// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2020-2021 Broadcom * */ #include #include #include #include #include #include #include #include #include #include #define EP_PERST_SOURCE_SELECT_SHIFT 2 #define EP_PERST_SOURCE_SELECT BIT(EP_PERST_SOURCE_SELECT_SHIFT) #define EP_MODE_SURVIVE_PERST_SHIFT 1 #define EP_MODE_SURVIVE_PERST BIT(EP_MODE_SURVIVE_PERST_SHIFT) #define RC_PCIE_RST_OUTPUT_SHIFT 0 #define RC_PCIE_RST_OUTPUT BIT(RC_PCIE_RST_OUTPUT_SHIFT) #define CFG_IND_ADDR_MASK 0x00001ffc #define CFG_ADDR_CFG_ECAM_MASK 0xfffffffc #define CFG_ADDR_CFG_TYPE_MASK 0x00000003 #define IPROC_PCI_PM_CAP 0x48 #define IPROC_PCI_PM_CAP_MASK 0xffff #define IPROC_PCI_EXP_CAP 0xac #define IPROC_PCIE_REG_INVALID 0xffff #define PCI_EXP_TYPE_ROOT_PORT 0x4 /* Root Port */ #define PCI_EXP_RTCTL 28 /* Root Control */ /* CRS Software Visibility capability */ #define PCI_EXP_RTCAP_CRSVIS 0x0001 #define PCI_EXP_LNKSTA 18 /* Link Status */ #define PCI_EXP_LNKSTA_NLW 0x03f0 /* Negotiated Link Width */ #define PCIE_PHYLINKUP_SHIFT 3 #define PCIE_PHYLINKUP BIT(PCIE_PHYLINKUP_SHIFT) #define PCIE_DL_ACTIVE_SHIFT 2 #define PCIE_DL_ACTIVE BIT(PCIE_DL_ACTIVE_SHIFT) /* derive the enum index of the outbound/inbound mapping registers */ #define MAP_REG(base_reg, index) ((base_reg) + (index) * 2) /* * Maximum number of outbound mapping window sizes that can be supported by any * OARR/OMAP mapping pair */ #define MAX_NUM_OB_WINDOW_SIZES 4 #define OARR_VALID_SHIFT 0 #define OARR_VALID BIT(OARR_VALID_SHIFT) #define OARR_SIZE_CFG_SHIFT 1 /* * Maximum number of inbound mapping region sizes that can be supported by an * IARR */ #define MAX_NUM_IB_REGION_SIZES 9 #define IMAP_VALID_SHIFT 0 #define IMAP_VALID BIT(IMAP_VALID_SHIFT) #define APB_ERR_EN_SHIFT 0 #define APB_ERR_EN BIT(APB_ERR_EN_SHIFT) /** * iProc PCIe host registers */ enum iproc_pcie_reg { /* clock/reset signal control */ IPROC_PCIE_CLK_CTRL = 0, /* * To allow MSI to be steered to an external MSI controller (e.g., ARM * GICv3 ITS) */ IPROC_PCIE_MSI_GIC_MODE, /* * IPROC_PCIE_MSI_BASE_ADDR and IPROC_PCIE_MSI_WINDOW_SIZE define the * window where the MSI posted writes are written, for the writes to be * interpreted as MSI writes. */ IPROC_PCIE_MSI_BASE_ADDR, IPROC_PCIE_MSI_WINDOW_SIZE, /* * To hold the address of the register where the MSI writes are * programed. When ARM GICv3 ITS is used, this should be programmed * with the address of the GITS_TRANSLATER register. */ IPROC_PCIE_MSI_ADDR_LO, IPROC_PCIE_MSI_ADDR_HI, /* enable MSI */ IPROC_PCIE_MSI_EN_CFG, /* allow access to root complex configuration space */ IPROC_PCIE_CFG_IND_ADDR, IPROC_PCIE_CFG_IND_DATA, /* allow access to device configuration space */ IPROC_PCIE_CFG_ADDR, IPROC_PCIE_CFG_DATA, /* enable INTx */ IPROC_PCIE_INTX_EN, IPROC_PCIE_INTX_CSR, /* outbound address mapping */ IPROC_PCIE_OARR0, IPROC_PCIE_OMAP0, IPROC_PCIE_OARR1, IPROC_PCIE_OMAP1, IPROC_PCIE_OARR2, IPROC_PCIE_OMAP2, IPROC_PCIE_OARR3, IPROC_PCIE_OMAP3, /* inbound address mapping */ IPROC_PCIE_IARR0, IPROC_PCIE_IMAP0, IPROC_PCIE_IARR1, IPROC_PCIE_IMAP1, IPROC_PCIE_IARR2, IPROC_PCIE_IMAP2, IPROC_PCIE_IARR3, IPROC_PCIE_IMAP3, IPROC_PCIE_IARR4, IPROC_PCIE_IMAP4, /* config read status */ IPROC_PCIE_CFG_RD_STATUS, /* link status */ IPROC_PCIE_LINK_STATUS, /* enable APB error for unsupported requests */ IPROC_PCIE_APB_ERR_EN, /* Ordering Mode configuration registers */ IPROC_PCIE_ORDERING_CFG, IPROC_PCIE_IMAP0_RO_CONTROL, IPROC_PCIE_IMAP1_RO_CONTROL, IPROC_PCIE_IMAP2_RO_CONTROL, IPROC_PCIE_IMAP3_RO_CONTROL, IPROC_PCIE_IMAP4_RO_CONTROL, /* total number of core registers */ IPROC_PCIE_MAX_NUM_REG, }; /* iProc PCIe PAXB v2 registers */ static const u16 iproc_pcie_reg_paxb_v2[] = { [IPROC_PCIE_CLK_CTRL] = 0x000, [IPROC_PCIE_CFG_IND_ADDR] = 0x120, [IPROC_PCIE_CFG_IND_DATA] = 0x124, [IPROC_PCIE_CFG_ADDR] = 0x1f8, [IPROC_PCIE_CFG_DATA] = 0x1fc, [IPROC_PCIE_INTX_EN] = 0x330, [IPROC_PCIE_INTX_CSR] = 0x334, [IPROC_PCIE_OARR0] = 0xd20, [IPROC_PCIE_OMAP0] = 0xd40, [IPROC_PCIE_OARR1] = 0xd28, [IPROC_PCIE_OMAP1] = 0xd48, [IPROC_PCIE_OARR2] = 0xd60, [IPROC_PCIE_OMAP2] = 0xd68, [IPROC_PCIE_OARR3] = 0xdf0, [IPROC_PCIE_OMAP3] = 0xdf8, [IPROC_PCIE_IARR0] = 0xd00, [IPROC_PCIE_IMAP0] = 0xc00, [IPROC_PCIE_IARR2] = 0xd10, [IPROC_PCIE_IMAP2] = 0xcc0, [IPROC_PCIE_IARR3] = 0xe00, [IPROC_PCIE_IMAP3] = 0xe08, [IPROC_PCIE_IARR4] = 0xe68, [IPROC_PCIE_IMAP4] = 0xe70, [IPROC_PCIE_CFG_RD_STATUS] = 0xee0, [IPROC_PCIE_LINK_STATUS] = 0xf0c, [IPROC_PCIE_APB_ERR_EN] = 0xf40, [IPROC_PCIE_ORDERING_CFG] = 0x2000, [IPROC_PCIE_IMAP0_RO_CONTROL] = 0x201c, [IPROC_PCIE_IMAP1_RO_CONTROL] = 0x2020, [IPROC_PCIE_IMAP2_RO_CONTROL] = 0x2024, [IPROC_PCIE_IMAP3_RO_CONTROL] = 0x2028, [IPROC_PCIE_IMAP4_RO_CONTROL] = 0x202c, }; /* iProc PCIe PAXC v2 registers */ static const u16 iproc_pcie_reg_paxc_v2[] = { [IPROC_PCIE_MSI_GIC_MODE] = 0x050, [IPROC_PCIE_MSI_BASE_ADDR] = 0x074, [IPROC_PCIE_MSI_WINDOW_SIZE] = 0x078, [IPROC_PCIE_MSI_ADDR_LO] = 0x07c, [IPROC_PCIE_MSI_ADDR_HI] = 0x080, [IPROC_PCIE_MSI_EN_CFG] = 0x09c, [IPROC_PCIE_CFG_IND_ADDR] = 0x1f0, [IPROC_PCIE_CFG_IND_DATA] = 0x1f4, [IPROC_PCIE_CFG_ADDR] = 0x1f8, [IPROC_PCIE_CFG_DATA] = 0x1fc, }; /** * List of device IDs of controllers that have corrupted * capability list that require SW fixup */ static const u16 iproc_pcie_corrupt_cap_did[] = { 0x16cd, 0x16f0, 0xd802, 0xd804 }; enum iproc_pcie_type { IPROC_PCIE_PAXB_V2, IPROC_PCIE_PAXC, IPROC_PCIE_PAXC_V2, }; /** * struct iproc_pcie_ob - iProc PCIe outbound mapping * * @axi_offset: offset from the AXI address to the internal address used by * the iProc PCIe core * @nr_windows: total number of supported outbound mapping windows */ struct iproc_pcie_ob { resource_size_t axi_offset; unsigned int nr_windows; }; /** * struct iproc_pcie_ib - iProc PCIe inbound mapping * * @nr_regions: total number of supported inbound mapping regions */ struct iproc_pcie_ib { unsigned int nr_regions; }; /** * struct iproc_pcie_ob_map - outbound mapping controller specific parameters * * @window_sizes: list of supported outbound mapping window sizes in MB * @nr_sizes: number of supported outbound mapping window sizes */ struct iproc_pcie_ob_map { resource_size_t window_sizes[MAX_NUM_OB_WINDOW_SIZES]; unsigned int nr_sizes; }; static const struct iproc_pcie_ob_map paxb_v2_ob_map[] = { { /* OARR0/OMAP0 */ .window_sizes = { 128, 256 }, .nr_sizes = 2, }, { /* OARR1/OMAP1 */ .window_sizes = { 128, 256 }, .nr_sizes = 2, }, { /* OARR2/OMAP2 */ .window_sizes = { 128, 256, 512, 1024 }, .nr_sizes = 4, }, { /* OARR3/OMAP3 */ .window_sizes = { 128, 256, 512, 1024 }, .nr_sizes = 4, }, }; /** * iProc PCIe inbound mapping type */ enum iproc_pcie_ib_map_type { /* for DDR memory */ IPROC_PCIE_IB_MAP_MEM = 0, /* for device I/O memory */ IPROC_PCIE_IB_MAP_IO, /* invalid or unused */ IPROC_PCIE_IB_MAP_INVALID }; /** * struct iproc_pcie_ib_map - inbound mapping controller specific parameters * * @type: inbound mapping region type * @size_unit: inbound mapping region size unit, could be SZ_1K, SZ_1M, or SZ_1G * @region_sizes: list of supported inbound mapping region sizes in KB, MB, or * GB, depedning on the size unit * @nr_sizes: number of supported inbound mapping region sizes * @nr_windows: number of supported inbound mapping windows for the region * @imap_addr_offset: register offset between the upper and lower 32-bit * IMAP address registers * @imap_window_offset: register offset between each IMAP window */ struct iproc_pcie_ib_map { enum iproc_pcie_ib_map_type type; unsigned int size_unit; resource_size_t region_sizes[MAX_NUM_IB_REGION_SIZES]; unsigned int nr_sizes; unsigned int nr_windows; u16 imap_addr_offset; u16 imap_window_offset; }; static const struct iproc_pcie_ib_map paxb_v2_ib_map[] = { { /* IARR0/IMAP0 */ .type = IPROC_PCIE_IB_MAP_IO, .size_unit = SZ_1K, .region_sizes = { 32 }, .nr_sizes = 1, .nr_windows = 8, .imap_addr_offset = 0x40, .imap_window_offset = 0x4, }, { /* IARR1/IMAP1 (currently unused) */ .type = IPROC_PCIE_IB_MAP_INVALID, }, { /* IARR2/IMAP2 */ .type = IPROC_PCIE_IB_MAP_MEM, .size_unit = SZ_1M, .region_sizes = { 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384 }, .nr_sizes = 9, .nr_windows = 1, .imap_addr_offset = 0x4, .imap_window_offset = 0x8, }, { /* IARR3/IMAP3 */ .type = IPROC_PCIE_IB_MAP_MEM, .size_unit = SZ_1G, .region_sizes = { 1, 2, 4, 8, 16, 32 }, .nr_sizes = 6, .nr_windows = 8, .imap_addr_offset = 0x4, .imap_window_offset = 0x8, }, { /* IARR4/IMAP4 */ .type = IPROC_PCIE_IB_MAP_MEM, .size_unit = SZ_1G, .region_sizes = { 32, 64, 128, 256, 512 }, .nr_sizes = 5, .nr_windows = 8, .imap_addr_offset = 0x4, .imap_window_offset = 0x8, }, }; /** * struct iproc_pcie - iproc pcie device instance * * @dev: pointer to pcie udevice * @base: device I/O base address * @type: pci device type, PAXC or PAXB * @reg_offsets: pointer to pcie host register * @fix_paxc_cap: paxc capability * @need_ob_cfg: outbound mapping status * @ob: pcie outbound mapping * @ob_map: pointer to outbound mapping parameters * @need_ib_cfg: inbound mapping status * @ib: pcie inbound mapping * @ib_map: pointer to inbound mapping parameters * @ep_is_internal: ep status * @phy: phy device * @link_is_active: link up status * @has_apb_err_disable: apb error status */ struct iproc_pcie { struct udevice *dev; void __iomem *base; enum iproc_pcie_type type; u16 *reg_offsets; bool fix_paxc_cap; bool need_ob_cfg; struct iproc_pcie_ob ob; const struct iproc_pcie_ob_map *ob_map; bool need_ib_cfg; struct iproc_pcie_ib ib; const struct iproc_pcie_ib_map *ib_map; bool ep_is_internal; struct phy phy; bool link_is_active; bool has_apb_err_disable; }; static inline bool iproc_pcie_reg_is_invalid(u16 reg_offset) { return !!(reg_offset == IPROC_PCIE_REG_INVALID); } static inline u16 iproc_pcie_reg_offset(struct iproc_pcie *pcie, enum iproc_pcie_reg reg) { return pcie->reg_offsets[reg]; } static inline u32 iproc_pcie_read_reg(struct iproc_pcie *pcie, enum iproc_pcie_reg reg) { u16 offset = iproc_pcie_reg_offset(pcie, reg); if (iproc_pcie_reg_is_invalid(offset)) return 0; return readl(pcie->base + offset); } static inline void iproc_pcie_write_reg(struct iproc_pcie *pcie, enum iproc_pcie_reg reg, u32 val) { u16 offset = iproc_pcie_reg_offset(pcie, reg); if (iproc_pcie_reg_is_invalid(offset)) return; writel(val, pcie->base + offset); } static int iproc_pcie_map_ep_cfg_reg(const struct udevice *udev, pci_dev_t bdf, uint where, void **paddress) { struct iproc_pcie *pcie = dev_get_priv(udev); unsigned int busno = PCI_BUS(bdf); unsigned int slot = PCI_DEV(bdf); unsigned int fn = PCI_FUNC(bdf); u16 offset; u32 val; /* root complex access */ if (busno == 0) { if (slot > 0 || fn > 0) return -ENODEV; iproc_pcie_write_reg(pcie, IPROC_PCIE_CFG_IND_ADDR, where & CFG_IND_ADDR_MASK); offset = iproc_pcie_reg_offset(pcie, IPROC_PCIE_CFG_IND_DATA); if (iproc_pcie_reg_is_invalid(offset)) return -ENODEV; *paddress = (pcie->base + offset); return 0; } if (!pcie->link_is_active) return -ENODEV; /* EP device access */ val = (PCIE_ECAM_OFFSET(busno, slot, fn, where) & CFG_ADDR_CFG_ECAM_MASK) | (1 & CFG_ADDR_CFG_TYPE_MASK); iproc_pcie_write_reg(pcie, IPROC_PCIE_CFG_ADDR, val); offset = iproc_pcie_reg_offset(pcie, IPROC_PCIE_CFG_DATA); if (iproc_pcie_reg_is_invalid(offset)) return -ENODEV; *paddress = (pcie->base + offset); return 0; } static void iproc_pcie_fix_cap(struct iproc_pcie *pcie, int where, ulong *val) { u32 i, dev_id; switch (where & ~0x3) { case PCI_VENDOR_ID: dev_id = *val >> 16; /* * Activate fixup for those controllers that have corrupted * capability list registers */ for (i = 0; i < ARRAY_SIZE(iproc_pcie_corrupt_cap_did); i++) if (dev_id == iproc_pcie_corrupt_cap_did[i]) pcie->fix_paxc_cap = true; break; case IPROC_PCI_PM_CAP: if (pcie->fix_paxc_cap) { /* advertise PM, force next capability to PCIe */ *val &= ~IPROC_PCI_PM_CAP_MASK; *val |= IPROC_PCI_EXP_CAP << 8 | PCI_CAP_ID_PM; } break; case IPROC_PCI_EXP_CAP: if (pcie->fix_paxc_cap) { /* advertise root port, version 2, terminate here */ *val = (PCI_EXP_TYPE_ROOT_PORT << 4 | 2) << 16 | PCI_CAP_ID_EXP; } break; case IPROC_PCI_EXP_CAP + PCI_EXP_RTCTL: /* Don't advertise CRS SV support */ *val &= ~(PCI_EXP_RTCAP_CRSVIS << 16); break; default: break; } } static int iproc_pci_raw_config_read32(struct iproc_pcie *pcie, unsigned int devfn, int where, int size, u32 *val) { void __iomem *addr; int ret; ret = iproc_pcie_map_ep_cfg_reg(pcie->dev, devfn, where & ~0x3, &addr); if (ret) { *val = ~0; return -EINVAL; } *val = readl(addr); if (size <= 2) *val = (*val >> (8 * (where & 3))) & ((1 << (size * 8)) - 1); return 0; } static int iproc_pci_raw_config_write32(struct iproc_pcie *pcie, unsigned int devfn, int where, int size, u32 val) { void __iomem *addr; int ret; u32 mask, tmp; ret = iproc_pcie_map_ep_cfg_reg(pcie->dev, devfn, where & ~0x3, &addr); if (ret) return -EINVAL; if (size == 4) { writel(val, addr); return 0; } mask = ~(((1 << (size * 8)) - 1) << ((where & 0x3) * 8)); tmp = readl(addr) & mask; tmp |= val << ((where & 0x3) * 8); writel(tmp, addr); return 0; } /** * iproc_pcie_apb_err_disable() - configure apb error * * APB error forwarding can be disabled during access of configuration * registers of the endpoint device, to prevent unsupported requests * (typically seen during enumeration with multi-function devices) from * triggering a system exception. * * @bus: pcie udevice * @bdf: pdf value * @disabled: flag to enable/disabled apb error */ static inline void iproc_pcie_apb_err_disable(const struct udevice *bus, pci_dev_t bdf, bool disable) { struct iproc_pcie *pcie = dev_get_priv(bus); u32 val; if (PCI_BUS(bdf) && pcie->has_apb_err_disable) { val = iproc_pcie_read_reg(pcie, IPROC_PCIE_APB_ERR_EN); if (disable) val &= ~APB_ERR_EN; else val |= APB_ERR_EN; iproc_pcie_write_reg(pcie, IPROC_PCIE_APB_ERR_EN, val); } } static int iproc_pcie_config_read32(const struct udevice *bus, pci_dev_t bdf, uint offset, ulong *valuep, enum pci_size_t size) { struct iproc_pcie *pcie = dev_get_priv(bus); int ret; ulong data; iproc_pcie_apb_err_disable(bus, bdf, true); ret = pci_generic_mmap_read_config(bus, iproc_pcie_map_ep_cfg_reg, bdf, offset, &data, PCI_SIZE_32); iproc_pcie_apb_err_disable(bus, bdf, false); if (size <= PCI_SIZE_16) *valuep = (data >> (8 * (offset & 3))) & ((1 << (BIT(size) * 8)) - 1); else *valuep = data; if (!ret && PCI_BUS(bdf) == 0) iproc_pcie_fix_cap(pcie, offset, valuep); return ret; } static int iproc_pcie_config_write32(struct udevice *bus, pci_dev_t bdf, uint offset, ulong value, enum pci_size_t size) { void *addr; ulong mask, tmp; int ret; ret = iproc_pcie_map_ep_cfg_reg(bus, bdf, offset, &addr); if (ret) return ret; if (size == PCI_SIZE_32) { writel(value, addr); return ret; } iproc_pcie_apb_err_disable(bus, bdf, true); mask = ~(((1 << (BIT(size) * 8)) - 1) << ((offset & 0x3) * 8)); tmp = readl(addr) & mask; tmp |= (value << ((offset & 0x3) * 8)); writel(tmp, addr); iproc_pcie_apb_err_disable(bus, bdf, false); return ret; } const static struct dm_pci_ops iproc_pcie_ops = { .read_config = iproc_pcie_config_read32, .write_config = iproc_pcie_config_write32, }; static int iproc_pcie_rev_init(struct iproc_pcie *pcie) { unsigned int reg_idx; const u16 *regs; u16 num_elements; switch (pcie->type) { case IPROC_PCIE_PAXC_V2: pcie->ep_is_internal = true; regs = iproc_pcie_reg_paxc_v2; num_elements = ARRAY_SIZE(iproc_pcie_reg_paxc_v2); break; case IPROC_PCIE_PAXB_V2: regs = iproc_pcie_reg_paxb_v2; num_elements = ARRAY_SIZE(iproc_pcie_reg_paxb_v2); pcie->has_apb_err_disable = true; if (pcie->need_ob_cfg) { pcie->ob.axi_offset = 0; pcie->ob_map = paxb_v2_ob_map; pcie->ob.nr_windows = ARRAY_SIZE(paxb_v2_ob_map); } pcie->need_ib_cfg = true; pcie->ib.nr_regions = ARRAY_SIZE(paxb_v2_ib_map); pcie->ib_map = paxb_v2_ib_map; break; default: dev_dbg(pcie->dev, "incompatible iProc PCIe interface\n"); return -EINVAL; } pcie->reg_offsets = calloc(IPROC_PCIE_MAX_NUM_REG, sizeof(*pcie->reg_offsets)); if (!pcie->reg_offsets) return -ENOMEM; /* go through the register table and populate all valid registers */ pcie->reg_offsets[0] = (pcie->type == IPROC_PCIE_PAXC_V2) ? IPROC_PCIE_REG_INVALID : regs[0]; for (reg_idx = 1; reg_idx < num_elements; reg_idx++) pcie->reg_offsets[reg_idx] = regs[reg_idx] ? regs[reg_idx] : IPROC_PCIE_REG_INVALID; return 0; } static inline bool iproc_pcie_ob_is_valid(struct iproc_pcie *pcie, int window_idx) { u32 val; val = iproc_pcie_read_reg(pcie, MAP_REG(IPROC_PCIE_OARR0, window_idx)); return !!(val & OARR_VALID); } static inline int iproc_pcie_ob_write(struct iproc_pcie *pcie, int window_idx, int size_idx, u64 axi_addr, u64 pci_addr) { u16 oarr_offset, omap_offset; /* * Derive the OARR/OMAP offset from the first pair (OARR0/OMAP0) based * on window index. */ oarr_offset = iproc_pcie_reg_offset(pcie, MAP_REG(IPROC_PCIE_OARR0, window_idx)); omap_offset = iproc_pcie_reg_offset(pcie, MAP_REG(IPROC_PCIE_OMAP0, window_idx)); if (iproc_pcie_reg_is_invalid(oarr_offset) || iproc_pcie_reg_is_invalid(omap_offset)) return -EINVAL; /* * Program the OARR registers. The upper 32-bit OARR register is * always right after the lower 32-bit OARR register. */ writel(lower_32_bits(axi_addr) | (size_idx << OARR_SIZE_CFG_SHIFT) | OARR_VALID, pcie->base + oarr_offset); writel(upper_32_bits(axi_addr), pcie->base + oarr_offset + 4); /* now program the OMAP registers */ writel(lower_32_bits(pci_addr), pcie->base + omap_offset); writel(upper_32_bits(pci_addr), pcie->base + omap_offset + 4); debug("ob window [%d]: offset 0x%x axi %pap pci %pap\n", window_idx, oarr_offset, &axi_addr, &pci_addr); debug("oarr lo 0x%x oarr hi 0x%x\n", readl(pcie->base + oarr_offset), readl(pcie->base + oarr_offset + 4)); debug("omap lo 0x%x omap hi 0x%x\n", readl(pcie->base + omap_offset), readl(pcie->base + omap_offset + 4)); return 0; } /** * iproc_pcie_setup_ob() - setup outbound address mapping * * Some iProc SoCs require the SW to configure the outbound address mapping * Outbound address translation: * * iproc_pcie_address = axi_address - axi_offset * OARR = iproc_pcie_address * OMAP = pci_addr * axi_addr -> iproc_pcie_address -> OARR -> OMAP -> pci_address * * @pcie: pcie device * @axi_addr: axi address to be translated * @pci_addr: pci address * @size: window size * * @return: 0 on success and -ve on failure */ static int iproc_pcie_setup_ob(struct iproc_pcie *pcie, u64 axi_addr, u64 pci_addr, resource_size_t size) { struct iproc_pcie_ob *ob = &pcie->ob; int ret = -EINVAL, window_idx, size_idx; if (axi_addr < ob->axi_offset) { pr_err("axi address %pap less than offset %pap\n", &axi_addr, &ob->axi_offset); return -EINVAL; } /* * Translate the AXI address to the internal address used by the iProc * PCIe core before programming the OARR */ axi_addr -= ob->axi_offset; /* iterate through all OARR/OMAP mapping windows */ for (window_idx = ob->nr_windows - 1; window_idx >= 0; window_idx--) { const struct iproc_pcie_ob_map *ob_map = &pcie->ob_map[window_idx]; /* * If current outbound window is already in use, move on to the * next one. */ if (iproc_pcie_ob_is_valid(pcie, window_idx)) continue; /* * Iterate through all supported window sizes within the * OARR/OMAP pair to find a match. Go through the window sizes * in a descending order. */ for (size_idx = ob_map->nr_sizes - 1; size_idx >= 0; size_idx--) { resource_size_t window_size = ob_map->window_sizes[size_idx] * SZ_1M; /* * Keep iterating until we reach the last window and * with the minimal window size at index zero. In this * case, we take a compromise by mapping it using the * minimum window size that can be supported */ if (size < window_size) { if (size_idx > 0 || window_idx > 0) continue; /* * For the corner case of reaching the minimal * window size that can be supported on the * last window */ axi_addr = ALIGN_DOWN(axi_addr, window_size); pci_addr = ALIGN_DOWN(pci_addr, window_size); size = window_size; } if (!IS_ALIGNED(axi_addr, window_size) || !IS_ALIGNED(pci_addr, window_size)) { pr_err("axi %pap or pci %pap not aligned\n", &axi_addr, &pci_addr); return -EINVAL; } /* * Match found! Program both OARR and OMAP and mark * them as a valid entry. */ ret = iproc_pcie_ob_write(pcie, window_idx, size_idx, axi_addr, pci_addr); if (ret) goto err_ob; size -= window_size; if (size == 0) return 0; /* * If we are here, we are done with the current window, * but not yet finished all mappings. Need to move on * to the next window. */ axi_addr += window_size; pci_addr += window_size; break; } } err_ob: pr_err("unable to configure outbound mapping\n"); pr_err("axi %pap, axi offset %pap, pci %pap, res size %pap\n", &axi_addr, &ob->axi_offset, &pci_addr, &size); return ret; } static int iproc_pcie_map_ranges(struct udevice *dev) { struct iproc_pcie *pcie = dev_get_priv(dev); struct udevice *bus = pci_get_controller(dev); struct pci_controller *hose = dev_get_uclass_priv(bus); int i, ret; for (i = 0; i < hose->region_count; i++) { if (hose->regions[i].flags == PCI_REGION_MEM || hose->regions[i].flags == PCI_REGION_PREFETCH) { debug("%d: bus_addr %p, axi_addr %p, size 0x%llx\n", i, &hose->regions[i].bus_start, &hose->regions[i].phys_start, hose->regions[i].size); ret = iproc_pcie_setup_ob(pcie, hose->regions[i].phys_start, hose->regions[i].bus_start, hose->regions[i].size); if (ret) return ret; } } return 0; } static inline bool iproc_pcie_ib_is_in_use(struct iproc_pcie *pcie, int region_idx) { const struct iproc_pcie_ib_map *ib_map = &pcie->ib_map[region_idx]; u32 val; val = iproc_pcie_read_reg(pcie, MAP_REG(IPROC_PCIE_IARR0, region_idx)); return !!(val & (BIT(ib_map->nr_sizes) - 1)); } static inline bool iproc_pcie_ib_check_type(const struct iproc_pcie_ib_map *ib_map, enum iproc_pcie_ib_map_type type) { return !!(ib_map->type == type); } static int iproc_pcie_ib_write(struct iproc_pcie *pcie, int region_idx, int size_idx, int nr_windows, u64 axi_addr, u64 pci_addr, resource_size_t size) { const struct iproc_pcie_ib_map *ib_map = &pcie->ib_map[region_idx]; u16 iarr_offset, imap_offset; u32 val; int window_idx; iarr_offset = iproc_pcie_reg_offset(pcie, MAP_REG(IPROC_PCIE_IARR0, region_idx)); imap_offset = iproc_pcie_reg_offset(pcie, MAP_REG(IPROC_PCIE_IMAP0, region_idx)); if (iproc_pcie_reg_is_invalid(iarr_offset) || iproc_pcie_reg_is_invalid(imap_offset)) return -EINVAL; debug("ib region [%d]: offset 0x%x axi %pap pci %pap\n", region_idx, iarr_offset, &axi_addr, &pci_addr); /* * Program the IARR registers. The upper 32-bit IARR register is * always right after the lower 32-bit IARR register. */ writel(lower_32_bits(pci_addr) | BIT(size_idx), pcie->base + iarr_offset); writel(upper_32_bits(pci_addr), pcie->base + iarr_offset + 4); debug("iarr lo 0x%x iarr hi 0x%x\n", readl(pcie->base + iarr_offset), readl(pcie->base + iarr_offset + 4)); /* * Now program the IMAP registers. Each IARR region may have one or * more IMAP windows. */ size >>= ilog2(nr_windows); for (window_idx = 0; window_idx < nr_windows; window_idx++) { val = readl(pcie->base + imap_offset); val |= lower_32_bits(axi_addr) | IMAP_VALID; writel(val, pcie->base + imap_offset); writel(upper_32_bits(axi_addr), pcie->base + imap_offset + ib_map->imap_addr_offset); debug("imap window [%d] lo 0x%x hi 0x%x\n", window_idx, readl(pcie->base + imap_offset), readl(pcie->base + imap_offset + ib_map->imap_addr_offset)); imap_offset += ib_map->imap_window_offset; axi_addr += size; } return 0; } /** * iproc_pcie_setup_ib() - setup inbound address mapping * * @pcie: pcie device * @axi_addr: axi address to be translated * @pci_addr: pci address * @size: window size * @type: inbound mapping type * * @return: 0 on success and -ve on failure */ static int iproc_pcie_setup_ib(struct iproc_pcie *pcie, u64 axi_addr, u64 pci_addr, resource_size_t size, enum iproc_pcie_ib_map_type type) { struct iproc_pcie_ib *ib = &pcie->ib; int ret; unsigned int region_idx, size_idx; /* iterate through all IARR mapping regions */ for (region_idx = 0; region_idx < ib->nr_regions; region_idx++) { const struct iproc_pcie_ib_map *ib_map = &pcie->ib_map[region_idx]; /* * If current inbound region is already in use or not a * compatible type, move on to the next. */ if (iproc_pcie_ib_is_in_use(pcie, region_idx) || !iproc_pcie_ib_check_type(ib_map, type)) continue; /* iterate through all supported region sizes to find a match */ for (size_idx = 0; size_idx < ib_map->nr_sizes; size_idx++) { resource_size_t region_size = ib_map->region_sizes[size_idx] * ib_map->size_unit; if (size != region_size) continue; if (!IS_ALIGNED(axi_addr, region_size) || !IS_ALIGNED(pci_addr, region_size)) { pr_err("axi %pap or pci %pap not aligned\n", &axi_addr, &pci_addr); return -EINVAL; } /* Match found! Program IARR and all IMAP windows. */ ret = iproc_pcie_ib_write(pcie, region_idx, size_idx, ib_map->nr_windows, axi_addr, pci_addr, size); if (ret) goto err_ib; else return 0; } } ret = -EINVAL; err_ib: pr_err("unable to configure inbound mapping\n"); pr_err("axi %pap, pci %pap, res size %pap\n", &axi_addr, &pci_addr, &size); return ret; } static int iproc_pcie_map_dma_ranges(struct iproc_pcie *pcie) { int ret; struct pci_region regions; int i = 0; while (!pci_get_dma_regions(pcie->dev, ®ions, i)) { dev_dbg(pcie->dev, "dma %d: bus_addr %#llx, axi_addr %#llx, size %#llx\n", i, regions.bus_start, regions.phys_start, regions.size); /* Each range entry corresponds to an inbound mapping region */ ret = iproc_pcie_setup_ib(pcie, regions.phys_start, regions.bus_start, regions.size, IPROC_PCIE_IB_MAP_MEM); if (ret) return ret; i++; } return 0; } static void iproc_pcie_reset_map_regs(struct iproc_pcie *pcie) { struct iproc_pcie_ib *ib = &pcie->ib; struct iproc_pcie_ob *ob = &pcie->ob; int window_idx, region_idx; if (pcie->ep_is_internal) return; /* iterate through all OARR mapping regions */ for (window_idx = ob->nr_windows - 1; window_idx >= 0; window_idx--) { iproc_pcie_write_reg(pcie, MAP_REG(IPROC_PCIE_OARR0, window_idx), 0); } /* iterate through all IARR mapping regions */ for (region_idx = 0; region_idx < ib->nr_regions; region_idx++) { iproc_pcie_write_reg(pcie, MAP_REG(IPROC_PCIE_IARR0, region_idx), 0); } } static void iproc_pcie_reset(struct iproc_pcie *pcie) { u32 val; /* * PAXC and the internal emulated endpoint device downstream should not * be reset. If firmware has been loaded on the endpoint device at an * earlier boot stage, reset here causes issues. */ if (pcie->ep_is_internal) return; /* * Select perst_b signal as reset source. Put the device into reset, * and then bring it out of reset */ val = iproc_pcie_read_reg(pcie, IPROC_PCIE_CLK_CTRL); val &= ~EP_PERST_SOURCE_SELECT & ~EP_MODE_SURVIVE_PERST & ~RC_PCIE_RST_OUTPUT; iproc_pcie_write_reg(pcie, IPROC_PCIE_CLK_CTRL, val); udelay(250); val |= RC_PCIE_RST_OUTPUT; iproc_pcie_write_reg(pcie, IPROC_PCIE_CLK_CTRL, val); mdelay(100); } static inline bool iproc_pcie_link_is_active(struct iproc_pcie *pcie) { u32 val; val = iproc_pcie_read_reg(pcie, IPROC_PCIE_LINK_STATUS); return !!((val & PCIE_PHYLINKUP) && (val & PCIE_DL_ACTIVE)); } static int iproc_pcie_check_link(struct iproc_pcie *pcie) { u32 link_status, class; pcie->link_is_active = false; /* force class to PCI bridge Normal decode (0x060400) */ #define PCI_BRIDGE_CTRL_REG_OFFSET 0x43c #define PCI_BRIDGE_CTRL_REG_CLASS_MASK 0xffffff iproc_pci_raw_config_read32(pcie, 0, PCI_BRIDGE_CTRL_REG_OFFSET, 4, &class); class &= ~PCI_BRIDGE_CTRL_REG_CLASS_MASK; class |= PCI_CLASS_BRIDGE_PCI_NORMAL; iproc_pci_raw_config_write32(pcie, 0, PCI_BRIDGE_CTRL_REG_OFFSET, 4, class); /* * PAXC connects to emulated endpoint devices directly and does not * have a Serdes. Therefore skip the link detection logic here. */ if (pcie->ep_is_internal) { pcie->link_is_active = true; return 0; } if (!iproc_pcie_link_is_active(pcie)) { pr_err("PHY or data link is INACTIVE!\n"); return -ENODEV; } #define PCI_TARGET_LINK_SPEED_MASK 0xf #define PCI_TARGET_LINK_WIDTH_MASK 0x3f #define PCI_TARGET_LINK_WIDTH_OFFSET 0x4 /* check link status to see if link is active */ iproc_pci_raw_config_read32(pcie, 0, IPROC_PCI_EXP_CAP + PCI_EXP_LNKSTA, 2, &link_status); if (link_status & PCI_EXP_LNKSTA_NLW) pcie->link_is_active = true; if (pcie->link_is_active) pr_info("link UP @ Speed Gen-%d and width-x%d\n", link_status & PCI_TARGET_LINK_SPEED_MASK, (link_status >> PCI_TARGET_LINK_WIDTH_OFFSET) & PCI_TARGET_LINK_WIDTH_MASK); else pr_info("link DOWN\n"); return 0; } static int iproc_pcie_probe(struct udevice *dev) { struct iproc_pcie *pcie = dev_get_priv(dev); int ret; pcie->type = (enum iproc_pcie_type)dev_get_driver_data(dev); debug("PAX type %d\n", pcie->type); pcie->base = dev_read_addr_ptr(dev); debug("PAX reg base %p\n", pcie->base); if (!pcie->base) return -ENODEV; if (dev_read_bool(dev, "brcm,pcie-ob")) pcie->need_ob_cfg = true; pcie->dev = dev; ret = iproc_pcie_rev_init(pcie); if (ret) return ret; if (!pcie->ep_is_internal) { ret = generic_phy_get_by_name(dev, "pcie-phy", &pcie->phy); if (!ret) { ret = generic_phy_init(&pcie->phy); if (ret) { pr_err("failed to init %s PHY\n", dev->name); return ret; } ret = generic_phy_power_on(&pcie->phy); if (ret) { pr_err("power on %s PHY failed\n", dev->name); goto err_exit_phy; } } } iproc_pcie_reset(pcie); if (pcie->need_ob_cfg) { ret = iproc_pcie_map_ranges(dev); if (ret) { pr_err("outbound map failed\n"); goto err_power_off_phy; } } if (pcie->need_ib_cfg) { ret = iproc_pcie_map_dma_ranges(pcie); if (ret) { pr_err("inbound map failed\n"); goto err_power_off_phy; } } if (iproc_pcie_check_link(pcie)) pr_info("no PCIe EP device detected\n"); return 0; err_power_off_phy: generic_phy_power_off(&pcie->phy); err_exit_phy: generic_phy_exit(&pcie->phy); return ret; } static int iproc_pcie_remove(struct udevice *dev) { struct iproc_pcie *pcie = dev_get_priv(dev); int ret; iproc_pcie_reset_map_regs(pcie); if (generic_phy_valid(&pcie->phy)) { ret = generic_phy_power_off(&pcie->phy); if (ret) { pr_err("failed to power off PCIe phy\n"); return ret; } ret = generic_phy_exit(&pcie->phy); if (ret) { pr_err("failed to power off PCIe phy\n"); return ret; } } return 0; } static const struct udevice_id pci_iproc_ids[] = { { .compatible = "brcm,iproc-pcie-paxb-v2", .data = IPROC_PCIE_PAXB_V2 }, { .compatible = "brcm,iproc-pcie-paxc-v2", .data = IPROC_PCIE_PAXC_V2 }, { } }; U_BOOT_DRIVER(pci_iproc) = { .name = "pci_iproc", .id = UCLASS_PCI, .of_match = pci_iproc_ids, .ops = &iproc_pcie_ops, .probe = iproc_pcie_probe, .remove = iproc_pcie_remove, .priv_auto = sizeof(struct iproc_pcie), .flags = DM_FLAG_OS_PREPARE, };