// SPDX-License-Identifier: GPL-2.0 /* * Xilinx Multirate Ethernet MAC(MRMAC) driver * * Author(s): Ashok Reddy Soma * Michal Simek * * Copyright (C) 2021 Xilinx, Inc. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include "xilinx_axi_mrmac.h" static void axi_mrmac_dma_write(struct mcdma_bd *bd, u32 *desc) { if (IS_ENABLED(CONFIG_PHYS_64BIT)) writeq((unsigned long)bd, desc); else writel((uintptr_t)bd, desc); } /** * axi_mrmac_ethernet_init - MRMAC init function * @priv: MRMAC private structure * * Return: 0 on success, negative value on errors * * This function is called to reset and initialize MRMAC core. This is * typically called during initialization. It does a reset of MRMAC Rx/Tx * channels and Rx/Tx SERDES. It configures MRMAC speed based on mrmac_rate * which is read from DT. This function waits for block lock bit to get set, * if it is not set within 100ms time returns a timeout error. */ static int axi_mrmac_ethernet_init(struct axi_mrmac_priv *priv) { struct mrmac_regs *regs = priv->iobase; u32 reg; u32 ret; /* Perform all the RESET's required */ setbits_le32(®s->reset, MRMAC_RX_SERDES_RST_MASK | MRMAC_RX_RST_MASK | MRMAC_TX_SERDES_RST_MASK | MRMAC_TX_RST_MASK); mdelay(MRMAC_RESET_DELAY); /* Configure Mode register */ reg = readl(®s->mode); log_debug("Configuring MRMAC speed to %d\n", priv->mrmac_rate); if (priv->mrmac_rate == SPEED_25000) { reg &= ~MRMAC_CTL_RATE_CFG_MASK; reg |= MRMAC_CTL_DATA_RATE_25G; reg |= (MRMAC_CTL_AXIS_CFG_25G_IND << MRMAC_CTL_AXIS_CFG_SHIFT); reg |= (MRMAC_CTL_SERDES_WIDTH_25G << MRMAC_CTL_SERDES_WIDTH_SHIFT); } else { reg &= ~MRMAC_CTL_RATE_CFG_MASK; reg |= MRMAC_CTL_DATA_RATE_10G; reg |= (MRMAC_CTL_AXIS_CFG_10G_IND << MRMAC_CTL_AXIS_CFG_SHIFT); reg |= (MRMAC_CTL_SERDES_WIDTH_10G << MRMAC_CTL_SERDES_WIDTH_SHIFT); } /* For tick reg */ reg |= MRMAC_CTL_PM_TICK_MASK; writel(reg, ®s->mode); clrbits_le32(®s->reset, MRMAC_RX_SERDES_RST_MASK | MRMAC_RX_RST_MASK | MRMAC_TX_SERDES_RST_MASK | MRMAC_TX_RST_MASK); mdelay(MRMAC_RESET_DELAY); /* Setup MRMAC hardware options */ setbits_le32(®s->rx_config, MRMAC_RX_DEL_FCS_MASK); setbits_le32(®s->tx_config, MRMAC_TX_INS_FCS_MASK); setbits_le32(®s->tx_config, MRMAC_TX_EN_MASK); setbits_le32(®s->rx_config, MRMAC_RX_EN_MASK); /* Check for block lock bit to be set. This ensures that * MRMAC ethernet IP is functioning normally. */ writel(MRMAC_STS_ALL_MASK, (phys_addr_t)priv->iobase + MRMAC_TX_STS_OFFSET); writel(MRMAC_STS_ALL_MASK, (phys_addr_t)priv->iobase + MRMAC_RX_STS_OFFSET); writel(MRMAC_STS_ALL_MASK, (phys_addr_t)priv->iobase + MRMAC_STATRX_BLKLCK_OFFSET); ret = wait_for_bit_le32((u32 *)((phys_addr_t)priv->iobase + MRMAC_STATRX_BLKLCK_OFFSET), MRMAC_RX_BLKLCK_MASK, true, MRMAC_BLKLCK_TIMEOUT, true); if (ret) { log_warning("Error: MRMAC block lock not complete!\n"); return -EIO; } writel(MRMAC_TICK_TRIGGER, ®s->tick_reg); return 0; } /** * axi_mcdma_init - Reset MCDMA engine * @priv: MRMAC private structure * * Return: 0 on success, negative value on timeouts * * This function is called to reset and initialize MCDMA engine */ static int axi_mcdma_init(struct axi_mrmac_priv *priv) { u32 ret; /* Reset the engine so the hardware starts from a known state */ writel(XMCDMA_CR_RESET, &priv->mm2s_cmn->control); writel(XMCDMA_CR_RESET, &priv->s2mm_cmn->control); /* Check Tx/Rx MCDMA.RST. Reset is done when the reset bit is low */ ret = wait_for_bit_le32(&priv->mm2s_cmn->control, XMCDMA_CR_RESET, false, MRMAC_DMARST_TIMEOUT, true); if (ret) { log_warning("Tx MCDMA reset Timeout\n"); return -ETIMEDOUT; } ret = wait_for_bit_le32(&priv->s2mm_cmn->control, XMCDMA_CR_RESET, false, MRMAC_DMARST_TIMEOUT, true); if (ret) { log_warning("Rx MCDMA reset Timeout\n"); return -ETIMEDOUT; } /* Enable channel 1 for Tx and Rx */ writel(XMCDMA_CHANNEL_1, &priv->mm2s_cmn->chen); writel(XMCDMA_CHANNEL_1, &priv->s2mm_cmn->chen); return 0; } /** * axi_mrmac_start - MRMAC start * @dev: udevice structure * * Return: 0 on success, negative value on errors * * This is a initialization function of MRMAC. Call MCDMA initialization * function and setup Rx buffer descriptors for starting reception of packets. * Enable Tx and Rx channels and trigger Rx channel fetch. */ static int axi_mrmac_start(struct udevice *dev) { struct axi_mrmac_priv *priv = dev_get_priv(dev); struct mrmac_regs *regs = priv->iobase; /* * Initialize MCDMA engine. MCDMA engine must be initialized before * MRMAC. During MCDMA engine initialization, MCDMA hardware is reset, * since MCDMA reset line is connected to MRMAC, this would ensure a * reset of MRMAC. */ axi_mcdma_init(priv); /* Initialize MRMAC hardware */ if (axi_mrmac_ethernet_init(priv)) return -EIO; /* Disable all Rx interrupts before RxBD space setup */ clrbits_le32(&priv->mcdma_rx->control, XMCDMA_IRQ_ALL_MASK); /* Update current descriptor */ axi_mrmac_dma_write(priv->rx_bd[0], &priv->mcdma_rx->current); /* Setup Rx BD. MRMAC needs atleast two descriptors */ memset(priv->rx_bd[0], 0, RX_BD_TOTAL_SIZE); priv->rx_bd[0]->next_desc = lower_32_bits((u64)priv->rx_bd[1]); priv->rx_bd[0]->buf_addr = lower_32_bits((u64)net_rx_packets[0]); priv->rx_bd[1]->next_desc = lower_32_bits((u64)priv->rx_bd[0]); priv->rx_bd[1]->buf_addr = lower_32_bits((u64)net_rx_packets[1]); if (IS_ENABLED(CONFIG_PHYS_64BIT)) { priv->rx_bd[0]->next_desc_msb = upper_32_bits((u64)priv->rx_bd[1]); priv->rx_bd[0]->buf_addr_msb = upper_32_bits((u64)net_rx_packets[0]); priv->rx_bd[1]->next_desc_msb = upper_32_bits((u64)priv->rx_bd[0]); priv->rx_bd[1]->buf_addr_msb = upper_32_bits((u64)net_rx_packets[1]); } priv->rx_bd[0]->cntrl = PKTSIZE_ALIGN; priv->rx_bd[1]->cntrl = PKTSIZE_ALIGN; /* Flush the last BD so DMA core could see the updates */ flush_cache((phys_addr_t)priv->rx_bd[0], RX_BD_TOTAL_SIZE); /* It is necessary to flush rx buffers because if you don't do it * then cache can contain uninitialized data */ flush_cache((phys_addr_t)priv->rx_bd[0]->buf_addr, RX_BUFF_TOTAL_SIZE); /* Start the hardware */ setbits_le32(&priv->s2mm_cmn->control, XMCDMA_CR_RUNSTOP_MASK); setbits_le32(&priv->mm2s_cmn->control, XMCDMA_CR_RUNSTOP_MASK); setbits_le32(&priv->mcdma_rx->control, XMCDMA_IRQ_ALL_MASK); /* Channel fetch */ setbits_le32(&priv->mcdma_rx->control, XMCDMA_CR_RUNSTOP_MASK); /* Update tail descriptor. Now it's ready to receive data */ axi_mrmac_dma_write(priv->rx_bd[1], &priv->mcdma_rx->tail); /* Enable Tx */ setbits_le32(®s->tx_config, MRMAC_TX_EN_MASK); /* Enable Rx */ setbits_le32(®s->rx_config, MRMAC_RX_EN_MASK); return 0; } /** * axi_mrmac_send - MRMAC Tx function * @dev: udevice structure * @ptr: pointer to Tx buffer * @len: transfer length * * Return: 0 on success, negative value on errors * * This is a Tx send function of MRMAC. Setup Tx buffer descriptors and trigger * transfer. Wait till the data is transferred. */ static int axi_mrmac_send(struct udevice *dev, void *ptr, int len) { struct axi_mrmac_priv *priv = dev_get_priv(dev); u32 ret; #ifdef DEBUG print_buffer(ptr, ptr, 1, len, 16); #endif if (len > PKTSIZE_ALIGN) len = PKTSIZE_ALIGN; /* If size is less than min packet size, pad to min size */ if (len < MIN_PKT_SIZE) { memset(priv->txminframe, 0, MIN_PKT_SIZE); memcpy(priv->txminframe, ptr, len); len = MIN_PKT_SIZE; ptr = priv->txminframe; } writel(XMCDMA_IRQ_ALL_MASK, &priv->mcdma_tx->status); clrbits_le32(&priv->mcdma_tx->control, XMCDMA_CR_RUNSTOP_MASK); /* Flush packet to main memory to be trasfered by DMA */ flush_cache((phys_addr_t)ptr, len); /* Setup Tx BD. MRMAC needs atleast two descriptors */ memset(priv->tx_bd[0], 0, TX_BD_TOTAL_SIZE); priv->tx_bd[0]->next_desc = lower_32_bits((u64)priv->tx_bd[1]); priv->tx_bd[0]->buf_addr = lower_32_bits((u64)ptr); /* At the end of the ring, link the last BD back to the top */ priv->tx_bd[1]->next_desc = lower_32_bits((u64)priv->tx_bd[0]); priv->tx_bd[1]->buf_addr = lower_32_bits((u64)ptr + len / 2); if (IS_ENABLED(CONFIG_PHYS_64BIT)) { priv->tx_bd[0]->next_desc_msb = upper_32_bits((u64)priv->tx_bd[1]); priv->tx_bd[0]->buf_addr_msb = upper_32_bits((u64)ptr); priv->tx_bd[1]->next_desc_msb = upper_32_bits((u64)priv->tx_bd[0]); priv->tx_bd[1]->buf_addr_msb = upper_32_bits((u64)ptr + len / 2); } /* Split Tx data in to half and send in two descriptors */ priv->tx_bd[0]->cntrl = (len / 2) | XMCDMA_BD_CTRL_TXSOF_MASK; priv->tx_bd[1]->cntrl = (len - len / 2) | XMCDMA_BD_CTRL_TXEOF_MASK; /* Flush the last BD so DMA core could see the updates */ flush_cache((phys_addr_t)priv->tx_bd[0], TX_BD_TOTAL_SIZE); if (readl(&priv->mcdma_tx->status) & XMCDMA_CH_IDLE) { axi_mrmac_dma_write(priv->tx_bd[0], &priv->mcdma_tx->current); /* Channel fetch */ setbits_le32(&priv->mcdma_tx->control, XMCDMA_CR_RUNSTOP_MASK); } else { log_warning("Error: current desc is not updated\n"); return -EIO; } setbits_le32(&priv->mcdma_tx->control, XMCDMA_IRQ_ALL_MASK); /* Start transfer */ axi_mrmac_dma_write(priv->tx_bd[1], &priv->mcdma_tx->tail); /* Wait for transmission to complete */ ret = wait_for_bit_le32(&priv->mcdma_tx->status, XMCDMA_IRQ_IOC_MASK, true, 1, true); if (ret) { log_warning("%s: Timeout\n", __func__); return -ETIMEDOUT; } /* Clear status */ priv->tx_bd[0]->sband_stats = 0; priv->tx_bd[1]->sband_stats = 0; log_debug("Sending complete\n"); return 0; } static bool isrxready(struct axi_mrmac_priv *priv) { u32 status; /* Read pending interrupts */ status = readl(&priv->mcdma_rx->status); /* Acknowledge pending interrupts */ writel(status & XMCDMA_IRQ_ALL_MASK, &priv->mcdma_rx->status); /* * If Reception done interrupt is asserted, call Rx call back function * to handle the processed BDs and then raise the according flag. */ if (status & (XMCDMA_IRQ_IOC_MASK | XMCDMA_IRQ_DELAY_MASK)) return 1; return 0; } /** * axi_mrmac_recv - MRMAC Rx function * @dev: udevice structure * @flags: flags from network stack * @packetp pointer to received data * * Return: received data length on success, negative value on errors * * This is a Rx function of MRMAC. Check if any data is received on MCDMA. * Copy buffer pointer to packetp and return received data length. */ static int axi_mrmac_recv(struct udevice *dev, int flags, uchar **packetp) { struct axi_mrmac_priv *priv = dev_get_priv(dev); u32 rx_bd_end; u32 length; /* Wait for an incoming packet */ if (!isrxready(priv)) return -EAGAIN; /* Clear all interrupts */ writel(XMCDMA_IRQ_ALL_MASK, &priv->mcdma_rx->status); /* Disable IRQ for a moment till packet is handled */ clrbits_le32(&priv->mcdma_rx->control, XMCDMA_IRQ_ALL_MASK); /* Disable channel fetch */ clrbits_le32(&priv->mcdma_rx->control, XMCDMA_CR_RUNSTOP_MASK); rx_bd_end = (ulong)priv->rx_bd[0] + roundup(RX_BD_TOTAL_SIZE, ARCH_DMA_MINALIGN); /* Invalidate Rx descriptors to see proper Rx length */ invalidate_dcache_range((phys_addr_t)priv->rx_bd[0], rx_bd_end); length = priv->rx_bd[0]->status & XMCDMA_BD_STS_ACTUAL_LEN_MASK; *packetp = (uchar *)(ulong)priv->rx_bd[0]->buf_addr; if (!length) { length = priv->rx_bd[1]->status & XMCDMA_BD_STS_ACTUAL_LEN_MASK; *packetp = (uchar *)(ulong)priv->rx_bd[1]->buf_addr; } #ifdef DEBUG print_buffer(*packetp, *packetp, 1, length, 16); #endif /* Clear status */ priv->rx_bd[0]->status = 0; priv->rx_bd[1]->status = 0; return length; } /** * axi_mrmac_free_pkt - MRMAC free packet function * @dev: udevice structure * @packet: receive buffer pointer * @length received data length * * Return: 0 on success, negative value on errors * * This is Rx free packet function of MRMAC. Prepare MRMAC for reception of * data again. Invalidate previous data from Rx buffers and set Rx buffer * descriptors. Trigger reception by updating tail descriptor. */ static int axi_mrmac_free_pkt(struct udevice *dev, uchar *packet, int length) { struct axi_mrmac_priv *priv = dev_get_priv(dev); #ifdef DEBUG /* It is useful to clear buffer to be sure that it is consistent */ memset(priv->rx_bd[0]->buf_addr, 0, RX_BUFF_TOTAL_SIZE); #endif /* Disable all Rx interrupts before RxBD space setup */ clrbits_le32(&priv->mcdma_rx->control, XMCDMA_IRQ_ALL_MASK); /* Disable channel fetch */ clrbits_le32(&priv->mcdma_rx->control, XMCDMA_CR_RUNSTOP_MASK); /* Update current descriptor */ axi_mrmac_dma_write(priv->rx_bd[0], &priv->mcdma_rx->current); /* Write bd to HW */ flush_cache((phys_addr_t)priv->rx_bd[0], RX_BD_TOTAL_SIZE); /* It is necessary to flush rx buffers because if you don't do it * then cache will contain previous packet */ flush_cache((phys_addr_t)priv->rx_bd[0]->buf_addr, RX_BUFF_TOTAL_SIZE); /* Enable all IRQ */ setbits_le32(&priv->mcdma_rx->control, XMCDMA_IRQ_ALL_MASK); /* Channel fetch */ setbits_le32(&priv->mcdma_rx->control, XMCDMA_CR_RUNSTOP_MASK); /* Update tail descriptor. Now it's ready to receive data */ axi_mrmac_dma_write(priv->rx_bd[1], &priv->mcdma_rx->tail); log_debug("Rx completed, framelength = %x\n", length); return 0; } /** * axi_mrmac_stop - Stop MCDMA transfers * @dev: udevice structure * * Return: 0 on success, negative value on errors * * Stop MCDMA engine for both Tx and Rx transfers. */ static void axi_mrmac_stop(struct udevice *dev) { struct axi_mrmac_priv *priv = dev_get_priv(dev); /* Stop the hardware */ clrbits_le32(&priv->mcdma_tx->control, XMCDMA_CR_RUNSTOP_MASK); clrbits_le32(&priv->mcdma_rx->control, XMCDMA_CR_RUNSTOP_MASK); log_debug("Halted\n"); } static int axi_mrmac_probe(struct udevice *dev) { struct axi_mrmac_plat *plat = dev_get_plat(dev); struct eth_pdata *pdata = &plat->eth_pdata; struct axi_mrmac_priv *priv = dev_get_priv(dev); priv->iobase = (struct mrmac_regs *)pdata->iobase; priv->mm2s_cmn = plat->mm2s_cmn; priv->mcdma_tx = (struct mcdma_chan_reg *)((phys_addr_t)priv->mm2s_cmn + XMCDMA_CHAN_OFFSET); priv->s2mm_cmn = (struct mcdma_common_regs *)((phys_addr_t)priv->mm2s_cmn + XMCDMA_RX_OFFSET); priv->mcdma_rx = (struct mcdma_chan_reg *)((phys_addr_t)priv->s2mm_cmn + XMCDMA_CHAN_OFFSET); priv->mrmac_rate = plat->mrmac_rate; /* Align buffers to ARCH_DMA_MINALIGN */ priv->tx_bd[0] = memalign(ARCH_DMA_MINALIGN, TX_BD_TOTAL_SIZE); priv->tx_bd[1] = (struct mcdma_bd *)((ulong)priv->tx_bd[0] + sizeof(struct mcdma_bd)); priv->rx_bd[0] = memalign(ARCH_DMA_MINALIGN, RX_BD_TOTAL_SIZE); priv->rx_bd[1] = (struct mcdma_bd *)((ulong)priv->rx_bd[0] + sizeof(struct mcdma_bd)); priv->txminframe = memalign(ARCH_DMA_MINALIGN, MIN_PKT_SIZE); return 0; } static int axi_mrmac_remove(struct udevice *dev) { struct axi_mrmac_priv *priv = dev_get_priv(dev); /* Free buffer descriptors */ free(priv->tx_bd[0]); free(priv->rx_bd[0]); free(priv->txminframe); return 0; } static int axi_mrmac_of_to_plat(struct udevice *dev) { struct axi_mrmac_plat *plat = dev_get_plat(dev); struct eth_pdata *pdata = &plat->eth_pdata; struct ofnode_phandle_args phandle_args; int ret = 0; pdata->iobase = dev_read_addr(dev); ret = dev_read_phandle_with_args(dev, "axistream-connected", NULL, 0, 0, &phandle_args); if (ret) { log_debug("axistream not found\n"); return -EINVAL; } plat->mm2s_cmn = (struct mcdma_common_regs *)ofnode_read_u64_default (phandle_args.node, "reg", -1); if (!plat->mm2s_cmn) { log_warning("MRMAC dma register space not found\n"); return -EINVAL; } /* Set default MRMAC rate to 10000 */ plat->mrmac_rate = dev_read_u32_default(dev, "xlnx,mrmac-rate", 10000); return 0; } static const struct eth_ops axi_mrmac_ops = { .start = axi_mrmac_start, .send = axi_mrmac_send, .recv = axi_mrmac_recv, .free_pkt = axi_mrmac_free_pkt, .stop = axi_mrmac_stop, }; static const struct udevice_id axi_mrmac_ids[] = { { .compatible = "xlnx,mrmac-ethernet-1.0" }, { } }; U_BOOT_DRIVER(axi_mrmac) = { .name = "axi_mrmac", .id = UCLASS_ETH, .of_match = axi_mrmac_ids, .of_to_plat = axi_mrmac_of_to_plat, .probe = axi_mrmac_probe, .remove = axi_mrmac_remove, .ops = &axi_mrmac_ops, .priv_auto = sizeof(struct axi_mrmac_priv), .plat_auto = sizeof(struct axi_mrmac_plat), };