// SPDX-License-Identifier: GPL-2.0+ /* * Freescale Three Speed Ethernet Controller driver * * Copyright 2004-2011, 2013 Freescale Semiconductor, Inc. * (C) Copyright 2003, Motorola, Inc. * author Andy Fleming */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define TBIANA_SETTINGS ( \ TBIANA_ASYMMETRIC_PAUSE \ | TBIANA_SYMMETRIC_PAUSE \ | TBIANA_FULL_DUPLEX \ ) /* By default force the TBI PHY into 1000Mbps full duplex when in SGMII mode */ #ifndef CFG_TSEC_TBICR_SETTINGS #define CFG_TSEC_TBICR_SETTINGS ( \ TBICR_PHY_RESET \ | TBICR_ANEG_ENABLE \ | TBICR_FULL_DUPLEX \ | TBICR_SPEED1_SET \ ) #endif /* CFG_TSEC_TBICR_SETTINGS */ /* Configure the TBI for SGMII operation */ static void tsec_configure_serdes(struct tsec_private *priv) { /* * Access TBI PHY registers at given TSEC register offset as opposed * to the register offset used for external PHY accesses */ tsec_local_mdio_write(priv->phyregs_sgmii, in_be32(&priv->regs->tbipa), 0, TBI_ANA, TBIANA_SETTINGS); tsec_local_mdio_write(priv->phyregs_sgmii, in_be32(&priv->regs->tbipa), 0, TBI_TBICON, TBICON_CLK_SELECT); tsec_local_mdio_write(priv->phyregs_sgmii, in_be32(&priv->regs->tbipa), 0, TBI_CR, CFG_TSEC_TBICR_SETTINGS); } /* the 'way' for ethernet-CRC-32. Spliced in from Linux lib/crc32.c * and this is the ethernet-crc method needed for TSEC -- and perhaps * some other adapter -- hash tables */ #define CRCPOLY_LE 0xedb88320 static u32 ether_crc(size_t len, unsigned char const *p) { int i; u32 crc; crc = ~0; while (len--) { crc ^= *p++; for (i = 0; i < 8; i++) crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0); } /* an reverse the bits, cuz of way they arrive -- last-first */ crc = (crc >> 16) | (crc << 16); crc = (crc >> 8 & 0x00ff00ff) | (crc << 8 & 0xff00ff00); crc = (crc >> 4 & 0x0f0f0f0f) | (crc << 4 & 0xf0f0f0f0); crc = (crc >> 2 & 0x33333333) | (crc << 2 & 0xcccccccc); crc = (crc >> 1 & 0x55555555) | (crc << 1 & 0xaaaaaaaa); return crc; } /* CREDITS: linux gianfar driver, slightly adjusted... thanx. */ /* Set the appropriate hash bit for the given addr */ /* * The algorithm works like so: * 1) Take the Destination Address (ie the multicast address), and * do a CRC on it (little endian), and reverse the bits of the * result. * 2) Use the 8 most significant bits as a hash into a 256-entry * table. The table is controlled through 8 32-bit registers: * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is entry * 255. This means that the 3 most significant bits in the * hash index which gaddr register to use, and the 5 other bits * indicate which bit (assuming an IBM numbering scheme, which * for PowerPC (tm) is usually the case) in the register holds * the entry. */ static int tsec_mcast_addr(struct udevice *dev, const u8 *mcast_mac, int join) { struct tsec_private *priv; struct tsec __iomem *regs; u32 result, value; u8 whichbit, whichreg; priv = dev_get_priv(dev); regs = priv->regs; result = ether_crc(MAC_ADDR_LEN, mcast_mac); whichbit = (result >> 24) & 0x1f; /* the 5 LSB = which bit to set */ whichreg = result >> 29; /* the 3 MSB = which reg to set it in */ value = BIT(31 - whichbit); if (join) setbits_be32(®s->hash.gaddr0 + whichreg, value); else clrbits_be32(®s->hash.gaddr0 + whichreg, value); return 0; } static int __maybe_unused tsec_set_promisc(struct udevice *dev, bool enable) { struct tsec_private *priv = dev_get_priv(dev); struct tsec __iomem *regs = priv->regs; if (enable) setbits_be32(®s->rctrl, RCTRL_PROM); else clrbits_be32(®s->rctrl, RCTRL_PROM); return 0; } /* * Initialized required registers to appropriate values, zeroing * those we don't care about (unless zero is bad, in which case, * choose a more appropriate value) */ static void init_registers(struct tsec __iomem *regs) { /* Clear IEVENT */ out_be32(®s->ievent, IEVENT_INIT_CLEAR); out_be32(®s->imask, IMASK_INIT_CLEAR); out_be32(®s->hash.iaddr0, 0); out_be32(®s->hash.iaddr1, 0); out_be32(®s->hash.iaddr2, 0); out_be32(®s->hash.iaddr3, 0); out_be32(®s->hash.iaddr4, 0); out_be32(®s->hash.iaddr5, 0); out_be32(®s->hash.iaddr6, 0); out_be32(®s->hash.iaddr7, 0); out_be32(®s->hash.gaddr0, 0); out_be32(®s->hash.gaddr1, 0); out_be32(®s->hash.gaddr2, 0); out_be32(®s->hash.gaddr3, 0); out_be32(®s->hash.gaddr4, 0); out_be32(®s->hash.gaddr5, 0); out_be32(®s->hash.gaddr6, 0); out_be32(®s->hash.gaddr7, 0); /* Init RMON mib registers */ memset((void *)®s->rmon, 0, sizeof(regs->rmon)); out_be32(®s->rmon.cam1, 0xffffffff); out_be32(®s->rmon.cam2, 0xffffffff); out_be32(®s->mrblr, MRBLR_INIT_SETTINGS); out_be32(®s->minflr, MINFLR_INIT_SETTINGS); out_be32(®s->attr, ATTR_INIT_SETTINGS); out_be32(®s->attreli, ATTRELI_INIT_SETTINGS); } /* * Configure maccfg2 based on negotiated speed and duplex * reported by PHY handling code */ static void adjust_link(struct tsec_private *priv, struct phy_device *phydev) { struct tsec __iomem *regs = priv->regs; u32 ecntrl, maccfg2; if (!phydev->link) { printf("%s: No link.\n", phydev->dev->name); return; } /* clear all bits relative with interface mode */ ecntrl = in_be32(®s->ecntrl); ecntrl &= ~ECNTRL_R100; maccfg2 = in_be32(®s->maccfg2); maccfg2 &= ~(MACCFG2_IF | MACCFG2_FULL_DUPLEX); if (phydev->duplex) maccfg2 |= MACCFG2_FULL_DUPLEX; switch (phydev->speed) { case 1000: maccfg2 |= MACCFG2_GMII; break; case 100: case 10: maccfg2 |= MACCFG2_MII; /* * Set R100 bit in all modes although * it is only used in RGMII mode */ if (phydev->speed == 100) ecntrl |= ECNTRL_R100; break; default: printf("%s: Speed was bad\n", phydev->dev->name); break; } out_be32(®s->ecntrl, ecntrl); out_be32(®s->maccfg2, maccfg2); printf("Speed: %d, %s duplex%s\n", phydev->speed, (phydev->duplex) ? "full" : "half", (phydev->port == PORT_FIBRE) ? ", fiber mode" : ""); } /* * This returns the status bits of the device. The return value * is never checked, and this is what the 8260 driver did, so we * do the same. Presumably, this would be zero if there were no * errors */ static int tsec_send(struct udevice *dev, void *packet, int length) { struct tsec_private *priv; struct tsec __iomem *regs; int result = 0; u16 status; int i; priv = dev_get_priv(dev); regs = priv->regs; /* Find an empty buffer descriptor */ for (i = 0; in_be16(&priv->txbd[priv->tx_idx].status) & TXBD_READY; i++) { if (i >= TOUT_LOOP) { printf("%s: tsec: tx buffers full\n", dev->name); return result; } } out_be32(&priv->txbd[priv->tx_idx].bufptr, (u32)packet); out_be16(&priv->txbd[priv->tx_idx].length, length); status = in_be16(&priv->txbd[priv->tx_idx].status); out_be16(&priv->txbd[priv->tx_idx].status, status | (TXBD_READY | TXBD_LAST | TXBD_CRC | TXBD_INTERRUPT)); /* Tell the DMA to go */ out_be32(®s->tstat, TSTAT_CLEAR_THALT); /* Wait for buffer to be transmitted */ for (i = 0; in_be16(&priv->txbd[priv->tx_idx].status) & TXBD_READY; i++) { if (i >= TOUT_LOOP) { printf("%s: tsec: tx error\n", dev->name); return result; } } priv->tx_idx = (priv->tx_idx + 1) % TX_BUF_CNT; result = in_be16(&priv->txbd[priv->tx_idx].status) & TXBD_STATS; return result; } static int tsec_recv(struct udevice *dev, int flags, uchar **packetp) { struct tsec_private *priv = (struct tsec_private *)dev_get_priv(dev); struct tsec __iomem *regs = priv->regs; int ret = -1; if (!(in_be16(&priv->rxbd[priv->rx_idx].status) & RXBD_EMPTY)) { int length = in_be16(&priv->rxbd[priv->rx_idx].length); u16 status = in_be16(&priv->rxbd[priv->rx_idx].status); u32 buf; /* Send the packet up if there were no errors */ if (!(status & RXBD_STATS)) { buf = in_be32(&priv->rxbd[priv->rx_idx].bufptr); *packetp = (uchar *)buf; ret = length - 4; } else { printf("Got error %x\n", (status & RXBD_STATS)); } } if (in_be32(®s->ievent) & IEVENT_BSY) { out_be32(®s->ievent, IEVENT_BSY); out_be32(®s->rstat, RSTAT_CLEAR_RHALT); } return ret; } static int tsec_free_pkt(struct udevice *dev, uchar *packet, int length) { struct tsec_private *priv = (struct tsec_private *)dev_get_priv(dev); u16 status; out_be16(&priv->rxbd[priv->rx_idx].length, 0); status = RXBD_EMPTY; /* Set the wrap bit if this is the last element in the list */ if ((priv->rx_idx + 1) == PKTBUFSRX) status |= RXBD_WRAP; out_be16(&priv->rxbd[priv->rx_idx].status, status); priv->rx_idx = (priv->rx_idx + 1) % PKTBUFSRX; return 0; } static void tsec_halt(struct udevice *dev) { struct tsec_private *priv; struct tsec __iomem *regs; priv = dev_get_priv(dev); regs = priv->regs; clrbits_be32(®s->dmactrl, DMACTRL_GRS | DMACTRL_GTS); setbits_be32(®s->dmactrl, DMACTRL_GRS | DMACTRL_GTS); while ((in_be32(®s->ievent) & (IEVENT_GRSC | IEVENT_GTSC)) != (IEVENT_GRSC | IEVENT_GTSC)) ; clrbits_be32(®s->maccfg1, MACCFG1_TX_EN | MACCFG1_RX_EN); /* Shut down the PHY, as needed */ phy_shutdown(priv->phydev); } #ifdef CONFIG_SYS_FSL_ERRATUM_NMG_ETSEC129 /* * When MACCFG1[Rx_EN] is enabled during system boot as part * of the eTSEC port initialization sequence, * the eTSEC Rx logic may not be properly initialized. */ static void redundant_init(struct tsec_private *priv) { struct tsec __iomem *regs = priv->regs; uint t, count = 0; int fail = 1; static const u8 pkt[] = { 0x00, 0x1e, 0x4f, 0x12, 0xcb, 0x2c, 0x00, 0x25, 0x64, 0xbb, 0xd1, 0xab, 0x08, 0x00, 0x45, 0x00, 0x00, 0x5c, 0xdd, 0x22, 0x00, 0x00, 0x80, 0x01, 0x1f, 0x71, 0x0a, 0xc1, 0x14, 0x22, 0x0a, 0xc1, 0x14, 0x6a, 0x08, 0x00, 0xef, 0x7e, 0x02, 0x00, 0x94, 0x05, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f, 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f, 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f, 0x70, 0x71, 0x72}; /* Enable promiscuous mode */ setbits_be32(®s->rctrl, RCTRL_PROM); /* Enable loopback mode */ setbits_be32(®s->maccfg1, MACCFG1_LOOPBACK); /* Enable transmit and receive */ setbits_be32(®s->maccfg1, MACCFG1_RX_EN | MACCFG1_TX_EN); /* Tell the DMA it is clear to go */ setbits_be32(®s->dmactrl, DMACTRL_INIT_SETTINGS); out_be32(®s->tstat, TSTAT_CLEAR_THALT); out_be32(®s->rstat, RSTAT_CLEAR_RHALT); clrbits_be32(®s->dmactrl, DMACTRL_GRS | DMACTRL_GTS); do { u16 status; tsec_send(priv->dev, (void *)pkt, sizeof(pkt)); /* Wait for buffer to be received */ for (t = 0; in_be16(&priv->rxbd[priv->rx_idx].status) & RXBD_EMPTY; t++) { if (t >= 10 * TOUT_LOOP) { printf("%s: tsec: rx error\n", priv->dev->name); break; } } if (!memcmp(pkt, net_rx_packets[priv->rx_idx], sizeof(pkt))) fail = 0; out_be16(&priv->rxbd[priv->rx_idx].length, 0); status = RXBD_EMPTY; if ((priv->rx_idx + 1) == PKTBUFSRX) status |= RXBD_WRAP; out_be16(&priv->rxbd[priv->rx_idx].status, status); priv->rx_idx = (priv->rx_idx + 1) % PKTBUFSRX; if (in_be32(®s->ievent) & IEVENT_BSY) { out_be32(®s->ievent, IEVENT_BSY); out_be32(®s->rstat, RSTAT_CLEAR_RHALT); } if (fail) { printf("loopback recv packet error!\n"); clrbits_be32(®s->maccfg1, MACCFG1_RX_EN); udelay(1000); setbits_be32(®s->maccfg1, MACCFG1_RX_EN); } } while ((count++ < 4) && (fail == 1)); if (fail) panic("eTSEC init fail!\n"); /* Disable promiscuous mode */ clrbits_be32(®s->rctrl, RCTRL_PROM); /* Disable loopback mode */ clrbits_be32(®s->maccfg1, MACCFG1_LOOPBACK); } #endif /* * Set up the buffers and their descriptors, and bring up the * interface */ static void startup_tsec(struct tsec_private *priv) { struct tsec __iomem *regs = priv->regs; u16 status; int i; /* reset the indices to zero */ priv->rx_idx = 0; priv->tx_idx = 0; #ifdef CONFIG_SYS_FSL_ERRATUM_NMG_ETSEC129 uint svr; #endif /* Point to the buffer descriptors */ out_be32(®s->tbase, (u32)&priv->txbd[0]); out_be32(®s->rbase, (u32)&priv->rxbd[0]); /* Initialize the Rx Buffer descriptors */ for (i = 0; i < PKTBUFSRX; i++) { out_be16(&priv->rxbd[i].status, RXBD_EMPTY); out_be16(&priv->rxbd[i].length, 0); out_be32(&priv->rxbd[i].bufptr, (u32)net_rx_packets[i]); } status = in_be16(&priv->rxbd[PKTBUFSRX - 1].status); out_be16(&priv->rxbd[PKTBUFSRX - 1].status, status | RXBD_WRAP); /* Initialize the TX Buffer Descriptors */ for (i = 0; i < TX_BUF_CNT; i++) { out_be16(&priv->txbd[i].status, 0); out_be16(&priv->txbd[i].length, 0); out_be32(&priv->txbd[i].bufptr, 0); } status = in_be16(&priv->txbd[TX_BUF_CNT - 1].status); out_be16(&priv->txbd[TX_BUF_CNT - 1].status, status | TXBD_WRAP); #ifdef CONFIG_SYS_FSL_ERRATUM_NMG_ETSEC129 svr = get_svr(); if ((SVR_MAJ(svr) == 1) || IS_SVR_REV(svr, 2, 0)) redundant_init(priv); #endif /* Enable Transmit and Receive */ setbits_be32(®s->maccfg1, MACCFG1_RX_EN | MACCFG1_TX_EN); /* Tell the DMA it is clear to go */ setbits_be32(®s->dmactrl, DMACTRL_INIT_SETTINGS); out_be32(®s->tstat, TSTAT_CLEAR_THALT); out_be32(®s->rstat, RSTAT_CLEAR_RHALT); clrbits_be32(®s->dmactrl, DMACTRL_GRS | DMACTRL_GTS); } /* * Initializes data structures and registers for the controller, * and brings the interface up. Returns the link status, meaning * that it returns success if the link is up, failure otherwise. * This allows U-Boot to find the first active controller. */ static int tsec_init(struct udevice *dev) { struct tsec_private *priv; struct tsec __iomem *regs; struct eth_pdata *pdata = dev_get_plat(dev); u32 tempval; int ret; priv = dev_get_priv(dev); regs = priv->regs; /* Make sure the controller is stopped */ tsec_halt(dev); /* Init MACCFG2. Defaults to GMII */ out_be32(®s->maccfg2, MACCFG2_INIT_SETTINGS); /* Init ECNTRL */ out_be32(®s->ecntrl, ECNTRL_INIT_SETTINGS); /* * Copy the station address into the address registers. * For a station address of 0x12345678ABCD in transmission * order (BE), MACnADDR1 is set to 0xCDAB7856 and * MACnADDR2 is set to 0x34120000. */ tempval = (pdata->enetaddr[5] << 24) | (pdata->enetaddr[4] << 16) | (pdata->enetaddr[3] << 8) | pdata->enetaddr[2]; out_be32(®s->macstnaddr1, tempval); tempval = (pdata->enetaddr[1] << 24) | (pdata->enetaddr[0] << 16); out_be32(®s->macstnaddr2, tempval); /* Clear out (for the most part) the other registers */ init_registers(regs); /* Ready the device for tx/rx */ startup_tsec(priv); /* Start up the PHY */ ret = phy_startup(priv->phydev); if (ret) { printf("Could not initialize PHY %s\n", priv->phydev->dev->name); return ret; } adjust_link(priv, priv->phydev); /* If there's no link, fail */ return priv->phydev->link ? 0 : -1; } static phy_interface_t __maybe_unused tsec_get_interface(struct tsec_private *priv) { struct tsec __iomem *regs = priv->regs; u32 ecntrl; ecntrl = in_be32(®s->ecntrl); if (ecntrl & ECNTRL_SGMII_MODE) return PHY_INTERFACE_MODE_SGMII; if (ecntrl & ECNTRL_TBI_MODE) { if (ecntrl & ECNTRL_REDUCED_MODE) return PHY_INTERFACE_MODE_RTBI; else return PHY_INTERFACE_MODE_TBI; } if (ecntrl & ECNTRL_REDUCED_MODE) { phy_interface_t interface; if (ecntrl & ECNTRL_REDUCED_MII_MODE) return PHY_INTERFACE_MODE_RMII; interface = priv->interface; /* * This isn't autodetected, so it must * be set by the platform code. */ if (interface == PHY_INTERFACE_MODE_RGMII_ID || interface == PHY_INTERFACE_MODE_RGMII_TXID || interface == PHY_INTERFACE_MODE_RGMII_RXID) return interface; return PHY_INTERFACE_MODE_RGMII; } if (priv->flags & TSEC_GIGABIT) return PHY_INTERFACE_MODE_GMII; return PHY_INTERFACE_MODE_MII; } /* * Discover which PHY is attached to the device, and configure it * properly. If the PHY is not recognized, then return 0 * (failure). Otherwise, return 1 */ static int init_phy(struct tsec_private *priv) { struct phy_device *phydev; struct tsec __iomem *regs = priv->regs; u32 supported = (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full); if (priv->flags & TSEC_GIGABIT) supported |= SUPPORTED_1000baseT_Full; /* Assign a Physical address to the TBI */ out_be32(®s->tbipa, priv->tbiaddr); if (priv->interface == PHY_INTERFACE_MODE_SGMII) tsec_configure_serdes(priv); #if defined(CONFIG_DM_MDIO) phydev = dm_eth_phy_connect(priv->dev); #else phydev = phy_connect(priv->bus, priv->phyaddr, priv->dev, priv->interface); #endif if (!phydev) return 0; phydev->supported &= supported; phydev->advertising = phydev->supported; priv->phydev = phydev; phy_config(phydev); return 1; } int tsec_probe(struct udevice *dev) { struct eth_pdata *pdata = dev_get_plat(dev); struct tsec_private *priv = dev_get_priv(dev); struct ofnode_phandle_args phandle_args; u32 tbiaddr = CFG_SYS_TBIPA_VALUE; struct tsec_data *data; ofnode parent, child; fdt_addr_t reg; u32 max_speed; int ret; data = (struct tsec_data *)dev_get_driver_data(dev); pdata->iobase = (phys_addr_t)dev_read_addr(dev); if (pdata->iobase == FDT_ADDR_T_NONE) { ofnode_for_each_subnode(child, dev_ofnode(dev)) { if (strncmp(ofnode_get_name(child), "queue-group", strlen("queue-group"))) continue; reg = ofnode_get_addr(child); if (reg == FDT_ADDR_T_NONE) { printf("No 'reg' property of \n"); return -ENOENT; } pdata->iobase = reg; /* * if there are multiple queue groups, * only the first one is used. */ break; } if (!ofnode_valid(child)) { printf("No child node for ?\n"); return -ENOENT; } } priv->regs = map_physmem(pdata->iobase, 0, MAP_NOCACHE); ret = dev_read_phandle_with_args(dev, "tbi-handle", NULL, 0, 0, &phandle_args); if (ret == 0) { ofnode_read_u32(phandle_args.node, "reg", &tbiaddr); parent = ofnode_get_parent(phandle_args.node); if (!ofnode_valid(parent)) { printf("No parent node for TBI PHY?\n"); return -ENOENT; } reg = ofnode_get_addr_index(parent, 0); if (reg == FDT_ADDR_T_NONE) { printf("No 'reg' property of MII for TBI PHY\n"); return -ENOENT; } priv->phyregs_sgmii = map_physmem(reg + data->mdio_regs_off, 0, MAP_NOCACHE); } priv->tbiaddr = tbiaddr; pdata->phy_interface = dev_read_phy_mode(dev); if (pdata->phy_interface == PHY_INTERFACE_MODE_NA) pdata->phy_interface = tsec_get_interface(priv); priv->interface = pdata->phy_interface; /* Check for speed limit, default is 1000Mbps */ max_speed = dev_read_u32_default(dev, "max-speed", 1000); /* Initialize flags */ if (max_speed == 1000) priv->flags = TSEC_GIGABIT; if (priv->interface == PHY_INTERFACE_MODE_SGMII) priv->flags |= TSEC_SGMII; /* Reset the MAC */ setbits_be32(&priv->regs->maccfg1, MACCFG1_SOFT_RESET); udelay(2); /* Soft Reset must be asserted for 3 TX clocks */ clrbits_be32(&priv->regs->maccfg1, MACCFG1_SOFT_RESET); priv->dev = dev; priv->bus = miiphy_get_dev_by_name(dev->name); /* Try to initialize PHY here, and return */ return !init_phy(priv); } int tsec_remove(struct udevice *dev) { struct tsec_private *priv = dev_get_priv(dev); free(priv->phydev); mdio_unregister(priv->bus); mdio_free(priv->bus); return 0; } static const struct eth_ops tsec_ops = { .start = tsec_init, .send = tsec_send, .recv = tsec_recv, .free_pkt = tsec_free_pkt, .stop = tsec_halt, .mcast = tsec_mcast_addr, .set_promisc = tsec_set_promisc, }; static struct tsec_data etsec2_data = { .mdio_regs_off = TSEC_MDIO_REGS_OFFSET, }; static struct tsec_data gianfar_data = { .mdio_regs_off = 0x0, }; static const struct udevice_id tsec_ids[] = { { .compatible = "fsl,etsec2", .data = (ulong)&etsec2_data }, { .compatible = "gianfar", .data = (ulong)&gianfar_data }, { } }; U_BOOT_DRIVER(eth_tsec) = { .name = "tsec", .id = UCLASS_ETH, .of_match = tsec_ids, .probe = tsec_probe, .remove = tsec_remove, .ops = &tsec_ops, .priv_auto = sizeof(struct tsec_private), .plat_auto = sizeof(struct eth_pdata), .flags = DM_FLAG_ALLOC_PRIV_DMA, };