// SPDX-License-Identifier: BSD-2-Clause /* * Cadence DDR Controller * * Copyright (C) 2015 Renesas Electronics Europe Ltd */ /* * The Cadence DDR Controller has a huge number of registers that principally * cover two aspects, DDR specific timing information and AXI bus interfacing. * Cadence's TCL script generates all of the register values for specific * DDR devices operating at a specific frequency. The TCL script uses Denali * SOMA files as inputs. The tool also generates the AXI bus register values as * well, however this driver assumes that users will want to modifiy these to * meet a specific application's needs. * Therefore, this driver is passed two arrays containing register values for * the DDR device specific information, and explicity sets the AXI registers. * * AXI bus interfacing: * The controller has four AXI slaves connections, and each of these can be * programmed to accept requests from specific AXI masters (using their IDs). * The regions of DDR that can be accessed by each AXI slave can be set such * as to isolate DDR used by one AXI master from another. Further, the maximum * bandwidth allocated to each AXI slave can be set. */ #include #include #include #include #include #include /* avoid warning for real pr_debug in */ #ifdef pr_debug #undef pr_debug #endif #ifdef DEBUG #define pr_debug(fmt, args...) printf(fmt, ##args) #define pr_debug2(fmt, args...) printf(fmt, ##args) #else #define pr_debug(fmt, args...) #define pr_debug2(fmt, args...) #endif #define DDR_NR_AXI_PORTS 4 #define DDR_NR_ENTRIES 16 #define DDR_START_REG (0) /* DENALI_CTL_00 */ #define DDR_CS0_MR1_REG (32 * 4) /* DENALI_CTL_32 */ #define DDR_CS0_MR2_REG (32 * 4 + 2) /* DENALI_CTL_32 */ #define DDR_CS1_MR1_REG (34 * 4 + 2) /* DENALI_CTL_34 */ #define DDR_CS1_MR2_REG (35 * 4) /* DENALI_CTL_35 */ #define DDR_ECC_ENABLE_REG (36 * 4 + 2) /* DENALI_CTL_36 */ #define DDR_ECC_DISABLE_W_UC_ERR_REG (37 * 4 + 2) /* DENALI_CTL_37 */ #define DDR_HALF_DATAPATH_REG (54 * 4) /* DENALI_CTL_54 */ #define DDR_INTERRUPT_STATUS (56 * 4) /* DENALI_CTL_56 */ #define DDR_INTERRUPT_ACK (57 * 4) /* DENALI_CTL_57 */ #define DDR_INTERRUPT_MASK (58 * 4) /* DENALI_CTL_58 */ #define DDR_CS0_ODT_MAP_REG (62 * 4 + 2) /* DENALI_CTL_62 */ #define DDR_CS1_ODT_MAP_REG (63 * 4) /* DENALI_CTL_63 */ #define DDR_ODT_TODTL_2CMD (63 * 4 + 2) /* DENALI_CTL_63 */ #define DDR_ODT_TODTH_WR (63 * 4 + 3) /* DENALI_CTL_63 */ #define DDR_ODT_TODTH_RD (64 * 4 + 0) /* DENALI_CTL_64 */ #define DDR_ODT_EN (64 * 4 + 1) /* DENALI_CTL_64 */ #define DDR_ODT_WR_TO_ODTH (64 * 4 + 2) /* DENALI_CTL_64 */ #define DDR_ODT_RD_TO_ODTH (64 * 4 + 3) /* DENALI_CTL_64 */ #define DDR_DIFF_CS_DELAY_REG (66 * 4) /* DENALI_CTL_66 */ #define DDR_SAME_CS_DELAY_REG (67 * 4) /* DENALI_CTL_67 */ #define DDR_RW_PRIORITY_REGS (87 * 4 + 2) /* DENALI_CTL_87 */ #define DDR_RW_FIFO_TYPE_REGS (88 * 4) /* DENALI_CTL_88 */ #define DDR_AXI_PORT_PROT_ENABLE_REG (90 * 4 + 3) /* DENALI_CTL_90 */ #define DDR_ADDR_RANGE_REGS (91 * 4) /* DENALI_CTL_91 */ #define DDR_RANGE_PROT_REGS (218 * 4 + 2) /* DENALI_CTL_218 */ #define DDR_ARB_CMD_Q_THRESHOLD_REG (346 * 4 + 2) /* DENALI_CTL_346 */ #define DDR_AXI_PORT_BANDWIDTH_REG (346 * 4 + 3) /* DENALI_CTL_346 */ #define DDR_OPT_RMODW_REG (372 * 4 + 3) /* DENALI_CTL_372 */ static void ddrc_writeb(u8 val, void *p) { pr_debug2("DDR: %p = 0x%02x\n", p, val); writeb(val, p); } static void ddrc_writew(u16 val, void *p) { pr_debug2("DDR: %p = 0x%04x\n", p, val); writew(val, p); } static void ddrc_writel(u32 val, void *p) { pr_debug2("DDR: %p = 0x%08x\n", p, val); writel(val, p); } void cdns_ddr_set_mr1(void *base, int cs, u16 odt_impedance, u16 drive_strength) { void *reg; u16 tmp; if (cs == 0) reg = (u8 *)base + DDR_CS0_MR1_REG; else reg = (u8 *)base + DDR_CS1_MR1_REG; tmp = readw(reg); tmp &= ~MODE_REGISTER_MASK; tmp |= MODE_REGISTER_MR1; tmp &= ~MR1_ODT_IMPEDANCE_MASK; tmp |= odt_impedance; tmp &= ~MR1_DRIVE_STRENGTH_MASK; tmp |= drive_strength; writew(tmp, reg); } void cdns_ddr_set_mr2(void *base, int cs, u16 dynamic_odt, u16 self_refresh_temp) { void *reg; u16 tmp; if (cs == 0) reg = (u8 *)base + DDR_CS0_MR2_REG; else reg = (u8 *)base + DDR_CS1_MR2_REG; tmp = readw(reg); tmp &= ~MODE_REGISTER_MASK; tmp |= MODE_REGISTER_MR2; tmp &= ~MR2_DYNAMIC_ODT_MASK; tmp |= dynamic_odt; tmp &= ~MR2_SELF_REFRESH_TEMP_MASK; tmp |= self_refresh_temp; writew(tmp, reg); } void cdns_ddr_set_odt_map(void *base, int cs, u16 odt_map) { void *reg; if (cs == 0) reg = (u8 *)base + DDR_CS0_ODT_MAP_REG; else reg = (u8 *)base + DDR_CS1_ODT_MAP_REG; writew(odt_map, reg); } void cdns_ddr_set_odt_times(void *base, u8 TODTL_2CMD, u8 TODTH_WR, u8 TODTH_RD, u8 WR_TO_ODTH, u8 RD_TO_ODTH) { writeb(TODTL_2CMD, (u8 *)base + DDR_ODT_TODTL_2CMD); writeb(TODTH_WR, (u8 *)base + DDR_ODT_TODTH_WR); writeb(TODTH_RD, (u8 *)base + DDR_ODT_TODTH_RD); writeb(1, (u8 *)base + DDR_ODT_EN); writeb(WR_TO_ODTH, (u8 *)base + DDR_ODT_WR_TO_ODTH); writeb(RD_TO_ODTH, (u8 *)base + DDR_ODT_RD_TO_ODTH); } void cdns_ddr_set_same_cs_delays(void *base, u8 r2r, u8 r2w, u8 w2r, u8 w2w) { u32 val = (w2w << 24) | (w2r << 16) | (r2w << 8) | r2r; writel(val, (u8 *)base + DDR_SAME_CS_DELAY_REG); } void cdns_ddr_set_diff_cs_delays(void *base, u8 r2r, u8 r2w, u8 w2r, u8 w2w) { u32 val = (w2w << 24) | (w2r << 16) | (r2w << 8) | r2r; writel(val, (u8 *)base + DDR_DIFF_CS_DELAY_REG); } void cdns_ddr_set_port_rw_priority(void *base, int port, u8 read_pri, u8 write_pri) { u8 *reg8 = (u8 *)base + DDR_RW_PRIORITY_REGS; reg8 += (port * 3); pr_debug("%s port %d (reg8=%p, DENALI_CTL_%d)\n", __func__, port, reg8, (reg8 - (u8 *)base) / 4); ddrc_writeb(read_pri, reg8++); ddrc_writeb(write_pri, reg8++); } /* The DDR Controller has 16 entries. Each entry can specify an allowed address * range (with 16KB resolution) for one of the 4 AXI slave ports. */ void cdns_ddr_enable_port_addr_range(void *base, int port, int entry, u32 addr_start, u32 size) { u32 addr_end; u32 *reg32 = (u32 *)((u8 *)base + DDR_ADDR_RANGE_REGS); u32 tmp; reg32 += (port * DDR_NR_ENTRIES * 2); reg32 += (entry * 2); pr_debug("%s port %d, entry %d (reg32=%p, DENALI_CTL_%d)\n", __func__, port, entry, reg32, ((u8 *)reg32 - (u8 *)base) / 4); /* These registers represent 16KB address blocks */ addr_start /= SZ_16K; size /= SZ_16K; if (size) addr_end = addr_start + size - 1; else addr_end = addr_start; ddrc_writel(addr_start, reg32++); /* * end_addr: Ensure we only set the bottom 18-bits as DENALI_CTL_218 * also contains the AXI0 range protection bits. */ tmp = readl(reg32); tmp &= ~(BIT(18) - 1); tmp |= addr_end; ddrc_writel(tmp, reg32); } void cdns_ddr_enable_addr_range(void *base, int entry, u32 addr_start, u32 size) { int axi; for (axi = 0; axi < DDR_NR_AXI_PORTS; axi++) cdns_ddr_enable_port_addr_range(base, axi, entry, addr_start, size); } void cdns_ddr_enable_port_prot(void *base, int port, int entry, enum cdns_ddr_range_prot range_protection_bits, u16 range_RID_check_bits, u16 range_WID_check_bits, u8 range_RID_check_bits_ID_lookup, u8 range_WID_check_bits_ID_lookup) { /* * Technically, the offset here points to the byte before the start of * the range protection registers. However, all entries consist of 8 * bytes, except the first one (which is missing a padding byte) so we * work around that subtlely. */ u8 *reg8 = (u8 *)base + DDR_RANGE_PROT_REGS; reg8 += (port * DDR_NR_ENTRIES * 8); reg8 += (entry * 8); pr_debug("%s port %d, entry %d (reg8=%p, DENALI_CTL_%d)\n", __func__, port, entry, reg8, (reg8 - (u8 *)base) / 4); if (port == 0 && entry == 0) ddrc_writeb(range_protection_bits, reg8 + 1); else ddrc_writeb(range_protection_bits, reg8); ddrc_writew(range_RID_check_bits, reg8 + 2); ddrc_writew(range_WID_check_bits, reg8 + 4); ddrc_writeb(range_RID_check_bits_ID_lookup, reg8 + 6); ddrc_writeb(range_WID_check_bits_ID_lookup, reg8 + 7); } void cdns_ddr_enable_prot(void *base, int entry, enum cdns_ddr_range_prot range_protection_bits, u16 range_RID_check_bits, u16 range_WID_check_bits, u8 range_RID_check_bits_ID_lookup, u8 range_WID_check_bits_ID_lookup) { int axi; for (axi = 0; axi < DDR_NR_AXI_PORTS; axi++) cdns_ddr_enable_port_prot(base, axi, entry, range_protection_bits, range_RID_check_bits, range_WID_check_bits, range_RID_check_bits_ID_lookup, range_WID_check_bits_ID_lookup); } void cdns_ddr_set_port_bandwidth(void *base, int port, u8 max_percent, u8 overflow_ok) { u8 *reg8 = (u8 *)base + DDR_AXI_PORT_BANDWIDTH_REG; reg8 += (port * 3); pr_debug("%s port %d, (reg8=%p, DENALI_CTL_%d)\n", __func__, port, reg8, (reg8 - (u8 *)base) / 4); ddrc_writeb(max_percent, reg8++); /* Maximum bandwidth percentage */ ddrc_writeb(overflow_ok, reg8++); /* Bandwidth overflow allowed */ } void cdns_ddr_ctrl_init(void *ddr_ctrl_basex, int async, const u32 *reg0, const u32 *reg350, u32 ddr_start_addr, u32 ddr_size, int enable_ecc, int enable_8bit) { int i, axi, entry; u32 *ddr_ctrl_base = (u32 *)ddr_ctrl_basex; u8 *base8 = (u8 *)ddr_ctrl_basex; ddrc_writel(*reg0, ddr_ctrl_base + 0); /* 1 to 6 are read only */ for (i = 7; i <= 26; i++) ddrc_writel(*(reg0 + i), ddr_ctrl_base + i); /* 27 to 29 are not changed */ for (i = 30; i <= 87; i++) ddrc_writel(*(reg0 + i), ddr_ctrl_base + i); /* Enable/disable ECC */ if (enable_ecc) { pr_debug("%s enabling ECC\n", __func__); ddrc_writeb(1, base8 + DDR_ECC_ENABLE_REG); } else { ddrc_writeb(0, base8 + DDR_ECC_ENABLE_REG); } /* ECC: Disable corruption for read/modify/write operations */ ddrc_writeb(1, base8 + DDR_ECC_DISABLE_W_UC_ERR_REG); /* Set 8/16-bit data width using reduce bit (enable half datapath)*/ if (enable_8bit) { pr_debug("%s using 8-bit data\n", __func__); ddrc_writeb(1, base8 + DDR_HALF_DATAPATH_REG); } else { ddrc_writeb(0, base8 + DDR_HALF_DATAPATH_REG); } /* Threshold for command queue */ ddrc_writeb(4, base8 + DDR_ARB_CMD_Q_THRESHOLD_REG); /* AXI port protection => enable */ ddrc_writeb(0x01, base8 + DDR_AXI_PORT_PROT_ENABLE_REG); /* Set port interface type, default port priority and bandwidths */ for (axi = 0; axi < DDR_NR_AXI_PORTS; axi++) { /* port interface type: synchronous or asynchronous AXI clock */ u8 *fifo_reg = base8 + DDR_RW_FIFO_TYPE_REGS + (axi * 3); if (async) ddrc_writeb(0, fifo_reg); else ddrc_writeb(3, fifo_reg); /* R/W priorities */ cdns_ddr_set_port_rw_priority(ddr_ctrl_base, axi, 2, 2); /* AXI bandwidth */ cdns_ddr_set_port_bandwidth(ddr_ctrl_base, axi, 50, 1); } /* * The hardware requires that the valid address ranges must not overlap. * So, we initialise all address ranges to be above the DDR, length 0. */ for (entry = 0; entry < DDR_NR_ENTRIES; entry++) cdns_ddr_enable_addr_range(ddr_ctrl_base, entry, ddr_start_addr + ddr_size, 0); for (i = 350; i <= 374; i++) ddrc_writel(*(reg350 - 350 + i), ddr_ctrl_base + i); /* Disable optimised read-modify-write logic */ ddrc_writeb(0, base8 + DDR_OPT_RMODW_REG); /* * Disable all interrupts, we are not handling them. * For detail of the interrupt mask, ack and status bits, see the * manual's description of the 'int_status' parameter. */ ddrc_writel(0, base8 + DDR_INTERRUPT_MASK); /* * Default settings to enable full access to the entire DDR. * Users can set different ranges and access rights by calling these * functions before calling cdns_ddr_ctrl_start(). */ cdns_ddr_enable_addr_range(ddr_ctrl_base, 0, ddr_start_addr, ddr_size); cdns_ddr_enable_prot(ddr_ctrl_base, 0, CDNS_DDR_RANGE_PROT_BITS_FULL, 0xffff, 0xffff, 0x0f, 0x0f); } void cdns_ddr_ctrl_start(void *ddr_ctrl_basex) { u32 *ddr_ctrl_base = (u32 *)ddr_ctrl_basex; u8 *base8 = (u8 *)ddr_ctrl_basex; /* Start */ ddrc_writeb(1, base8 + DDR_START_REG); /* Wait for controller to be ready (interrupt status) */ wait_for_bit_le32(base8 + DDR_INTERRUPT_STATUS, 0x100, true, 1000, false); /* clear all interrupts */ ddrc_writel(~0, base8 + DDR_INTERRUPT_ACK); /* Step 19 Wait 500us from MRESETB=1 */ udelay(500); /* Step 20 tCKSRX wait (From supply stable clock for MCK) */ /* DENALI_CTL_19 TREF_ENABLE=0x1(=1), AREFRESH=0x1(=1) */ ddrc_writel(0x01000100, ddr_ctrl_base + 19); }