// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2020 MediaTek Inc. * * Author: Weijie Gao */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Frame Engine block */ #define GDMA_BASE 0x600 #define PDMA_BASE 0x800 /* GDMA registers */ #define GDMA_FWD_CFG 0x00 #define GDMA_DST_PORT GENMASK(2, 0) #define GDMA_DST_PORT_CPU 0 #define GDMA_MAC_ADRL 0x08 #define GDMA_MAC_ADRH 0x0c /* PDMA registers */ #define TX_BASE_PTR0 0x000 #define TX_MAX_CNT0 0x004 #define TX_CTX_IDX0 0x008 #define TX_DTX_IDX0 0x00c #define RX_BASE_PTR0 0x100 #define RX_MAX_CNT0 0x104 #define RX_CALC_IDX0 0x108 #define RX_DRX_IDX0 0x10c #define PDMA_GLO_CFG 0x204 #define TX_WB_DDONE BIT(6) #define PDMA_BT_SIZE GENMASK(5, 4) #define PDMA_BT_SIZE_32B 1 #define RX_DMA_BUSY BIT(3) #define RX_DMA_EN BIT(2) #define TX_DMA_BUSY BIT(1) #define TX_DMA_EN BIT(0) #define PDMA_RST_IDX 0x208 #define RST_DRX_IDX0 BIT(16) #define RST_DTX_IDX0 BIT(0) /* Built-in giga ethernet switch block */ /* ARL registers */ #define GSW_MFC 0x0010 #define BC_FFP GENMASK(31, 24) #define UNM_FFP GENMASK(23, 16) #define UNU_FFP GENMASK(15, 8) #define CPU_EN BIT(7) #define CPU_PORT GENMASK(6, 4) /* Port registers */ #define GSW_PCR(p) (0x2004 + (p) * 0x100) #define PORT_MATRIX GENMASK(23, 16) #define GSW_PVC(p) (0x2010 + (p) * 0x100) #define STAG_VPID GENMASK(31, 16) #define VLAN_ATTR GENMASK(7, 6) #define VLAN_ATTR_USER 0 /* MAC registers */ #define GSW_PMCR(p) (0x3000 + (p) * 0x100) #define IPG_CFG GENMASK(19, 18) #define IPG_96BIT_WITH_SHORT_IPG 1 #define MAC_MODE BIT(16) #define FORCE_MODE BIT(15) #define MAC_TX_EN BIT(14) #define MAC_RX_EN BIT(13) #define BKOFF_EN BIT(9) #define BACKPR_EN BIT(8) #define FORCE_EEE1G BIT(7) #define FORCE_EEE100 BIT(6) #define FORCE_RX_FC BIT(5) #define FORCE_TX_FC BIT(4) #define FORCE_SPEED GENMASK(3, 2) #define FORCE_SPEED_1000 2 #define FORCE_SPEED_100 1 #define FORCE_SPEED_10 0 #define FORCE_DUPLEX BIT(1) #define FORCE_LINK BIT(0) /* GMAC registers */ #define GSW_PPSC 0x7000 #define PHY_AP_EN BIT(31) #define PHY_PRE_EN BIT(30) #define PHY_MDC_CFG GENMASK(29, 24) #define EPHY_AP_EN BIT(23) #define EE_AN_EN BIT(16) #define PHY_AP_END_ADDR GENMASK(12, 8) #define PHY_AP_START_ADDR GENMASK(4, 0) #define GSW_PIAC 0x7004 #define PHY_ACS_ST BIT(31) #define MDIO_REG_ADDR GENMASK(29, 25) #define MDIO_PHY_ADDR GENMASK(24, 20) #define MDIO_CMD GENMASK(19, 18) #define MDIO_CMD_WRITE 1 #define MDIO_CMD_READ 2 #define MDIO_ST GENMASK(17, 16) #define MDIO_RW_DATA GENMASK(15, 0) #define GSW_GPC1 0x7014 #define PHY_DIS GENMASK(28, 24) #define PHY_BASE GENMASK(20, 16) #define TX_CLK_MODE BIT(3) #define RX_CLK_MODE BIT(2) /* MII Registers for MDIO clause 45 indirect access */ #define MII_MMD_ACC_CTL_REG 0x0d #define MMD_OP_MODE GENMASK(15, 14) #define MMD_ADDR 0 #define MMD_DATA 1 #define MMD_DATA_RW_POST_INC 2 #define MMD_DATA_W_POST_INC 3 #define MMD_DEVAD GENMASK(4, 0) #define MII_MMD_ADDR_DATA_REG 0x0e /* MT7530 internal register access */ #define MT7530_REG_PAGE_ADDR GENMASK(15, 6) #define MT7530_REG_ADDR GENMASK(5, 2) /* MT7530 system control registers*/ #define MT7530_SYS_CTRL 0x7000 #define SW_SYS_RST BIT(1) #define SW_REG_RST BIT(0) #define MT7530_MHWTRAP 0x7804 #define P5_INTF_SEL_GMAC5 BIT(13) #define P5_INTF_DIS BIT(6) struct pdma_txd_info1 { u32 SDP0; }; struct pdma_txd_info2 { u32 SDL1 : 14; u32 LS1 : 1; u32 BURST : 1; u32 SDL0 : 14; u32 LS0 : 1; u32 DDONE : 1; }; struct pdma_txd_info3 { u32 SDP1; }; struct pdma_txd_info4 { u32 VPRI_VIDX : 8; u32 SIDX : 4; u32 INSP : 1; u32 RESV : 2; u32 UDF : 5; u32 FP_BMAP : 8; u32 TSO : 1; u32 TUI_CO : 3; }; struct pdma_tx_desc { struct pdma_txd_info1 txd_info1; struct pdma_txd_info2 txd_info2; struct pdma_txd_info3 txd_info3; struct pdma_txd_info4 txd_info4; }; struct pdma_rxd_info1 { u32 PDP0; }; struct pdma_rxd_info2 { u32 PLEN1 : 14; u32 LS1 : 1; u32 UN_USED : 1; u32 PLEN0 : 14; u32 LS0 : 1; u32 DDONE : 1; }; struct pdma_rxd_info3 { u32 PDP1; }; struct pdma_rxd_info4 { u32 FOE_ENTRY : 14; u32 CRSN : 5; u32 SP : 3; u32 L4F : 1; u32 L4VLD : 1; u32 TACK : 1; u32 IP4F : 1; u32 IP4 : 1; u32 IP6 : 1; u32 UN_USED : 4; }; struct pdma_rx_desc { struct pdma_rxd_info1 rxd_info1; struct pdma_rxd_info2 rxd_info2; struct pdma_rxd_info3 rxd_info3; struct pdma_rxd_info4 rxd_info4; }; struct mt7620_gsw_port_cfg { phy_interface_t mode; bool force_mode; bool duplex; u32 speed; int phy_addr; }; struct mt7620_eth_priv { struct udevice *dev; void __iomem *fe_base; void __iomem *gsw_base; struct mii_dev *mdio_bus; struct pdma_tx_desc *tx_ring_noc; struct pdma_rx_desc *rx_ring_noc; int rx_dma_owner_idx0; int tx_cpu_owner_idx0; void *pkt_buf; void *tx_ring; void *rx_ring; struct reset_ctl_bulk rsts; struct clk_bulk clks; struct udevice *sysc; u32 ephy_num; bool port5_mt7530; struct gpio_desc gpio_swrst; struct mt7620_gsw_port_cfg port_cfg[3]; }; #define PDMA_TIMEOUT 100000 #define NUM_TX_DESC 64 #define NUM_RX_DESC 128 #define NUM_FE_PHYS 5 #define NUM_PORTS 7 #define CPU_PORT_NUM 6 #define NUM_MT7530_PHYS 5 static void pdma_write(struct mt7620_eth_priv *priv, u32 reg, u32 val) { writel(val, priv->fe_base + PDMA_BASE + reg); } static void gdma_write(struct mt7620_eth_priv *priv, u32 reg, u32 val) { writel(val, priv->fe_base + GDMA_BASE + reg); } static void gdma_rmw(struct mt7620_eth_priv *priv, u32 reg, u32 clr, u32 set) { clrsetbits_le32(priv->fe_base + GDMA_BASE + reg, clr, set); } static u32 gsw_read(struct mt7620_eth_priv *priv, u32 reg) { return readl(priv->gsw_base + reg); } static void gsw_write(struct mt7620_eth_priv *priv, u32 reg, u32 val) { writel(val, priv->gsw_base + reg); } static void gsw_rmw(struct mt7620_eth_priv *priv, u32 reg, u32 clr, u32 set) { clrsetbits_le32(priv->gsw_base + reg, clr, set); } static int mt7620_mdio_rw(struct mt7620_eth_priv *priv, u32 phy, u32 reg, u32 data, u32 cmd) { int ret; u32 val; val = FIELD_PREP(MDIO_ST, 1) | FIELD_PREP(MDIO_CMD, cmd) | FIELD_PREP(MDIO_PHY_ADDR, phy) | FIELD_PREP(MDIO_REG_ADDR, reg); if (cmd == MDIO_CMD_WRITE) val |= FIELD_PREP(MDIO_RW_DATA, data); gsw_write(priv, GSW_PIAC, val); gsw_write(priv, GSW_PIAC, val | PHY_ACS_ST); ret = readl_poll_timeout(priv->gsw_base + GSW_PIAC, val, !(val & PHY_ACS_ST), 10000); if (ret) { dev_err(priv->dev, "mt7620_eth: MDIO access timeout\n"); return ret; } if (cmd == MDIO_CMD_READ) { val = gsw_read(priv, GSW_PIAC); return FIELD_GET(MDIO_RW_DATA, val); } return 0; } static int mt7620_mii_read(struct mt7620_eth_priv *priv, u32 phy, u32 reg) { return mt7620_mdio_rw(priv, phy, reg, 0, MDIO_CMD_READ); } static int mt7620_mii_write(struct mt7620_eth_priv *priv, u32 phy, u32 reg, u16 val) { return mt7620_mdio_rw(priv, phy, reg, val, MDIO_CMD_WRITE); } static int mt7620_mdio_read(struct mii_dev *bus, int addr, int devad, int reg) { struct mt7620_eth_priv *priv = bus->priv; int ret; if (devad < 0) return mt7620_mdio_rw(priv, addr, reg, 0, MDIO_CMD_READ); ret = mt7620_mdio_rw(priv, addr, MII_MMD_ACC_CTL_REG, FIELD_PREP(MMD_OP_MODE, MMD_ADDR) | FIELD_PREP(MMD_DEVAD, devad), MDIO_CMD_WRITE); if (ret) return ret; ret = mt7620_mdio_rw(priv, addr, MII_MMD_ADDR_DATA_REG, reg, MDIO_CMD_WRITE); if (ret) return ret; ret = mt7620_mdio_rw(priv, addr, MII_MMD_ACC_CTL_REG, FIELD_PREP(MMD_OP_MODE, MMD_DATA) | FIELD_PREP(MMD_DEVAD, devad), MDIO_CMD_WRITE); if (ret) return ret; return mt7620_mdio_rw(priv, addr, MII_MMD_ADDR_DATA_REG, 0, MDIO_CMD_READ); } static int mt7620_mdio_write(struct mii_dev *bus, int addr, int devad, int reg, u16 val) { struct mt7620_eth_priv *priv = bus->priv; int ret; if (devad < 0) return mt7620_mdio_rw(priv, addr, reg, val, MDIO_CMD_WRITE); ret = mt7620_mdio_rw(priv, addr, MII_MMD_ACC_CTL_REG, FIELD_PREP(MMD_OP_MODE, MMD_ADDR) | FIELD_PREP(MMD_DEVAD, devad), MDIO_CMD_WRITE); if (ret) return ret; ret = mt7620_mdio_rw(priv, addr, MII_MMD_ADDR_DATA_REG, reg, MDIO_CMD_WRITE); if (ret) return ret; ret = mt7620_mdio_rw(priv, addr, MII_MMD_ACC_CTL_REG, FIELD_PREP(MMD_OP_MODE, MMD_DATA) | FIELD_PREP(MMD_DEVAD, devad), MDIO_CMD_WRITE); if (ret) return ret; return mt7620_mdio_rw(priv, addr, MII_MMD_ADDR_DATA_REG, val, MDIO_CMD_WRITE); } static int mt7620_mdio_register(struct udevice *dev) { struct mt7620_eth_priv *priv = dev_get_priv(dev); struct mii_dev *mdio_bus = mdio_alloc(); int ret; if (!mdio_bus) return -ENOMEM; mdio_bus->read = mt7620_mdio_read; mdio_bus->write = mt7620_mdio_write; snprintf(mdio_bus->name, sizeof(mdio_bus->name), dev->name); mdio_bus->priv = (void *)priv; ret = mdio_register(mdio_bus); if (ret) return ret; priv->mdio_bus = mdio_bus; return 0; } static int mt7530_reg_read(struct mt7620_eth_priv *priv, u32 reg, u32 *data) { int ret, low_word, high_word; /* Write page address */ ret = mt7620_mii_write(priv, 0x1f, 0x1f, FIELD_GET(MT7530_REG_PAGE_ADDR, reg)); if (ret) return ret; /* Read low word */ low_word = mt7620_mii_read(priv, 0x1f, FIELD_GET(MT7530_REG_ADDR, reg)); if (low_word < 0) return low_word; /* Read high word */ high_word = mt7620_mii_read(priv, 0x1f, 0x10); if (high_word < 0) return high_word; if (data) *data = ((u32)high_word << 16) | ((u32)low_word & 0xffff); return 0; } static int mt7530_reg_write(struct mt7620_eth_priv *priv, u32 reg, u32 data) { int ret; /* Write page address */ ret = mt7620_mii_write(priv, 0x1f, 0x1f, FIELD_GET(MT7530_REG_PAGE_ADDR, reg)); if (ret) return ret; /* Write low word */ ret = mt7620_mii_write(priv, 0x1f, FIELD_GET(MT7530_REG_ADDR, reg), data & 0xffff); if (ret) return ret; /* Write high word */ return mt7620_mii_write(priv, 0x1f, 0x10, data >> 16); } static void mt7620_phy_restart_an(struct mt7620_eth_priv *priv, u32 phy) { u16 val; val = mt7620_mii_read(priv, phy, MII_BMCR); val |= BMCR_ANRESTART; mt7620_mii_write(priv, phy, MII_BMCR, val); } static void mt7620_gsw_ephy_init(struct mt7620_eth_priv *priv) { struct mt7620_sysc_chip_rev chip_rev; int ret; u32 i; ret = misc_ioctl(priv->sysc, MT7620_SYSC_IOCTL_GET_CHIP_REV, &chip_rev); if (ret) { /* Assume MT7620A if misc_ioctl() failed */ dev_warn(priv->dev, "mt7620_eth: failed to get chip rev\n"); chip_rev.bga = 1; } /* global, page 4 */ mt7620_mii_write(priv, 1, 31, 0x4000); mt7620_mii_write(priv, 1, 17, 0x7444); if (chip_rev.bga) mt7620_mii_write(priv, 1, 19, 0x0114); else mt7620_mii_write(priv, 1, 19, 0x0117); mt7620_mii_write(priv, 1, 22, 0x10cf); mt7620_mii_write(priv, 1, 25, 0x6212); mt7620_mii_write(priv, 1, 26, 0x0777); mt7620_mii_write(priv, 1, 29, 0x4000); mt7620_mii_write(priv, 1, 28, 0xc077); mt7620_mii_write(priv, 1, 24, 0x0000); /* global, page 3 */ mt7620_mii_write(priv, 1, 31, 0x3000); mt7620_mii_write(priv, 1, 17, 0x4838); /* global, page 2 */ mt7620_mii_write(priv, 1, 31, 0x2000); if (chip_rev.bga) { mt7620_mii_write(priv, 1, 21, 0x0515); mt7620_mii_write(priv, 1, 22, 0x0053); mt7620_mii_write(priv, 1, 23, 0x00bf); mt7620_mii_write(priv, 1, 24, 0x0aaf); mt7620_mii_write(priv, 1, 25, 0x0fad); mt7620_mii_write(priv, 1, 26, 0x0fc1); } else { mt7620_mii_write(priv, 1, 21, 0x0517); mt7620_mii_write(priv, 1, 22, 0x0fd2); mt7620_mii_write(priv, 1, 23, 0x00bf); mt7620_mii_write(priv, 1, 24, 0x0aab); mt7620_mii_write(priv, 1, 25, 0x00ae); mt7620_mii_write(priv, 1, 26, 0x0fff); } /* global, page 1 */ mt7620_mii_write(priv, 1, 31, 0x1000); mt7620_mii_write(priv, 1, 17, 0xe7f8); /* local, page 0 */ mt7620_mii_write(priv, 1, 31, 0x8000); for (i = 0; i < priv->ephy_num; i++) mt7620_mii_write(priv, i, 30, 0xa000); for (i = 0; i < priv->ephy_num; i++) mt7620_mii_write(priv, i, 4, 0x05e1); /* local, page 2 */ mt7620_mii_write(priv, 1, 31, 0xa000); mt7620_mii_write(priv, 0, 16, 0x1111); mt7620_mii_write(priv, 1, 16, 0x1010); mt7620_mii_write(priv, 2, 16, 0x1515); mt7620_mii_write(priv, 3, 16, 0x0f0f); if (priv->ephy_num == NUM_FE_PHYS) mt7620_mii_write(priv, 4, 16, 0x1313); /* Restart auto-negotiation */ for (i = 0; i < priv->ephy_num; i++) mt7620_phy_restart_an(priv, i); if (priv->port_cfg[0].phy_addr > 0) mt7620_phy_restart_an(priv, priv->port_cfg[0].phy_addr); if (priv->port_cfg[1].phy_addr > 0) mt7620_phy_restart_an(priv, priv->port_cfg[1].phy_addr); } static int mt7620_setup_gmac_mode(struct mt7620_eth_priv *priv, u32 gmac, phy_interface_t mode) { enum mt7620_sysc_ge_mode ge_mode; unsigned long req; int ret; switch (gmac) { case 1: req = MT7620_SYSC_IOCTL_SET_GE1_MODE; break; case 2: req = MT7620_SYSC_IOCTL_SET_GE2_MODE; break; default: /* Should not reach here */ return -EINVAL; } switch (mode) { case PHY_INTERFACE_MODE_MII: ge_mode = MT7620_SYSC_GE_MII; break; case PHY_INTERFACE_MODE_RMII: ge_mode = MT7620_SYSC_GE_RMII; break; case PHY_INTERFACE_MODE_RGMII: ge_mode = MT7620_SYSC_GE_RGMII; break; case PHY_INTERFACE_MODE_NA: if (gmac == 2) ge_mode = MT7620_SYSC_GE_ESW_PHY; else ge_mode = MT7620_SYSC_GE_RGMII; break; default: /* Should not reach here */ return -EINVAL; } ret = misc_ioctl(priv->sysc, req, &ge_mode); if (ret) dev_warn(priv->dev, "mt7620_eth: failed to set GE%u mode\n", gmac); return 0; } static void mt7620_gsw_setup_port(struct mt7620_eth_priv *priv, u32 port, struct mt7620_gsw_port_cfg *port_cfg) { u32 pmcr; if (port_cfg->mode == PHY_INTERFACE_MODE_NA) { if (port == 5) { gsw_write(priv, GSW_PMCR(port), FORCE_MODE); return; } port_cfg->force_mode = port == CPU_PORT_NUM ? true : false; } pmcr = FIELD_PREP(IPG_CFG, IPG_96BIT_WITH_SHORT_IPG) | MAC_MODE | MAC_TX_EN | MAC_RX_EN | BKOFF_EN | BACKPR_EN; if (port_cfg->force_mode) { pmcr |= FORCE_MODE | FORCE_RX_FC | FORCE_TX_FC | FIELD_PREP(FORCE_SPEED, port_cfg->speed) | FORCE_LINK; if (port_cfg->duplex) pmcr |= FORCE_DUPLEX; } gsw_write(priv, GSW_PMCR(port), pmcr); } static void mt7620_gsw_set_port_isolation(struct mt7620_eth_priv *priv) { u32 i; for (i = 0; i < NUM_PORTS; i++) { /* Set port matrix mode */ if (i != CPU_PORT_NUM) gsw_write(priv, GSW_PCR(i), FIELD_PREP(PORT_MATRIX, 0x40)); else gsw_write(priv, GSW_PCR(i), FIELD_PREP(PORT_MATRIX, 0x3f)); /* Set port mode to user port */ gsw_write(priv, GSW_PVC(i), FIELD_PREP(STAG_VPID, 0x8100) | FIELD_PREP(VLAN_ATTR, VLAN_ATTR_USER)); } } static void mt7620_gsw_setup_phy_polling(struct mt7620_eth_priv *priv) { int phy_addr_st, phy_addr_end; if (priv->port_cfg[0].mode == PHY_INTERFACE_MODE_NA) priv->ephy_num = NUM_FE_PHYS; else priv->ephy_num = NUM_FE_PHYS - 1; if (priv->port_cfg[0].phy_addr < 0 && priv->port_cfg[1].phy_addr < 0) return; if (priv->port_cfg[0].phy_addr > 0 && priv->port_cfg[1].phy_addr > 0) { phy_addr_st = priv->port_cfg[0].phy_addr; phy_addr_end = priv->port_cfg[1].phy_addr; } else if (priv->port_cfg[0].phy_addr > 0) { phy_addr_st = priv->port_cfg[0].phy_addr; phy_addr_end = priv->port_cfg[0].phy_addr + 1; } else { phy_addr_st = 4; phy_addr_end = priv->port_cfg[1].phy_addr; } gsw_rmw(priv, GSW_PPSC, PHY_AP_END_ADDR | PHY_AP_START_ADDR, PHY_AP_EN | FIELD_PREP(PHY_AP_START_ADDR, phy_addr_st) | FIELD_PREP(PHY_AP_END_ADDR, phy_addr_end)); } static void mt7530_gsw_set_port_isolation(struct mt7620_eth_priv *priv) { u32 i; for (i = 0; i < NUM_PORTS; i++) { /* Set port matrix mode */ if (i != CPU_PORT_NUM) mt7530_reg_write(priv, GSW_PCR(i), FIELD_PREP(PORT_MATRIX, 0x40)); else mt7530_reg_write(priv, GSW_PCR(i), FIELD_PREP(PORT_MATRIX, 0x3f)); /* Set port mode to user port */ mt7530_reg_write(priv, GSW_PVC(i), FIELD_PREP(STAG_VPID, 0x8100) | FIELD_PREP(VLAN_ATTR, VLAN_ATTR_USER)); } } static void mt7620_gsw_config_mt7530(struct mt7620_eth_priv *priv) { u16 phy_val; u32 i, val; /* Disable internal PHY, set PHY base to 12 */ gsw_write(priv, GSW_GPC1, PHY_DIS | FIELD_PREP(PHY_BASE, 12) | TX_CLK_MODE | RX_CLK_MODE); /* MT7530 reset deassert */ dm_gpio_set_value(&priv->gpio_swrst, 1); mdelay(1000); /* Turn off PHYs */ for (i = 0; i < NUM_MT7530_PHYS; i++) { phy_val = mt7620_mii_read(priv, i, MII_BMCR); phy_val |= BMCR_PDOWN; mt7620_mii_write(priv, i, MII_BMCR, phy_val); } /* Force MAC link down before reset */ mt7530_reg_write(priv, GSW_PMCR(5), FORCE_MODE); mt7530_reg_write(priv, GSW_PMCR(6), FORCE_MODE); /* MT7530 soft reset */ mt7530_reg_write(priv, MT7530_SYS_CTRL, SW_SYS_RST | SW_REG_RST); udelay(100); /* MT7530 port6 force to 1G (connects to MT7620 GSW port5) */ mt7530_reg_write(priv, GSW_PMCR(6), FIELD_PREP(IPG_CFG, IPG_96BIT_WITH_SHORT_IPG) | MAC_MODE | FORCE_MODE | MAC_TX_EN | MAC_RX_EN | BKOFF_EN | BACKPR_EN | FORCE_RX_FC | FORCE_TX_FC | FIELD_PREP(FORCE_SPEED, FORCE_SPEED_1000) | FORCE_DUPLEX | FORCE_LINK); /* Disable MT7530 port5 */ mt7530_reg_read(priv, MT7530_MHWTRAP, &val); val |= P5_INTF_SEL_GMAC5 | P5_INTF_DIS; mt7530_reg_write(priv, MT7530_MHWTRAP, val); /* Isolate each ports */ mt7530_gsw_set_port_isolation(priv); /* Turn on PHYs */ for (i = 0; i < NUM_MT7530_PHYS; i++) { phy_val = mt7620_mii_read(priv, i, MII_BMCR); phy_val &= ~BMCR_PDOWN; mt7620_mii_write(priv, i, MII_BMCR, phy_val); } /* Restart auto-negotiation */ for (i = 0; i < NUM_MT7530_PHYS; i++) mt7620_phy_restart_an(priv, i); } static void mt7620_gsw_init(struct mt7620_eth_priv *priv) { /* If port5 connects to MT7530 Giga-switch, reset it first */ if (priv->port5_mt7530) dm_gpio_set_value(&priv->gpio_swrst, 0); /* Set forward control */ gsw_write(priv, GSW_MFC, FIELD_PREP(BC_FFP, 0x7f) | FIELD_PREP(UNM_FFP, 0x7f) | FIELD_PREP(UNU_FFP, 0x7f) | CPU_EN | FIELD_PREP(CPU_PORT, CPU_PORT_NUM)); /* Set GMAC mode (GMAC1 -> Port5, GMAC2 -> Port4) */ mt7620_setup_gmac_mode(priv, 1, priv->port_cfg[1].mode); mt7620_setup_gmac_mode(priv, 2, priv->port_cfg[0].mode); /* port_cfg[2] is CPU port */ priv->port_cfg[2].force_mode = true; priv->port_cfg[2].duplex = true; priv->port_cfg[2].speed = FORCE_SPEED_1000; /* Configure GSW MAC port */ mt7620_gsw_setup_port(priv, 4, &priv->port_cfg[0]); mt7620_gsw_setup_port(priv, 5, &priv->port_cfg[1]); mt7620_gsw_setup_port(priv, 6, &priv->port_cfg[2]); /* Isolate each port */ mt7620_gsw_set_port_isolation(priv); /* Polling external phy if exists */ mt7620_gsw_setup_phy_polling(priv); /* Configure ephy */ mt7620_gsw_ephy_init(priv); /* If port5 connects to MT7530 Giga-switch, do initialization */ if (priv->port5_mt7530) mt7620_gsw_config_mt7530(priv); } static void mt7620_eth_fifo_init(struct mt7620_eth_priv *priv) { uintptr_t pkt_base = (uintptr_t)priv->pkt_buf; int i; memset(priv->tx_ring, 0, NUM_TX_DESC * sizeof(struct pdma_tx_desc)); memset(priv->rx_ring, 0, NUM_RX_DESC * sizeof(struct pdma_rx_desc)); memset(priv->pkt_buf, 0, (NUM_TX_DESC + NUM_RX_DESC) * PKTSIZE_ALIGN); priv->tx_ring_noc = (void *)CKSEG1ADDR((uintptr_t)priv->tx_ring); priv->rx_ring_noc = (void *)CKSEG1ADDR((uintptr_t)priv->rx_ring); priv->rx_dma_owner_idx0 = 0; priv->tx_cpu_owner_idx0 = 0; for (i = 0; i < NUM_TX_DESC; i++) { priv->tx_ring_noc[i].txd_info2.LS0 = 1; priv->tx_ring_noc[i].txd_info2.DDONE = 1; priv->tx_ring_noc[i].txd_info4.FP_BMAP = GDMA_DST_PORT_CPU; priv->tx_ring_noc[i].txd_info1.SDP0 = CPHYSADDR(pkt_base); pkt_base += PKTSIZE_ALIGN; } for (i = 0; i < NUM_RX_DESC; i++) { priv->rx_ring_noc[i].rxd_info2.PLEN0 = PKTSIZE_ALIGN; priv->rx_ring_noc[i].rxd_info1.PDP0 = CPHYSADDR(pkt_base); pkt_base += PKTSIZE_ALIGN; } pdma_write(priv, TX_BASE_PTR0, CPHYSADDR(priv->tx_ring_noc)); pdma_write(priv, TX_MAX_CNT0, NUM_TX_DESC); pdma_write(priv, TX_CTX_IDX0, priv->tx_cpu_owner_idx0); pdma_write(priv, RX_BASE_PTR0, CPHYSADDR(priv->rx_ring_noc)); pdma_write(priv, RX_MAX_CNT0, NUM_RX_DESC); pdma_write(priv, RX_CALC_IDX0, NUM_RX_DESC - 1); pdma_write(priv, PDMA_RST_IDX, RST_DTX_IDX0 | RST_DRX_IDX0); } static int mt7620_eth_start(struct udevice *dev) { struct mt7620_eth_priv *priv = dev_get_priv(dev); mt7620_eth_fifo_init(priv); gdma_rmw(priv, GDMA_FWD_CFG, GDMA_DST_PORT, FIELD_PREP(GDMA_DST_PORT, GDMA_DST_PORT_CPU)); pdma_write(priv, PDMA_GLO_CFG, FIELD_PREP(PDMA_BT_SIZE, PDMA_BT_SIZE_32B) | TX_WB_DDONE | RX_DMA_EN | TX_DMA_EN); udelay(500); return 0; } static void mt7620_eth_stop(struct udevice *dev) { struct mt7620_eth_priv *priv = dev_get_priv(dev); u32 val; int ret; pdma_write(priv, PDMA_GLO_CFG, FIELD_PREP(PDMA_BT_SIZE, PDMA_BT_SIZE_32B)); udelay(500); ret = readl_poll_timeout(priv->fe_base + PDMA_BASE + PDMA_GLO_CFG, val, !(val & (RX_DMA_BUSY | TX_DMA_BUSY)), PDMA_TIMEOUT); if (ret) dev_warn(dev, "mt7620_eth: PDMA is still busy\n"); } static int mt7620_eth_write_hwaddr(struct udevice *dev) { struct eth_pdata *pdata = dev_get_plat(dev); struct mt7620_eth_priv *priv = dev_get_priv(dev); unsigned char *mac = pdata->enetaddr; u32 macaddr_lsb, macaddr_msb; macaddr_msb = ((u32)mac[0] << 8) | (u32)mac[1]; macaddr_lsb = ((u32)mac[2] << 24) | ((u32)mac[3] << 16) | ((u32)mac[4] << 8) | (u32)mac[5]; gdma_write(priv, GDMA_MAC_ADRH, macaddr_msb); gdma_write(priv, GDMA_MAC_ADRL, macaddr_lsb); return 0; } static int mt7620_eth_send(struct udevice *dev, void *packet, int length) { struct mt7620_eth_priv *priv = dev_get_priv(dev); u32 idx = priv->tx_cpu_owner_idx0; void *pkt_base; if (!priv->tx_ring_noc[idx].txd_info2.DDONE) { printf("mt7620_eth: TX DMA descriptor ring is full\n"); return -EPERM; } pkt_base = (void *)CKSEG0ADDR(priv->tx_ring_noc[idx].txd_info1.SDP0); memcpy(pkt_base, packet, length); flush_dcache_range((ulong)pkt_base, (ulong)pkt_base + length); priv->tx_ring_noc[idx].txd_info2.SDL0 = length; priv->tx_ring_noc[idx].txd_info2.DDONE = 0; priv->tx_cpu_owner_idx0 = (priv->tx_cpu_owner_idx0 + 1) % NUM_TX_DESC; pdma_write(priv, TX_CTX_IDX0, priv->tx_cpu_owner_idx0); return 0; } static int mt7620_eth_recv(struct udevice *dev, int flags, uchar **packetp) { struct mt7620_eth_priv *priv = dev_get_priv(dev); u32 idx = priv->rx_dma_owner_idx0, length; uchar *pkt_base; if (!priv->rx_ring_noc[idx].rxd_info2.DDONE) { debug("mt7620_eth: RX DMA descriptor ring is empty\n"); return -EAGAIN; } length = priv->rx_ring_noc[idx].rxd_info2.PLEN0; pkt_base = (void *)CKSEG0ADDR(priv->rx_ring_noc[idx].rxd_info1.PDP0); invalidate_dcache_range((ulong)pkt_base, (ulong)pkt_base + length); if (packetp) *packetp = pkt_base; return length; } static int mt7620_eth_free_pkt(struct udevice *dev, uchar *packet, int length) { struct mt7620_eth_priv *priv = dev_get_priv(dev); u32 idx = priv->rx_dma_owner_idx0; priv->rx_ring_noc[idx].rxd_info2.DDONE = 0; priv->rx_ring_noc[idx].rxd_info2.LS0 = 0; priv->rx_ring_noc[idx].rxd_info2.PLEN0 = PKTSIZE_ALIGN; pdma_write(priv, RX_CALC_IDX0, idx); priv->rx_dma_owner_idx0 = (priv->rx_dma_owner_idx0 + 1) % NUM_RX_DESC; return 0; } static const struct eth_ops mt7620_eth_ops = { .start = mt7620_eth_start, .stop = mt7620_eth_stop, .send = mt7620_eth_send, .recv = mt7620_eth_recv, .free_pkt = mt7620_eth_free_pkt, .write_hwaddr = mt7620_eth_write_hwaddr, }; static int mt7620_eth_alloc_rings_pkts(struct mt7620_eth_priv *priv) { priv->tx_ring = memalign(ARCH_DMA_MINALIGN, NUM_TX_DESC * sizeof(struct pdma_tx_desc)); if (!priv->tx_ring) { dev_err(priv->dev, "mt7620_eth: unable to alloc tx ring\n"); return -ENOMEM; } priv->rx_ring = memalign(ARCH_DMA_MINALIGN, NUM_RX_DESC * sizeof(struct pdma_rx_desc)); if (!priv->rx_ring) { dev_err(priv->dev, "mt7620_eth: unable to alloc rx ring\n"); goto cleanup; } priv->pkt_buf = memalign(ARCH_DMA_MINALIGN, (NUM_TX_DESC + NUM_RX_DESC) * PKTSIZE_ALIGN); if (!priv->pkt_buf) { dev_err(priv->dev, "mt7620_eth: unable to alloc pkt buffer\n"); goto cleanup; } return 0; cleanup: if (priv->tx_ring) free(priv->tx_ring); if (priv->rx_ring) free(priv->rx_ring); return -ENOMEM; } static void mt7620_eth_free_rings_pkts(struct mt7620_eth_priv *priv) { free(priv->tx_ring); free(priv->rx_ring); free(priv->pkt_buf); } static int mt7620_eth_probe(struct udevice *dev) { struct mt7620_eth_priv *priv = dev_get_priv(dev); u32 pcie_mode = MT7620_SYSC_PCIE_RC_MODE; int ret; misc_ioctl(priv->sysc, MT7620_SYSC_IOCTL_SET_PCIE_MODE, &pcie_mode); clk_enable_bulk(&priv->clks); reset_assert_bulk(&priv->rsts); udelay(100); reset_deassert_bulk(&priv->rsts); udelay(1000); ret = mt7620_eth_alloc_rings_pkts(priv); if (ret) return ret; ret = mt7620_mdio_register(dev); if (ret) dev_warn(dev, "mt7620_eth: failed to register MDIO bus\n"); mt7620_gsw_init(priv); return 0; } static int mt7620_eth_remove(struct udevice *dev) { struct mt7620_eth_priv *priv = dev_get_priv(dev); mt7620_eth_stop(dev); mt7620_eth_free_rings_pkts(priv); return 0; } static int mt7620_eth_parse_gsw_port(struct mt7620_eth_priv *priv, u32 idx, ofnode node) { ofnode subnode; int speed, ret; u32 phy_addr; priv->port_cfg[idx].mode = ofnode_read_phy_mode(node); switch (priv->port_cfg[idx].mode) { case PHY_INTERFACE_MODE_MII: case PHY_INTERFACE_MODE_RMII: case PHY_INTERFACE_MODE_RGMII: case PHY_INTERFACE_MODE_NA: break; default: dev_err(priv->dev, "mt7620_eth: unsupported phy-mode\n"); return -ENOTSUPP; } subnode = ofnode_find_subnode(node, "fixed-link"); if (ofnode_valid(subnode)) { priv->port_cfg[idx].force_mode = 1; priv->port_cfg[idx].duplex = ofnode_read_bool(subnode, "full-duplex"); speed = ofnode_read_u32_default(subnode, "speed", 0); switch (speed) { case SPEED_10: priv->port_cfg[idx].speed = FORCE_SPEED_10; break; case SPEED_100: priv->port_cfg[idx].speed = FORCE_SPEED_100; break; case SPEED_1000: priv->port_cfg[idx].speed = FORCE_SPEED_1000; break; default: dev_err(priv->dev, "mt7620_eth: invalid speed for fixed-link\n"); return -EINVAL; } if (idx == 1 && ofnode_read_bool(subnode, "mediatek,mt7530")) { priv->port5_mt7530 = true; ret = gpio_request_by_name_nodev(subnode, "mediatek,mt7530-reset", 0, &priv->gpio_swrst, GPIOD_IS_OUT); if (ret) { dev_err(priv->dev, "mt7620_eth: missing mt7530 reset gpio\n"); return ret; } } } ret = ofnode_read_u32(node, "phy-addr", &phy_addr); if (!ret) { if (phy_addr > 31 || (idx == 0 && phy_addr < 3) || (idx == 1 && phy_addr < 4)) { dev_err(priv->dev, "mt7620_eth: invalid phy address\n"); return -EINVAL; } priv->port_cfg[idx].phy_addr = phy_addr; } else { priv->port_cfg[idx].phy_addr = -1; } return 0; } static int mt7620_eth_parse_gsw_cfg(struct udevice *dev) { struct mt7620_eth_priv *priv = dev_get_priv(dev); ofnode subnode; int ret; subnode = ofnode_find_subnode(dev_ofnode(dev), "port4"); if (ofnode_valid(subnode)) { ret = mt7620_eth_parse_gsw_port(priv, 0, subnode); if (ret) return ret; } else { priv->port_cfg[0].mode = PHY_INTERFACE_MODE_NA; } subnode = ofnode_find_subnode(dev_ofnode(dev), "port5"); if (ofnode_valid(subnode)) return mt7620_eth_parse_gsw_port(priv, 1, subnode); priv->port_cfg[1].mode = PHY_INTERFACE_MODE_NA; return 0; } static int mt7620_eth_of_to_plat(struct udevice *dev) { struct eth_pdata *pdata = dev_get_plat(dev); struct mt7620_eth_priv *priv = dev_get_priv(dev); struct ofnode_phandle_args sysc_args; int ret; pdata->iobase = dev_read_addr(dev); priv->dev = dev; ret = ofnode_parse_phandle_with_args(dev_ofnode(dev), "mediatek,sysc", NULL, 0, 0, &sysc_args); if (ret) { dev_err(dev, "mt7620_eth: sysc property not found\n"); return ret; } ret = uclass_get_device_by_ofnode(UCLASS_MISC, sysc_args.node, &priv->sysc); if (ret) { dev_err(dev, "mt7620_eth: failed to sysc device\n"); return ret; } priv->fe_base = dev_remap_addr_name(dev, "fe"); if (!priv->fe_base) { dev_err(dev, "mt7620_eth: failed to map fe registers\n"); return -EINVAL; } priv->gsw_base = dev_remap_addr_name(dev, "esw"); if (!priv->gsw_base) { dev_err(dev, "mt7620_eth: failed to map esw registers\n"); return -EINVAL; } ret = reset_get_bulk(dev, &priv->rsts); if (ret) { dev_err(dev, "mt7620_eth: failed to get resetctl\n"); return ret; } ret = clk_get_bulk(dev, &priv->clks); if (ret) { dev_err(dev, "mt7620_eth: failed to get clocks\n"); return ret; } return mt7620_eth_parse_gsw_cfg(dev); } static const struct udevice_id mt7620_eth_ids[] = { { .compatible = "mediatek,mt7620-eth" }, {} }; U_BOOT_DRIVER(mt7620_eth) = { .name = "mt7620-eth", .id = UCLASS_ETH, .of_match = mt7620_eth_ids, .of_to_plat = mt7620_eth_of_to_plat, .plat_auto = sizeof(struct eth_pdata), .probe = mt7620_eth_probe, .remove = mt7620_eth_remove, .ops = &mt7620_eth_ops, .priv_auto = sizeof(struct mt7620_eth_priv), };