatewakeup(const lpddr4_ctlfspnum *fspnum, lpddr4_ctlregs *ctlregbase, const u32 *cycles); static void writesrdpshortwakeup(const lpddr4_ctlfspnum *fspnum, lpddr4_ctlregs *ctlregbase, const u32 *cycles); static void writesrdplongwakeup(const lpddr4_ctlfspnum *fspnum, lpddr4_ctlregs *ctlregbase, const u32 *cycles); static void writesrdplonggatewakeup(const lpddr4_ctlfspnum *fspnum, lpddr4_ctlregs *ctlregbase, const u32 *cycles); static void lpddr4_writelpiwakeuptime(lpddr4_ctlregs *ctlregbase, const lpddr4_lpiwakeupparam *lpiwakeupparam, const lpddr4_ctlfspnum *fspnum, const u32 *cycles); static void lpddr4_updatefsp2refrateparams(const lpddr4_privatedata *pd, const u32 *tref, const u32 *tras_max); static void lpddr4_updatefsp1refrateparams(const lpddr4_privatedata *pd, const u32 *tref, const u32 *tras_max); static void lpddr4_updatefsp0refrateparams(const lpddr4_privatedata *pd, const u32 *tref, const u32 *tras_max); static u32 lpddr4_getphyrwmask(u32 regoffset); u32 lpddr4_pollctlirq(const lpddr4_privatedata *pd, lpddr4_intr_ctlinterrupt irqbit, u32 delay) { u32 result = 0U; u32 timeout = 0U; bool irqstatus = false; do { if (++timeout == delay) { result = (u32)EIO; break; } result = lpddr4_checkctlinterrupt(pd, irqbit, &irqstatus); } while ((irqstatus == (bool)false) && (result == (u32)0)); return result; } static u32 lpddr4_pollphyindepirq(const lpddr4_privatedata *pd, lpddr4_intr_phyindepinterrupt irqbit, u32 delay) { u32 result = 0U; u32 timeout = 0U; bool irqstatus = false; do { if (++timeout == delay) { result = (u32)EIO; break; } result = lpddr4_checkphyindepinterrupt(pd, irqbit, &irqstatus); } while ((irqstatus == (bool)false) && (result == (u32)0)); return result; } static u32 lpddr4_pollandackirq(const lpddr4_privatedata *pd) { u32 result = 0U; result = lpddr4_pollphyindepirq(pd, LPDDR4_INTR_PHY_INDEP_INIT_DONE_BIT, LPDDR4_CUSTOM_TIMEOUT_DELAY); if (result == (u32)0) result = lpddr4_ackphyindepinterrupt(pd, LPDDR4_INTR_PHY_INDEP_INIT_DONE_BIT); if (result == (u32)0) result = lpddr4_pollctlirq(pd, LPDDR4_INTR_MC_INIT_DONE, LPDDR4_CUSTOM_TIMEOUT_DELAY); if (result == (u32)0) result = lpddr4_ackctlinterrupt(pd, LPDDR4_INTR_MC_INIT_DONE); return result; } static u32 lpddr4_startsequencecontroller(const lpddr4_privatedata *pd) { u32 result = 0U; u32 regval = 0U; lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase; lpddr4_infotype infotype; regval = CPS_FLD_SET(LPDDR4__PI_START__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__PI_START__REG))); CPS_REG_WRITE((&(ctlregbase->LPDDR4__PI_START__REG)), regval); regval = CPS_FLD_SET(LPDDR4__START__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__START__REG))); CPS_REG_WRITE(&(ctlregbase->LPDDR4__START__REG), regval); if (pd->infohandler != (lpddr4_infocallback)NULL) { infotype = LPDDR4_DRV_SOC_PLL_UPDATE; pd->infohandler(pd, infotype); } result = lpddr4_pollandackirq(pd); return result; } volatile u32 *lpddr4_addoffset(volatile u32 *addr, u32 regoffset) { volatile u32 *local_addr = addr; volatile u32 *regaddr = &local_addr[regoffset]; return regaddr; } u32 lpddr4_probe(const lpddr4_config *config, u16 *configsize) { u32 result; result = (u32)(lpddr4_probesf(config, configsize)); if (result == (u32)0) *configsize = (u16)(sizeof(lpddr4_privatedata)); return result; } u32 lpddr4_init(lpddr4_privatedata *pd, const lpddr4_config *cfg) { u32 result = 0U; result = lpddr4_initsf(pd, cfg); if (result == (u32)0) { lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)cfg->ctlbase; pd->ctlbase = ctlregbase; pd->infohandler = (lpddr4_infocallback)cfg->infohandler; pd->ctlinterrupthandler = (lpddr4_ctlcallback)cfg->ctlinterrupthandler; pd->phyindepinterrupthandler = (lpddr4_phyindepcallback)cfg->phyindepinterrupthandler; } return result; } u32 lpddr4_start(const lpddr4_privatedata *pd) { u32 result = 0U; result = lpddr4_startsf(pd); if (result == (u32)0) { result = lpddr4_enablepiinitiator(pd); result = lpddr4_startsequencecontroller(pd); } return result; } u32 lpddr4_readreg(const lpddr4_privatedata *pd, lpddr4_regblock cpp, u32 regoffset, u32 *regvalue) { u32 result = 0U; result = lpddr4_readregsf(pd, cpp, regvalue); if (result == (u32)0) { lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase; if (cpp == LPDDR4_CTL_REGS) { if (regoffset >= LPDDR4_INTR_CTL_REG_COUNT) result = (u32)EINVAL; else *regvalue = CPS_REG_READ(lpddr4_addoffset(&(ctlregbase->DENALI_CTL_0), regoffset)); } else if (cpp == LPDDR4_PHY_REGS) { if (regoffset >= LPDDR4_INTR_PHY_REG_COUNT) result = (u32)EINVAL; else *regvalue = CPS_REG_READ(lpddr4_addoffset(&(ctlregbase->DENALI_PHY_0), regoffset)); } else { if (regoffset >= LPDDR4_INTR_PHY_INDEP_REG_COUNT) result = (u32)EINVAL; else *regvalue = CPS_REG_READ(lpddr4_addoffset(&(ctlregbase->DENALI_PI_0), regoffset)); } } return result; } static u32 lpddr4_getphyrwmask(u32 regoffset) { u32 rwmask = 0U; u32 arrayoffset = 0U; u32 slicenum, sliceoffset = 0U; for (slicenum = (u32)0U; slicenum <= (DSLICE_NUM + ASLICE_NUM); slicenum++) { sliceoffset = sliceoffset + (u32)SLICE_WIDTH; if (regoffset < sliceoffset) break; } arrayoffset = regoffset - (sliceoffset - (u32)SLICE_WIDTH); if (slicenum < DSLICE_NUM) { rwmask = lpddr4_getdslicemask(slicenum, arrayoffset); } else { if (slicenum == DSLICE_NUM) { if (arrayoffset < ASLICE0_REG_COUNT) rwmask = g_lpddr4_address_slice_0_rw_mask[arrayoffset]; } else { if (arrayoffset < PHY_CORE_REG_COUNT) rwmask = g_lpddr4_phy_core_rw_mask[arrayoffset]; } } return rwmask; } u32 lpddr4_deferredregverify(const lpddr4_privatedata *pd, lpddr4_regblock cpp, u32 regvalues[], u16 regnum[], u16 regcount) { u32 result = (u32)0; u32 aindex; u32 regreadval = 0U; u32 rwmask = 0U; result = lpddr4_deferredregverifysf(pd, cpp); if ((regvalues == (u32 *)NULL) || (regnum == (u16 *)NULL)) result = EINVAL; if (result == (u32)0) { for (aindex = 0; aindex < regcount; aindex++) { result = lpddr4_readreg(pd, cpp, (u32)regnum[aindex], ®readval); if (result == (u32)0) { switch (cpp) { case LPDDR4_PHY_INDEP_REGS: rwmask = g_lpddr4_pi_rw_mask[(u32)regnum[aindex]]; break; case LPDDR4_PHY_REGS: rwmask = lpddr4_getphyrwmask((u32)regnum[aindex]); break; default: rwmask = g_lpddr4_ddr_controller_rw_mask[(u32)regnum[aindex]]; break; } if ((rwmask & regreadval) != ((u32)(regvalues[aindex]) & rwmask)) { result = EIO; break; } } } } return result; } u32 lpddr4_writereg(const lpddr4_privatedata *pd, lpddr4_regblock cpp, u32 regoffset, u32 regvalue) { u32 result = 0U; result = lpddr4_writeregsf(pd, cpp); if (result == (u32)0) { lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase; if (cpp == LPDDR4_CTL_REGS) { if (regoffset >= LPDDR4_INTR_CTL_REG_COUNT) result = (u32)EINVAL; else CPS_REG_WRITE(lpddr4_addoffset(&(ctlregbase->DENALI_CTL_0), regoffset), regvalue); } else if (cpp == LPDDR4_PHY_REGS) { if (regoffset >= LPDDR4_INTR_PHY_REG_COUNT) result = (u32)EINVAL; else CPS_REG_WRITE(lpddr4_addoffset(&(ctlregbase->DENALI_PHY_0), regoffset), regvalue); } else { if (regoffset >= LPDDR4_INTR_PHY_INDEP_REG_COUNT) result = (u32)EINVAL; else CPS_REG_WRITE(lpddr4_addoffset(&(ctlregbase->DENALI_PI_0), regoffset), regvalue); } } return result; } u32 lpddr4_getmmrregister(const lpddr4_privatedata *pd, u32 readmoderegval, u64 *mmrvalue, u8 *mmrstatus) { u32 result = 0U; u32 tdelay = 1000U; u32 regval = 0U; result = lpddr4_getmmrregistersf(pd, mmrvalue, mmrstatus); if (result == (u32)0) { lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase; regval = CPS_FLD_WRITE(LPDDR4__READ_MODEREG__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__READ_MODEREG__REG)), readmoderegval); CPS_REG_WRITE(&(ctlregbase->LPDDR4__READ_MODEREG__REG), regval); result = lpddr4_pollctlirq(pd, LPDDR4_INTR_MR_READ_DONE, tdelay); } if (result == (u32)0) result = lpddr4_checkmmrreaderror(pd, mmrvalue, mmrstatus); return result; } static u32 lpddr4_writemmrregister(const lpddr4_privatedata *pd, u32 writemoderegval) { u32 result = (u32)0; u32 tdelay = 1000U; u32 regval = 0U; lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase; regval = CPS_FLD_WRITE(LPDDR4__WRITE_MODEREG__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__WRITE_MODEREG__REG)), writemoderegval); CPS_REG_WRITE(&(ctlregbase->LPDDR4__WRITE_MODEREG__REG), regval); result = lpddr4_pollctlirq(pd, LPDDR4_INTR_MR_WRITE_DONE, tdelay); return result; } u32 lpddr4_setmmrregister(const lpddr4_privatedata *pd, u32 writemoderegval, u8 *mrwstatus) { u32 result = 0U; result = lpddr4_setmmrregistersf(pd, mrwstatus); if (result == (u32)0) { result = lpddr4_writemmrregister(pd, writemoderegval); if (result == (u32)0) result = lpddr4_ackctlinterrupt(pd, LPDDR4_INTR_MR_WRITE_DONE); if (result == (u32)0) { lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase; *mrwstatus = (u8)CPS_FLD_READ(LPDDR4__MRW_STATUS__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__MRW_STATUS__REG))); if ((*mrwstatus) != 0U) result = (u32)EIO; } } return result; } u32 lpddr4_writectlconfig(const lpddr4_privatedata *pd, u32 regvalues[], u16 regnum[], u16 regcount) { u32 result; u32 aindex; result = lpddr4_writectlconfigsf(pd); if ((regvalues == (u32 *)NULL) || (regnum == (u16 *)NULL)) result = EINVAL; if (result == (u32)0) { for (aindex = 0; aindex < regcount; aindex++) result = (u32)lpddr4_writereg(pd, LPDDR4_CTL_REGS, (u32)regnum[aindex], (u32)regvalues[aindex]); } return result; } u32 lpddr4_writephyindepconfig(const lpddr4_privatedata *pd, u32 regvalues[], u16 regnum[], u16 regcount) { u32 result; u32 aindex; result = lpddr4_writephyindepconfigsf(pd); if ((regvalues == (u32 *)NULL) || (regnum == (u16 *)NULL)) result = EINVAL; if (result == (u32)0) { for (aindex = 0; aindex < regcount; aindex++) result = (u32)lpddr4_writereg(pd, LPDDR4_PHY_INDEP_REGS, (u32)regnum[aindex], (u32)regvalues[aindex]); } return result; } u32 lpddr4_writephyconfig(const lpddr4_privatedata *pd, u32 regvalues[], u16 regnum[], u16 regcount) { u32 result; u32 aindex; result = lpddr4_writephyconfigsf(pd); if ((regvalues == (u32 *)NULL) || (regnum == (u16 *)NULL)) result = EINVAL; if (result == (u32)0) { for (aindex = 0; aindex < regcount; aindex++) result = (u32)lpddr4_writereg(pd, LPDDR4_PHY_REGS, (u32)regnum[aindex], (u32)regvalues[aindex]); } return result; } u32 lpddr4_readctlconfig(const lpddr4_privatedata *pd, u32 regvalues[], u16 regnum[], u16 regcount) { u32 result; u32 aindex; result = lpddr4_readctlconfigsf(pd); if ((regvalues == (u32 *)NULL) || (regnum == (u16 *)NULL)) result = EINVAL; if (result == (u32)0) { for (aindex = 0; aindex < regcount; aindex++) result = (u32)lpddr4_readreg(pd, LPDDR4_CTL_REGS, (u32)regnum[aindex], (u32 *)(®values[aindex])); } return result; } u32 lpddr4_readphyindepconfig(const lpddr4_privatedata *pd, u32 regvalues[], u16 regnum[], u16 regcount) { u32 result; u32 aindex; result = lpddr4_readphyindepconfigsf(pd); if ((regvalues == (u32 *)NULL) || (regnum == (u16 *)NULL)) result = EINVAL; if (result == (u32)0) { for (aindex = 0; aindex < regcount; aindex++) result = (u32)lpddr4_readreg(pd, LPDDR4_PHY_INDEP_REGS, (u32)regnum[aindex], (u32 *)(®values[aindex])); } return result; } u32 lpddr4_readphyconfig(const lpddr4_privatedata *pd, u32 regvalues[], u16 regnum[], u16 regcount) { u32 result; u32 aindex; result = lpddr4_readphyconfigsf(pd); if ((regvalues == (u32 *)NULL) || (regnum == (u16 *)NULL)) result = EINVAL; if (result == (u32)0) { for (aindex = 0; aindex < regcount; aindex++) result = (u32)lpddr4_readreg(pd, LPDDR4_PHY_REGS, (u32)regnum[aindex], (u32 *)(®values[aindex])); } return result; } u32 lpddr4_getphyindepinterruptmask(const lpddr4_privatedata *pd, u32 *mask) { u32 result; result = lpddr4_getphyindepinterruptmsf(pd, mask); if (result == (u32)0) { lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase; *mask = CPS_FLD_READ(LPDDR4__PI_INT_MASK__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__PI_INT_MASK__REG))); } return result; } u32 lpddr4_setphyindepinterruptmask(const lpddr4_privatedata *pd, const u32 *mask) { u32 result; u32 regval = 0; const u32 ui32irqcount = (u32)LPDDR4_INTR_PHY_INDEP_DLL_LOCK_STATE_CHANGE_BIT + 1U; result = lpddr4_setphyindepinterruptmsf(pd, mask); if ((result == (u32)0) && (ui32irqcount < WORD_SHIFT)) { if (*mask >= (1U << ui32irqcount)) result = (u32)EINVAL; } if (result == (u32)0) { lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase; regval = CPS_FLD_WRITE(LPDDR4__PI_INT_MASK__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__PI_INT_MASK__REG)), *mask); CPS_REG_WRITE(&(ctlregbase->LPDDR4__PI_INT_MASK__REG), regval); } return result; } u32 lpddr4_checkphyindepinterrupt(const lpddr4_privatedata *pd, lpddr4_intr_phyindepinterrupt intr, bool *irqstatus) { u32 result = 0; u32 phyindepirqstatus = 0; result = LPDDR4_INTR_CheckPhyIndepIntSF(pd, intr, irqstatus); if ((result == (u32)0) && ((u32)intr < WORD_SHIFT)) { lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase; phyindepirqstatus = CPS_REG_READ(&(ctlregbase->LPDDR4__PI_INT_STATUS__REG)); *irqstatus = (bool)(((phyindepirqstatus >> (u32)intr) & LPDDR4_BIT_MASK) > 0U); } return result; } u32 lpddr4_ackphyindepinterrupt(const lpddr4_privatedata *pd, lpddr4_intr_phyindepinterrupt intr) { u32 result = 0U; u32 regval = 0U; result = LPDDR4_INTR_AckPhyIndepIntSF(pd, intr); if ((result == (u32)0) && ((u32)intr < WORD_SHIFT)) { lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase; regval = ((u32)LPDDR4_BIT_MASK << (u32)intr); CPS_REG_WRITE(&(ctlregbase->LPDDR4__PI_INT_ACK__REG), regval); } return result; } static void lpddr4_checkcatrainingerror(lpddr4_ctlregs *ctlregbase, lpddr4_debuginfo *debuginfo, bool *errfoundptr) { u32 regval; u32 errbitmask = 0U; u32 snum; volatile u32 *regaddress; regaddress = (volatile u32 *)(&(ctlregbase->LPDDR4__PHY_ADR_CALVL_OBS1_0__REG)); errbitmask = (CA_TRAIN_RL) | (NIBBLE_MASK); for (snum = 0U; snum < ASLICE_NUM; snum++) { regval = CPS_REG_READ(regaddress); if ((regval & errbitmask) != CA_TRAIN_RL) { debuginfo->catraingerror = CDN_TRUE; *errfoundptr = true; } regaddress = lpddr4_addoffset(regaddress, (u32)SLICE_WIDTH); } } static void lpddr4_checkgatelvlerror(lpddr4_ctlregs *ctlregbase, lpddr4_debuginfo *debuginfo, bool *errfoundptr) { u32 regval; u32 errbitmask = 0U; u32 snum; volatile u32 *regaddress; regaddress = (volatile u32 *)(&(ctlregbase->LPDDR4__PHY_GTLVL_STATUS_OBS_0__REG)); errbitmask = GATE_LVL_ERROR_FIELDS; for (snum = (u32)0U; snum < DSLICE_NUM; snum++) { regval = CPS_REG_READ(regaddress); if ((regval & errbitmask) != 0U) { debuginfo->gatelvlerror = CDN_TRUE; *errfoundptr = true; } regaddress = lpddr4_addoffset(regaddress, (u32)SLICE_WIDTH); } } static void lpddr4_checkreadlvlerror(lpddr4_ctlregs *ctlregbase, lpddr4_debuginfo *debuginfo, bool *errfoundptr) { u32 regval; u32 errbitmask = 0U; u32 snum; volatile u32 *regaddress; regaddress = (volatile u32 *)(&(ctlregbase->LPDDR4__PHY_RDLVL_STATUS_OBS_0__REG)); errbitmask = READ_LVL_ERROR_FIELDS; for (snum = (u32)0U; snum < DSLICE_NUM; snum++) { regval = CPS_REG_READ(regaddress); if ((regval & errbitmask) != 0U) { debuginfo->readlvlerror = CDN_TRUE; *errfoundptr = true; } regaddress = lpddr4_addoffset(regaddress, (u32)SLICE_WIDTH); } } static void lpddr4_checkdqtrainingerror(lpddr4_ctlregs *ctlregbase, lpddr4_debuginfo *debuginfo, bool *errfoundptr) { u32 regval; u32 errbitmask = 0U; u32 snum; volatile u32 *regaddress; regaddress = (volatile u32 *)(&(ctlregbase->LPDDR4__PHY_WDQLVL_STATUS_OBS_0__REG)); errbitmask = DQ_LVL_STATUS; for (snum = (u32)0U; snum < DSLICE_NUM; snum++) { regval = CPS_REG_READ(regaddress); if ((regval & errbitmask) != 0U) { debuginfo->dqtrainingerror = CDN_TRUE; *errfoundptr = true; } regaddress = lpddr4_addoffset(regaddress, (u32)SLICE_WIDTH); } } bool lpddr4_checklvlerrors(const lpddr4_privatedata *pd, lpddr4_debuginfo *debuginfo, bool errfound) { bool localerrfound = errfound; lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase; if (localerrfound == (bool)false) lpddr4_checkcatrainingerror(ctlregbase, debuginfo, &localerrfound); if (localerrfound == (bool)false) lpddr4_checkwrlvlerror(ctlregbase, debuginfo, &localerrfound); if (localerrfound == (bool)false) lpddr4_checkgatelvlerror(ctlregbase, debuginfo, &localerrfound); if (localerrfound == (bool)false) lpddr4_checkreadlvlerror(ctlregbase, debuginfo, &localerrfound); if (localerrfound == (bool)false) lpddr4_checkdqtrainingerror(ctlregbase, debuginfo, &localerrfound); return localerrfound; } static u8 lpddr4_seterror(volatile u32 *reg, u32 errbitmask, u8 *errfoundptr, const u32 errorinfobits) { u32 regval = 0U; regval = CPS_REG_READ(reg); if ((regval & errbitmask) != errorinfobits) *errfoundptr = CDN_TRUE; return *errfoundptr; } void lpddr4_seterrors(lpddr4_ctlregs *ctlregbase, lpddr4_debuginfo *debuginfo, u8 *errfoundptr) { u32 errbitmask = (LPDDR4_BIT_MASK << 0x1U) | (LPDDR4_BIT_MASK); debuginfo->pllerror = lpddr4_seterror(&(ctlregbase->LPDDR4__PHY_PLL_OBS_0__REG), errbitmask, errfoundptr, PLL_READY); if (*errfoundptr == CDN_FALSE) debuginfo->pllerror = lpddr4_seterror(&(ctlregbase->LPDDR4__PHY_PLL_OBS_1__REG), errbitmask, errfoundptr, PLL_READY); if (*errfoundptr == CDN_FALSE) debuginfo->iocaliberror = lpddr4_seterror(&(ctlregbase->LPDDR4__PHY_CAL_RESULT_OBS_0__REG), IO_CALIB_DONE, errfoundptr, IO_CALIB_DONE); if (*errfoundptr == CDN_FALSE) debuginfo->iocaliberror = lpddr4_seterror(&(ctlregbase->LPDDR4__PHY_CAL_RESULT2_OBS_0__REG), IO_CALIB_DONE, errfoundptr, IO_CALIB_DONE); if (*errfoundptr == CDN_FALSE) debuginfo->iocaliberror = lpddr4_seterror(&(ctlregbase->LPDDR4__PHY_CAL_RESULT3_OBS_0__REG), IO_CALIB_FIELD, errfoundptr, IO_CALIB_STATE); } static void lpddr4_setphysnapsettings(lpddr4_ctlregs *ctlregbase, const bool errorfound) { u32 snum = 0U; volatile u32 *regaddress; u32 regval = 0U; if (errorfound == (bool)false) { regaddress = (volatile u32 *)(&(ctlregbase->LPDDR4__SC_PHY_SNAP_OBS_REGS_0__REG)); for (snum = (u32)0U; snum < DSLICE_NUM; snum++) { regval = CPS_FLD_SET(LPDDR4__SC_PHY_SNAP_OBS_REGS_0__FLD, CPS_REG_READ(regaddress)); CPS_REG_WRITE(regaddress, regval); regaddress = lpddr4_addoffset(regaddress, (u32)SLICE_WIDTH); } } } static void lpddr4_setphyadrsnapsettings(lpddr4_ctlregs *ctlregbase, const bool errorfound) { u32 snum = 0U; volatile u32 *regaddress; u32 regval = 0U; if (errorfound == (bool)false) { regaddress = (volatile u32 *)(&(ctlregbase->LPDDR4__SC_PHY_ADR_SNAP_OBS_REGS_0__REG)); for (snum = (u32)0U; snum < ASLICE_NUM; snum++) { regval = CPS_FLD_SET(LPDDR4__SC_PHY_ADR_SNAP_OBS_REGS_0__FLD, CPS_REG_READ(regaddress)); CPS_REG_WRITE(regaddress, regval); regaddress = lpddr4_addoffset(regaddress, (u32)SLICE_WIDTH); } } } void lpddr4_setsettings(lpddr4_ctlregs *ctlregbase, const bool errorfound) { lpddr4_setphysnapsettings(ctlregbase, errorfound); lpddr4_setphyadrsnapsettings(ctlregbase, errorfound); } static void readpdwakeup(const lpddr4_ctlfspnum *fspnum, lpddr4_ctlregs *ctlregbase, u32 *cycles) { if (*fspnum == LPDDR4_FSP_0) *cycles = CPS_FLD_READ(LPDDR4__LPI_PD_WAKEUP_F0__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_PD_WAKEUP_F0__REG))); else if (*fspnum == LPDDR4_FSP_1) *cycles = CPS_FLD_READ(LPDDR4__LPI_PD_WAKEUP_F1__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_PD_WAKEUP_F1__REG))); else *cycles = CPS_FLD_READ(LPDDR4__LPI_PD_WAKEUP_F2__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_PD_WAKEUP_F2__REG))); } static void readsrshortwakeup(const lpddr4_ctlfspnum *fspnum, lpddr4_ctlregs *ctlregbase, u32 *cycles) { if (*fspnum == LPDDR4_FSP_0) *cycles = CPS_FLD_READ(LPDDR4__LPI_SR_SHORT_WAKEUP_F0__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SR_SHORT_WAKEUP_F0__REG))); else if (*fspnum == LPDDR4_FSP_1) *cycles = CPS_FLD_READ(LPDDR4__LPI_SR_SHORT_WAKEUP_F1__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SR_SHORT_WAKEUP_F1__REG))); else *cycles = CPS_FLD_READ(LPDDR4__LPI_SR_SHORT_WAKEUP_F2__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SR_SHORT_WAKEUP_F2__REG))); } static void readsrlongwakeup(const lpddr4_ctlfspnum *fspnum, lpddr4_ctlregs *ctlregbase, u32 *cycles) { if (*fspnum == LPDDR4_FSP_0) *cycles = CPS_FLD_READ(LPDDR4__LPI_SR_LONG_WAKEUP_F0__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SR_LONG_WAKEUP_F0__REG))); else if (*fspnum == LPDDR4_FSP_1) *cycles = CPS_FLD_READ(LPDDR4__LPI_SR_LONG_WAKEUP_F1__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SR_LONG_WAKEUP_F1__REG))); else *cycles = CPS_FLD_READ(LPDDR4__LPI_SR_LONG_WAKEUP_F2__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SR_LONG_WAKEUP_F2__REG))); } static void readsrlonggatewakeup(const lpddr4_ctlfspnum *fspnum, lpddr4_ctlregs *ctlregbase, u32 *cycles) { if (*fspnum == LPDDR4_FSP_0) *cycles = CPS_FLD_READ(LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F0__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F0__REG))); else if (*fspnum == LPDDR4_FSP_1) *cycles = CPS_FLD_READ(LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F1__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F1__REG))); else *cycles = CPS_FLD_READ(LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F2__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F2__REG))); } static void readsrdpshortwakeup(const lpddr4_ctlfspnum *fspnum, lpddr4_ctlregs *ctlregbase, u32 *cycles) { if (*fspnum == LPDDR4_FSP_0) *cycles = CPS_FLD_READ(LPDDR4__LPI_SRPD_SHORT_WAKEUP_F0__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SRPD_SHORT_WAKEUP_F0__REG))); else if (*fspnum == LPDDR4_FSP_1) *cycles = CPS_FLD_READ(LPDDR4__LPI_SRPD_SHORT_WAKEUP_F1__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SRPD_SHORT_WAKEUP_F1__REG))); else *cycles = CPS_FLD_READ(LPDDR4__LPI_SRPD_SHORT_WAKEUP_F2__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SRPD_SHORT_WAKEUP_F2__REG))); } static void readsrdplongwakeup(const lpddr4_ctlfspnum *fspnum, lpddr4_ctlregs *ctlregbase, u32 *cycles) { if (*fspnum == LPDDR4_FSP_0) *cycles = CPS_FLD_READ(LPDDR4__LPI_SRPD_LONG_WAKEUP_F0__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SRPD_LONG_WAKEUP_F0__REG))); else if (*fspnum == LPDDR4_FSP_1) *cycles = CPS_FLD_READ(LPDDR4__LPI_SRPD_LONG_WAKEUP_F1__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SRPD_LONG_WAKEUP_F1__REG))); else *cycles = CPS_FLD_READ(LPDDR4__LPI_SRPD_LONG_WAKEUP_F2__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SRPD_LONG_WAKEUP_F2__REG))); } static void readsrdplonggatewakeup(const lpddr4_ctlfspnum *fspnum, lpddr4_ctlregs *ctlregbase, u32 *cycles) { if (*fspnum == LPDDR4_FSP_0) *cycles = CPS_FLD_READ(LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F0__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F0__REG))); else if (*fspnum == LPDDR4_FSP_1) *cycles = CPS_FLD_READ(LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F1__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F1__REG))); else *cycles = CPS_FLD_READ(LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F2__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F2__REG))); } static void lpddr4_readlpiwakeuptime(lpddr4_ctlregs *ctlregbase, const lpddr4_lpiwakeupparam *lpiwakeupparam, const lpddr4_ctlfspnum *fspnum, u32 *cycles) { if (*lpiwakeupparam == LPDDR4_LPI_PD_WAKEUP_FN) readpdwakeup(fspnum, ctlregbase, cycles); else if (*lpiwakeupparam == LPDDR4_LPI_SR_SHORT_WAKEUP_FN) readsrshortwakeup(fspnum, ctlregbase, cycles); else if (*lpiwakeupparam == LPDDR4_LPI_SR_LONG_WAKEUP_FN) readsrlongwakeup(fspnum, ctlregbase, cycles); else if (*lpiwakeupparam == LPDDR4_LPI_SR_LONG_MCCLK_GATE_WAKEUP_FN) readsrlonggatewakeup(fspnum, ctlregbase, cycles); else if (*lpiwakeupparam == LPDDR4_LPI_SRPD_SHORT_WAKEUP_FN) readsrdpshortwakeup(fspnum, ctlregbase, cycles); else if (*lpiwakeupparam == LPDDR4_LPI_SRPD_LONG_WAKEUP_FN) readsrdplongwakeup(fspnum, ctlregbase, cycles); else readsrdplonggatewakeup(fspnum, ctlregbase, cycles); } u32 lpddr4_getlpiwakeuptime(const lpddr4_privatedata *pd, const lpddr4_lpiwakeupparam *lpiwakeupparam, const lpddr4_ctlfspnum *fspnum, u32 *cycles) { u32 result = 0U; result = lpddr4_getlpiwakeuptimesf(pd, lpiwakeupparam, fspnum, cycles); if (result == (u32)0) { lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase; lpddr4_readlpiwakeuptime(ctlregbase, lpiwakeupparam, fspnum, cycles); } return result; } static void writepdwakeup(const lpddr4_ctlfspnum *fspnum, lpddr4_ctlregs *ctlregbase, const u32 *cycles) { u32 regval = 0U; if (*fspnum == LPDDR4_FSP_0) { regval = CPS_FLD_WRITE(LPDDR4__LPI_PD_WAKEUP_F0__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_PD_WAKEUP_F0__REG)), *cycles); CPS_REG_WRITE(&(ctlregbase->LPDDR4__LPI_PD_WAKEUP_F0__REG), regval); } else if (*fspnum == LPDDR4_FSP_1) { regval = CPS_FLD_WRITE(LPDDR4__LPI_PD_WAKEUP_F1__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_PD_WAKEUP_F1__REG)), *cycles); CPS_REG_WRITE(&(ctlregbase->LPDDR4__LPI_PD_WAKEUP_F1__REG), regval); } else { regval = CPS_FLD_WRITE(LPDDR4__LPI_PD_WAKEUP_F2__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_PD_WAKEUP_F2__REG)), *cycles); CPS_REG_WRITE(&(ctlregbase->LPDDR4__LPI_PD_WAKEUP_F2__REG), regval); } } static void writesrshortwakeup(const lpddr4_ctlfspnum *fspnum, lpddr4_ctlregs *ctlregbase, const u32 *cycles) { u32 regval = 0U; if (*fspnum == LPDDR4_FSP_0) { regval = CPS_FLD_WRITE(LPDDR4__LPI_SR_SHORT_WAKEUP_F0__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SR_SHORT_WAKEUP_F0__REG)), *cycles); CPS_REG_WRITE(&(ctlregbase->LPDDR4__LPI_SR_SHORT_WAKEUP_F0__REG), regval); } else if (*fspnum == LPDDR4_FSP_1) { regval = CPS_FLD_WRITE(LPDDR4__LPI_SR_SHORT_WAKEUP_F1__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SR_SHORT_WAKEUP_F1__REG)), *cycles); CPS_REG_WRITE(&(ctlregbase->LPDDR4__LPI_SR_SHORT_WAKEUP_F1__REG), regval); } else { regval = CPS_FLD_WRITE(LPDDR4__LPI_SR_SHORT_WAKEUP_F2__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SR_SHORT_WAKEUP_F2__REG)), *cycles); CPS_REG_WRITE(&(ctlregbase->LPDDR4__LPI_SR_SHORT_WAKEUP_F2__REG), regval); } } static void writesrlongwakeup(const lpddr4_ctlfspnum *fspnum, lpddr4_ctlregs *ctlregbase, const u32 *cycles) { u32 regval = 0U; if (*fspnum == LPDDR4_FSP_0) { regval = CPS_FLD_WRITE(LPDDR4__LPI_SR_LONG_WAKEUP_F0__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SR_LONG_WAKEUP_F0__REG)), *cycles); CPS_REG_WRITE(&(ctlregbase->LPDDR4__LPI_SR_LONG_WAKEUP_F0__REG), regval); } else if (*fspnum == LPDDR4_FSP_1) { regval = CPS_FLD_WRITE(LPDDR4__LPI_SR_LONG_WAKEUP_F1__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SR_LONG_WAKEUP_F1__REG)), *cycles); CPS_REG_WRITE(&(ctlregbase->LPDDR4__LPI_SR_LONG_WAKEUP_F1__REG), regval); } else { regval = CPS_FLD_WRITE(LPDDR4__LPI_SR_LONG_WAKEUP_F2__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SR_LONG_WAKEUP_F2__REG)), *cycles); CPS_REG_WRITE(&(ctlregbase->LPDDR4__LPI_SR_LONG_WAKEUP_F2__REG), regval); } } static void writesrlonggatewakeup(const lpddr4_ctlfspnum *fspnum, lpddr4_ctlregs *ctlregbase, const u32 *cycles) { u32 regval = 0U; if (*fspnum == LPDDR4_FSP_0) { regval = CPS_FLD_WRITE(LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F0__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F0__REG)), *cycles); CPS_REG_WRITE(&(ctlregbase->LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F0__REG), regval); } else if (*fspnum == LPDDR4_FSP_1) { regval = CPS_FLD_WRITE(LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F1__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F1__REG)), *cycles); CPS_REG_WRITE(&(ctlregbase->LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F1__REG), regval); } else { regval = CPS_FLD_WRITE(LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F2__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F2__REG)), *cycles); CPS_REG_WRITE(&(ctlregbase->LPDDR4__LPI_SR_LONG_MCCLK_GATE_WAKEUP_F2__REG), regval); } } static void writesrdpshortwakeup(const lpddr4_ctlfspnum *fspnum, lpddr4_ctlregs *ctlregbase, const u32 *cycles) { u32 regval = 0U; if (*fspnum == LPDDR4_FSP_0) { regval = CPS_FLD_WRITE(LPDDR4__LPI_SRPD_SHORT_WAKEUP_F0__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SRPD_SHORT_WAKEUP_F0__REG)), *cycles); CPS_REG_WRITE(&(ctlregbase->LPDDR4__LPI_SRPD_SHORT_WAKEUP_F0__REG), regval); } else if (*fspnum == LPDDR4_FSP_1) { regval = CPS_FLD_WRITE(LPDDR4__LPI_SRPD_SHORT_WAKEUP_F1__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SRPD_SHORT_WAKEUP_F1__REG)), *cycles); CPS_REG_WRITE(&(ctlregbase->LPDDR4__LPI_SRPD_SHORT_WAKEUP_F1__REG), regval); } else { regval = CPS_FLD_WRITE(LPDDR4__LPI_SRPD_SHORT_WAKEUP_F2__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SRPD_SHORT_WAKEUP_F2__REG)), *cycles); CPS_REG_WRITE(&(ctlregbase->LPDDR4__LPI_SRPD_SHORT_WAKEUP_F2__REG), regval); } } static void writesrdplongwakeup(const lpddr4_ctlfspnum *fspnum, lpddr4_ctlregs *ctlregbase, const u32 *cycles) { u32 regval = 0U; if (*fspnum == LPDDR4_FSP_0) { regval = CPS_FLD_WRITE(LPDDR4__LPI_SRPD_LONG_WAKEUP_F0__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SRPD_LONG_WAKEUP_F0__REG)), *cycles); CPS_REG_WRITE(&(ctlregbase->LPDDR4__LPI_SRPD_LONG_WAKEUP_F0__REG), regval); } else if (*fspnum == LPDDR4_FSP_1) { regval = CPS_FLD_WRITE(LPDDR4__LPI_SRPD_LONG_WAKEUP_F1__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SRPD_LONG_WAKEUP_F1__REG)), *cycles); CPS_REG_WRITE(&(ctlregbase->LPDDR4__LPI_SRPD_LONG_WAKEUP_F1__REG), regval); } else { regval = CPS_FLD_WRITE(LPDDR4__LPI_SRPD_LONG_WAKEUP_F2__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SRPD_LONG_WAKEUP_F2__REG)), *cycles); CPS_REG_WRITE(&(ctlregbase->LPDDR4__LPI_SRPD_LONG_WAKEUP_F2__REG), regval); } } static void writesrdplonggatewakeup(const lpddr4_ctlfspnum *fspnum, lpddr4_ctlregs *ctlregbase, const u32 *cycles) { u32 regval = 0U; if (*fspnum == LPDDR4_FSP_0) { regval = CPS_FLD_WRITE(LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F0__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F0__REG)), *cycles); CPS_REG_WRITE(&(ctlregbase->LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F0__REG), regval); } else if (*fspnum == LPDDR4_FSP_1) { regval = CPS_FLD_WRITE(LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F1__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F1__REG)), *cycles); CPS_REG_WRITE(&(ctlregbase->LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F1__REG), regval); } else { regval = CPS_FLD_WRITE(LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F2__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F2__REG)), *cycles); CPS_REG_WRITE(&(ctlregbase->LPDDR4__LPI_SRPD_LONG_MCCLK_GATE_WAKEUP_F2__REG), regval); } } static void lpddr4_writelpiwakeuptime(lpddr4_ctlregs *ctlregbase, const lpddr4_lpiwakeupparam *lpiwakeupparam, const lpddr4_ctlfspnum *fspnum, const u32 *cycles) { if (*lpiwakeupparam == LPDDR4_LPI_PD_WAKEUP_FN) writepdwakeup(fspnum, ctlregbase, cycles); else if (*lpiwakeupparam == LPDDR4_LPI_SR_SHORT_WAKEUP_FN) writesrshortwakeup(fspnum, ctlregbase, cycles); else if (*lpiwakeupparam == LPDDR4_LPI_SR_LONG_WAKEUP_FN) writesrlongwakeup(fspnum, ctlregbase, cycles); else if (*lpiwakeupparam == LPDDR4_LPI_SR_LONG_MCCLK_GATE_WAKEUP_FN) writesrlonggatewakeup(fspnum, ctlregbase, cycles); else if (*lpiwakeupparam == LPDDR4_LPI_SRPD_SHORT_WAKEUP_FN) writesrdpshortwakeup(fspnum, ctlregbase, cycles); else if (*lpiwakeupparam == LPDDR4_LPI_SRPD_LONG_WAKEUP_FN) writesrdplongwakeup(fspnum, ctlregbase, cycles); else writesrdplonggatewakeup(fspnum, ctlregbase, cycles); } u32 lpddr4_setlpiwakeuptime(const lpddr4_privatedata *pd, const lpddr4_lpiwakeupparam *lpiwakeupparam, const lpddr4_ctlfspnum *fspnum, const u32 *cycles) { u32 result = 0U; result = lpddr4_setlpiwakeuptimesf(pd, lpiwakeupparam, fspnum, cycles); if (result == (u32)0) { if (*cycles > NIBBLE_MASK) result = (u32)EINVAL; } if (result == (u32)0) { lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase; lpddr4_writelpiwakeuptime(ctlregbase, lpiwakeupparam, fspnum, cycles); } return result; } u32 lpddr4_getdbireadmode(const lpddr4_privatedata *pd, bool *on_off) { u32 result = 0U; result = lpddr4_getdbireadmodesf(pd, on_off); if (result == (u32)0) { lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase; if (CPS_FLD_READ(LPDDR4__RD_DBI_EN__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__RD_DBI_EN__REG))) == 0U) *on_off = false; else *on_off = true; } return result; } u32 lpddr4_getdbiwritemode(const lpddr4_privatedata *pd, bool *on_off) { u32 result = 0U; result = lpddr4_getdbireadmodesf(pd, on_off); if (result == (u32)0) { lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase; if (CPS_FLD_READ(LPDDR4__WR_DBI_EN__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__WR_DBI_EN__REG))) == 0U) *on_off = false; else *on_off = true; } return result; } u32 lpddr4_setdbimode(const lpddr4_privatedata *pd, const lpddr4_dbimode *mode) { u32 result = 0U; u32 regval = 0U; result = lpddr4_setdbimodesf(pd, mode); if (result == (u32)0) { lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase; if (*mode == LPDDR4_DBI_RD_ON) regval = CPS_FLD_WRITE(LPDDR4__RD_DBI_EN__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__RD_DBI_EN__REG)), 1U); else if (*mode == LPDDR4_DBI_RD_OFF) regval = CPS_FLD_WRITE(LPDDR4__RD_DBI_EN__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__RD_DBI_EN__REG)), 0U); else if (*mode == LPDDR4_DBI_WR_ON) regval = CPS_FLD_WRITE(LPDDR4__WR_DBI_EN__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__WR_DBI_EN__REG)), 1U); else regval = CPS_FLD_WRITE(LPDDR4__WR_DBI_EN__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__WR_DBI_EN__REG)), 0U); CPS_REG_WRITE(&(ctlregbase->LPDDR4__RD_DBI_EN__REG), regval); } return result; } u32 lpddr4_getrefreshrate(const lpddr4_privatedata *pd, const lpddr4_ctlfspnum *fspnum, u32 *tref, u32 *tras_max) { u32 result = 0U; result = lpddr4_getrefreshratesf(pd, fspnum, tref, tras_max); if (result == (u32)0) { lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase; switch (*fspnum) { case LPDDR4_FSP_2: *tref = CPS_FLD_READ(LPDDR4__TREF_F2__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__TREF_F2__REG))); *tras_max = CPS_FLD_READ(LPDDR4__TRAS_MAX_F2__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__TRAS_MAX_F2__REG))); break; case LPDDR4_FSP_1: *tref = CPS_FLD_READ(LPDDR4__TREF_F1__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__TREF_F1__REG))); *tras_max = CPS_FLD_READ(LPDDR4__TRAS_MAX_F1__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__TRAS_MAX_F1__REG))); break; default: *tref = CPS_FLD_READ(LPDDR4__TREF_F0__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__TREF_F0__REG))); *tras_max = CPS_FLD_READ(LPDDR4__TRAS_MAX_F0__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__TRAS_MAX_F0__REG))); break; } } return result; } static void lpddr4_updatefsp2refrateparams(const lpddr4_privatedata *pd, const u32 *tref, const u32 *tras_max) { u32 regval = 0U; lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase; regval = CPS_FLD_WRITE(LPDDR4__TREF_F2__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__TREF_F2__REG)), *tref); CPS_REG_WRITE(&(ctlregbase->LPDDR4__TREF_F2__REG), regval); regval = CPS_FLD_WRITE(LPDDR4__TRAS_MAX_F2__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__TRAS_MAX_F2__REG)), *tras_max); CPS_REG_WRITE(&(ctlregbase->LPDDR4__TRAS_MAX_F2__REG), regval); } static void lpddr4_updatefsp1refrateparams(const lpddr4_privatedata *pd, const u32 *tref, const u32 *tras_max) { u32 regval = 0U; lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase; regval = CPS_FLD_WRITE(LPDDR4__TREF_F1__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__TREF_F1__REG)), *tref); CPS_REG_WRITE(&(ctlregbase->LPDDR4__TREF_F1__REG), regval); regval = CPS_FLD_WRITE(LPDDR4__TRAS_MAX_F1__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__TRAS_MAX_F1__REG)), *tras_max); CPS_REG_WRITE(&(ctlregbase->LPDDR4__TRAS_MAX_F1__REG), regval);; } static void lpddr4_updatefsp0refrateparams(const lpddr4_privatedata *pd, const u32 *tref, const u32 *tras_max) { u32 regval = 0U; lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase; regval = CPS_FLD_WRITE(LPDDR4__TREF_F0__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__TREF_F0__REG)), *tref); CPS_REG_WRITE(&(ctlregbase->LPDDR4__TREF_F0__REG), regval); regval = CPS_FLD_WRITE(LPDDR4__TRAS_MAX_F0__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__TRAS_MAX_F0__REG)), *tras_max); CPS_REG_WRITE(&(ctlregbase->LPDDR4__TRAS_MAX_F0__REG), regval); } u32 lpddr4_setrefreshrate(const lpddr4_privatedata *pd, const lpddr4_ctlfspnum *fspnum, const u32 *tref, const u32 *tras_max) { u32 result = 0U; result = lpddr4_setrefreshratesf(pd, fspnum, tref, tras_max); if (result == (u32)0) { switch (*fspnum) { case LPDDR4_FSP_2: lpddr4_updatefsp2refrateparams(pd, tref, tras_max); break; case LPDDR4_FSP_1: lpddr4_updatefsp1refrateparams(pd, tref, tras_max); break; default: lpddr4_updatefsp0refrateparams(pd, tref, tras_max); break; } } return result; } u32 lpddr4_refreshperchipselect(const lpddr4_privatedata *pd, const u32 trefinterval) { u32 result = 0U; u32 regval = 0U; result = lpddr4_refreshperchipselectsf(pd); if (result == (u32)0) { lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase; regval = CPS_FLD_WRITE(LPDDR4__TREF_INTERVAL__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__TREF_INTERVAL__REG)), trefinterval); CPS_REG_WRITE(&(ctlregbase->LPDDR4__TREF_INTERVAL__REG), regval); } return result; }