// SPDX-License-Identifier: GPL-2.0+ /* * Micrel KS8851_MLL 16bit Network driver * Copyright (c) 2011 Roberto Cerati */ #include #include #include #include #include #include #include #include #include "ks8851_mll.h" #define DRIVERNAME "ks8851_mll" #define RX_BUF_SIZE 2000 /* * struct ks_net - KS8851 driver private data * @dev : legacy non-DM ethernet device structure * @iobase : register base * @bus_width : i/o bus width. * @sharedbus : Multipex(addr and data bus) mode indicator. * @extra_byte : number of extra byte prepended rx pkt. */ struct ks_net { phys_addr_t iobase; int bus_width; u16 sharedbus; u16 rxfc; u8 extra_byte; }; #define BE3 0x8000 /* Byte Enable 3 */ #define BE2 0x4000 /* Byte Enable 2 */ #define BE1 0x2000 /* Byte Enable 1 */ #define BE0 0x1000 /* Byte Enable 0 */ static u8 ks_rdreg8(struct ks_net *ks, u16 offset) { u8 shift_bit = offset & 0x03; u8 shift_data = (offset & 1) << 3; writew(offset | (BE0 << shift_bit), ks->iobase + 2); return (u8)(readw(ks->iobase) >> shift_data); } static u16 ks_rdreg16(struct ks_net *ks, u16 offset) { writew(offset | ((BE1 | BE0) << (offset & 0x02)), ks->iobase + 2); return readw(ks->iobase); } static void ks_wrreg16(struct ks_net *ks, u16 offset, u16 val) { writew(offset | ((BE1 | BE0) << (offset & 0x02)), ks->iobase + 2); writew(val, ks->iobase); } /* * ks_inblk - read a block of data from QMU. This is called after sudo DMA mode * enabled. * @ks: The chip state * @wptr: buffer address to save data * @len: length in byte to read */ static inline void ks_inblk(struct ks_net *ks, u16 *wptr, u32 len) { len >>= 1; while (len--) *wptr++ = readw(ks->iobase); } /* * ks_outblk - write data to QMU. This is called after sudo DMA mode enabled. * @ks: The chip information * @wptr: buffer address * @len: length in byte to write */ static inline void ks_outblk(struct ks_net *ks, u16 *wptr, u32 len) { len >>= 1; while (len--) writew(*wptr++, ks->iobase); } static void ks_enable_int(struct ks_net *ks) { ks_wrreg16(ks, KS_IER, IRQ_LCI | IRQ_TXI | IRQ_RXI); } static void ks_set_powermode(struct ks_net *ks, unsigned int pwrmode) { unsigned int pmecr; ks_rdreg16(ks, KS_GRR); pmecr = ks_rdreg16(ks, KS_PMECR); pmecr &= ~PMECR_PM_MASK; pmecr |= pwrmode; ks_wrreg16(ks, KS_PMECR, pmecr); } /* * ks_read_config - read chip configuration of bus width. * @ks: The chip information */ static void ks_read_config(struct ks_net *ks) { u16 reg_data = 0; /* Regardless of bus width, 8 bit read should always work. */ reg_data = ks_rdreg8(ks, KS_CCR) & 0x00FF; reg_data |= ks_rdreg8(ks, KS_CCR + 1) << 8; /* addr/data bus are multiplexed */ ks->sharedbus = (reg_data & CCR_SHARED) == CCR_SHARED; /* * There are garbage data when reading data from QMU, * depending on bus-width. */ if (reg_data & CCR_8BIT) { ks->bus_width = ENUM_BUS_8BIT; ks->extra_byte = 1; } else if (reg_data & CCR_16BIT) { ks->bus_width = ENUM_BUS_16BIT; ks->extra_byte = 2; } else { ks->bus_width = ENUM_BUS_32BIT; ks->extra_byte = 4; } } /* * ks_soft_reset - issue one of the soft reset to the device * @ks: The device state. * @op: The bit(s) to set in the GRR * * Issue the relevant soft-reset command to the device's GRR register * specified by @op. * * Note, the delays are in there as a caution to ensure that the reset * has time to take effect and then complete. Since the datasheet does * not currently specify the exact sequence, we have chosen something * that seems to work with our device. */ static void ks_soft_reset(struct ks_net *ks, unsigned int op) { /* Disable interrupt first */ ks_wrreg16(ks, KS_IER, 0x0000); ks_wrreg16(ks, KS_GRR, op); mdelay(10); /* wait a short time to effect reset */ ks_wrreg16(ks, KS_GRR, 0); mdelay(1); /* wait for condition to clear */ } void ks_enable_qmu(struct ks_net *ks) { u16 w; w = ks_rdreg16(ks, KS_TXCR); /* Enables QMU Transmit (TXCR). */ ks_wrreg16(ks, KS_TXCR, w | TXCR_TXE); /* Enable RX Frame Count Threshold and Auto-Dequeue RXQ Frame */ w = ks_rdreg16(ks, KS_RXQCR); ks_wrreg16(ks, KS_RXQCR, w | RXQCR_RXFCTE); /* Enables QMU Receive (RXCR1). */ w = ks_rdreg16(ks, KS_RXCR1); ks_wrreg16(ks, KS_RXCR1, w | RXCR1_RXE); } static void ks_disable_qmu(struct ks_net *ks) { u16 w; w = ks_rdreg16(ks, KS_TXCR); /* Disables QMU Transmit (TXCR). */ w &= ~TXCR_TXE; ks_wrreg16(ks, KS_TXCR, w); /* Disables QMU Receive (RXCR1). */ w = ks_rdreg16(ks, KS_RXCR1); w &= ~RXCR1_RXE; ks_wrreg16(ks, KS_RXCR1, w); } static inline void ks_read_qmu(struct ks_net *ks, u16 *buf, u32 len) { u32 r = ks->extra_byte & 0x1; u32 w = ks->extra_byte - r; /* 1. set sudo DMA mode */ ks_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI); ks_wrreg16(ks, KS_RXQCR, RXQCR_CMD_CNTL | RXQCR_SDA); /* * 2. read prepend data * * read 4 + extra bytes and discard them. * extra bytes for dummy, 2 for status, 2 for len */ if (r) ks_rdreg8(ks, 0); ks_inblk(ks, buf, w + 2 + 2); /* 3. read pkt data */ ks_inblk(ks, buf, ALIGN(len, 4)); /* 4. reset sudo DMA Mode */ ks_wrreg16(ks, KS_RXQCR, RXQCR_CMD_CNTL); } static int ks_rcv(struct ks_net *ks, uchar *data) { u16 sts, len; if (!ks->rxfc) ks->rxfc = ks_rdreg16(ks, KS_RXFCTR) >> 8; if (!ks->rxfc) return 0; /* Checking Received packet status */ sts = ks_rdreg16(ks, KS_RXFHSR); /* Get packet len from hardware */ len = ks_rdreg16(ks, KS_RXFHBCR); if ((sts & RXFSHR_RXFV) && len && (len < RX_BUF_SIZE)) { /* read data block including CRC 4 bytes */ ks_read_qmu(ks, (u16 *)data, len); ks->rxfc--; return len - 4; } ks_wrreg16(ks, KS_RXQCR, RXQCR_CMD_CNTL | RXQCR_RRXEF); printf(DRIVERNAME ": bad packet (sts=0x%04x len=0x%04x)\n", sts, len); ks->rxfc = 0; return 0; } /* * ks_read_selftest - read the selftest memory info. * @ks: The device state * * Read and check the TX/RX memory selftest information. */ static int ks_read_selftest(struct ks_net *ks) { u16 both_done = MBIR_TXMBF | MBIR_RXMBF; u16 mbir; int ret = 0; mbir = ks_rdreg16(ks, KS_MBIR); if ((mbir & both_done) != both_done) { printf(DRIVERNAME ": Memory selftest not finished\n"); return 0; } if (mbir & MBIR_TXMBFA) { printf(DRIVERNAME ": TX memory selftest fails\n"); ret |= 1; } if (mbir & MBIR_RXMBFA) { printf(DRIVERNAME ": RX memory selftest fails\n"); ret |= 2; } debug(DRIVERNAME ": the selftest passes\n"); return ret; } static void ks_setup(struct ks_net *ks) { u16 w; /* Setup Transmit Frame Data Pointer Auto-Increment (TXFDPR) */ ks_wrreg16(ks, KS_TXFDPR, TXFDPR_TXFPAI); /* Setup Receive Frame Data Pointer Auto-Increment */ ks_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI); /* Setup Receive Frame Threshold - 1 frame (RXFCTFC) */ ks_wrreg16(ks, KS_RXFCTR, 1 & RXFCTR_THRESHOLD_MASK); /* Setup RxQ Command Control (RXQCR) */ ks_wrreg16(ks, KS_RXQCR, RXQCR_CMD_CNTL); /* * set the force mode to half duplex, default is full duplex * because if the auto-negotiation fails, most switch uses * half-duplex. */ w = ks_rdreg16(ks, KS_P1MBCR); w &= ~P1MBCR_FORCE_FDX; ks_wrreg16(ks, KS_P1MBCR, w); w = TXCR_TXFCE | TXCR_TXPE | TXCR_TXCRC | TXCR_TCGIP; ks_wrreg16(ks, KS_TXCR, w); w = RXCR1_RXFCE | RXCR1_RXBE | RXCR1_RXUE | RXCR1_RXME | RXCR1_RXIPFCC; /* Normal mode */ w |= RXCR1_RXPAFMA; ks_wrreg16(ks, KS_RXCR1, w); } static void ks_setup_int(struct ks_net *ks) { /* Clear the interrupts status of the hardware. */ ks_wrreg16(ks, KS_ISR, 0xffff); } static int ks8851_mll_detect_chip(struct ks_net *ks) { unsigned short val; ks_read_config(ks); val = ks_rdreg16(ks, KS_CIDER); if (val == 0xffff) { /* Special case -- no chip present */ printf(DRIVERNAME ": is chip mounted ?\n"); return -1; } else if ((val & 0xfff0) != CIDER_ID) { printf(DRIVERNAME ": Invalid chip id 0x%04x\n", val); return -1; } debug("Read back KS8851 id 0x%x\n", val); if ((val & 0xfff0) != CIDER_ID) { printf(DRIVERNAME ": Unknown chip ID %04x\n", val); return -1; } return 0; } static void ks8851_mll_reset(struct ks_net *ks) { /* wake up powermode to normal mode */ ks_set_powermode(ks, PMECR_PM_NORMAL); mdelay(1); /* wait for normal mode to take effect */ /* Disable interrupt and reset */ ks_soft_reset(ks, GRR_GSR); /* turn off the IRQs and ack any outstanding */ ks_wrreg16(ks, KS_IER, 0x0000); ks_wrreg16(ks, KS_ISR, 0xffff); /* shutdown RX/TX QMU */ ks_disable_qmu(ks); } static void ks8851_mll_phy_configure(struct ks_net *ks) { u16 data; ks_setup(ks); ks_setup_int(ks); /* Probing the phy */ data = ks_rdreg16(ks, KS_OBCR); ks_wrreg16(ks, KS_OBCR, data | OBCR_ODS_16MA); debug(DRIVERNAME ": phy initialized\n"); } static void ks8851_mll_enable(struct ks_net *ks) { ks_wrreg16(ks, KS_ISR, 0xffff); ks_enable_int(ks); ks_enable_qmu(ks); } static int ks8851_mll_init_common(struct ks_net *ks) { if (ks_read_selftest(ks)) { printf(DRIVERNAME ": Selftest failed\n"); return -1; } ks8851_mll_reset(ks); /* Configure the PHY, initialize the link state */ ks8851_mll_phy_configure(ks); ks->rxfc = 0; /* Turn on Tx + Rx */ ks8851_mll_enable(ks); return 0; } static void ks_write_qmu(struct ks_net *ks, u8 *pdata, u16 len) { __le16 txw[2]; /* start header at txb[0] to align txw entries */ txw[0] = 0; txw[1] = cpu_to_le16(len); /* 1. set sudo-DMA mode */ ks_wrreg16(ks, KS_TXFDPR, TXFDPR_TXFPAI); ks_wrreg16(ks, KS_RXQCR, RXQCR_CMD_CNTL | RXQCR_SDA); /* 2. write status/length info */ ks_outblk(ks, txw, 4); /* 3. write pkt data */ ks_outblk(ks, (u16 *)pdata, ALIGN(len, 4)); /* 4. reset sudo-DMA mode */ ks_wrreg16(ks, KS_RXQCR, RXQCR_CMD_CNTL); /* 5. Enqueue Tx(move the pkt from TX buffer into TXQ) */ ks_wrreg16(ks, KS_TXQCR, TXQCR_METFE); /* 6. wait until TXQCR_METFE is auto-cleared */ do { } while (ks_rdreg16(ks, KS_TXQCR) & TXQCR_METFE); } static int ks8851_mll_send_common(struct ks_net *ks, void *packet, int length) { u8 *data = (u8 *)packet; u16 tmplen = (u16)length; u16 retv; /* * Extra space are required: * 4 byte for alignment, 4 for status/length, 4 for CRC */ retv = ks_rdreg16(ks, KS_TXMIR) & 0x1fff; if (retv >= tmplen + 12) { ks_write_qmu(ks, data, tmplen); return 0; } printf(DRIVERNAME ": failed to send packet: No buffer\n"); return -1; } static void ks8851_mll_halt_common(struct ks_net *ks) { ks8851_mll_reset(ks); } /* * Maximum receive ring size; that is, the number of packets * we can buffer before overflow happens. Basically, this just * needs to be enough to prevent a packet being discarded while * we are processing the previous one. */ static int ks8851_mll_recv_common(struct ks_net *ks, uchar *data) { u16 status; int ret = 0; status = ks_rdreg16(ks, KS_ISR); ks_wrreg16(ks, KS_ISR, status); if (ks->rxfc || (status & IRQ_RXI)) ret = ks_rcv(ks, data); if (status & IRQ_LDI) { u16 pmecr = ks_rdreg16(ks, KS_PMECR); pmecr &= ~PMECR_WKEVT_MASK; ks_wrreg16(ks, KS_PMECR, pmecr | PMECR_WKEVT_LINK); } return ret; } static void ks8851_mll_write_hwaddr_common(struct ks_net *ks, u8 enetaddr[6]) { u16 addrl, addrm, addrh; addrh = (enetaddr[0] << 8) | enetaddr[1]; addrm = (enetaddr[2] << 8) | enetaddr[3]; addrl = (enetaddr[4] << 8) | enetaddr[5]; ks_wrreg16(ks, KS_MARH, addrh); ks_wrreg16(ks, KS_MARM, addrm); ks_wrreg16(ks, KS_MARL, addrl); } static int ks8851_start(struct udevice *dev) { struct ks_net *ks = dev_get_priv(dev); return ks8851_mll_init_common(ks); } static void ks8851_stop(struct udevice *dev) { struct ks_net *ks = dev_get_priv(dev); ks8851_mll_halt_common(ks); } static int ks8851_send(struct udevice *dev, void *packet, int length) { struct ks_net *ks = dev_get_priv(dev); int ret; ret = ks8851_mll_send_common(ks, packet, length); return ret ? 0 : -ETIMEDOUT; } static int ks8851_recv(struct udevice *dev, int flags, uchar **packetp) { struct ks_net *ks = dev_get_priv(dev); uchar *data = net_rx_packets[0]; int ret; ret = ks8851_mll_recv_common(ks, data); if (ret) *packetp = (void *)data; return ret ? ret : -EAGAIN; } static int ks8851_write_hwaddr(struct udevice *dev) { struct ks_net *ks = dev_get_priv(dev); struct eth_pdata *pdata = dev_get_plat(dev); ks8851_mll_write_hwaddr_common(ks, pdata->enetaddr); return 0; } static int ks8851_read_rom_hwaddr(struct udevice *dev) { struct ks_net *ks = dev_get_priv(dev); struct eth_pdata *pdata = dev_get_plat(dev); u16 addrl, addrm, addrh; /* No EEPROM means no valid MAC address. */ if (!(ks_rdreg16(ks, KS_CCR) & CCR_EEPROM)) return -EINVAL; /* * If the EEPROM contains valid MAC address, it is loaded into * the NIC on power on. Read the MAC out of the NIC registers. */ addrl = ks_rdreg16(ks, KS_MARL); addrm = ks_rdreg16(ks, KS_MARM); addrh = ks_rdreg16(ks, KS_MARH); pdata->enetaddr[0] = (addrh >> 8) & 0xff; pdata->enetaddr[1] = addrh & 0xff; pdata->enetaddr[2] = (addrm >> 8) & 0xff; pdata->enetaddr[3] = addrm & 0xff; pdata->enetaddr[4] = (addrl >> 8) & 0xff; pdata->enetaddr[5] = addrl & 0xff; return !is_valid_ethaddr(pdata->enetaddr); } static int ks8851_bind(struct udevice *dev) { return device_set_name(dev, dev->name); } static int ks8851_probe(struct udevice *dev) { struct ks_net *ks = dev_get_priv(dev); /* Try to detect chip. Will fail if not present. */ ks8851_mll_detect_chip(ks); return 0; } static int ks8851_of_to_plat(struct udevice *dev) { struct ks_net *ks = dev_get_priv(dev); struct eth_pdata *pdata = dev_get_plat(dev); pdata->iobase = dev_read_addr(dev); ks->iobase = pdata->iobase; return 0; } static const struct eth_ops ks8851_ops = { .start = ks8851_start, .stop = ks8851_stop, .send = ks8851_send, .recv = ks8851_recv, .write_hwaddr = ks8851_write_hwaddr, .read_rom_hwaddr = ks8851_read_rom_hwaddr, }; static const struct udevice_id ks8851_ids[] = { { .compatible = "micrel,ks8851-mll" }, { } }; U_BOOT_DRIVER(ks8851) = { .name = "eth_ks8851", .id = UCLASS_ETH, .of_match = ks8851_ids, .bind = ks8851_bind, .of_to_plat = ks8851_of_to_plat, .probe = ks8851_probe, .ops = &ks8851_ops, .priv_auto = sizeof(struct ks_net), .plat_auto = sizeof(struct eth_pdata), .flags = DM_FLAG_ALLOC_PRIV_DMA, };