// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2020 Cortina Access Inc. * Author: Aaron Tseng * * Ethernet MAC Driver for all supported CAxxxx SoCs */ #include #include #include #include #include #include #include #include #include #include #include "cortina_ni.h" #define HEADER_A_SIZE 8 enum ca_led_state_t { CA_LED_OFF = 0, CA_LED_ON = 1, }; enum ca_port_t { NI_PORT_0 = 0, NI_PORT_1, NI_PORT_2, NI_PORT_3, NI_PORT_4, NI_PORT_5, NI_PORT_MAX, }; static struct udevice *curr_dev; static u32 *ca_rdwrptr_adv_one(u32 *x, unsigned long base, unsigned long max) { if (x + 1 >= (u32 *)max) return (u32 *)base; else return (x + 1); } static void ca_reg_read(void *reg, u64 base, u64 offset) { u32 *val = (u32 *)reg; *val = readl(KSEG1_ATU_XLAT(base + offset)); } static void ca_reg_write(void *reg, u64 base, u64 offset) { u32 val = *(u32 *)reg; writel(val, KSEG1_ATU_XLAT(base + offset)); } static int ca_mdio_write_rgmii(u32 addr, u32 offset, u16 data) { /* up to 10000 cycles*/ u32 loop_wait = __MDIO_ACCESS_TIMEOUT; struct PER_MDIO_ADDR_t mdio_addr; struct PER_MDIO_CTRL_t mdio_ctrl; struct cortina_ni_priv *priv = dev_get_priv(curr_dev); memset(&mdio_addr, 0, sizeof(mdio_addr)); mdio_addr.mdio_addr = addr; mdio_addr.mdio_offset = offset; mdio_addr.mdio_rd_wr = __MDIO_WR_FLAG; ca_reg_write(&mdio_addr, (u64)priv->per_mdio_base_addr, PER_MDIO_ADDR_OFFSET); ca_reg_write(&data, (u64)priv->per_mdio_base_addr, PER_MDIO_WRDATA_OFFSET); memset(&mdio_ctrl, 0, sizeof(mdio_ctrl)); mdio_ctrl.mdiostart = 1; ca_reg_write(&mdio_ctrl, (u64)priv->per_mdio_base_addr, PER_MDIO_CTRL_OFFSET); debug("%s: phy_addr=%d, offset=%d, data=0x%x\n", __func__, addr, offset, data); do { ca_reg_read(&mdio_ctrl, (u64)priv->per_mdio_base_addr, PER_MDIO_CTRL_OFFSET); if (mdio_ctrl.mdiodone) { ca_reg_write(&mdio_ctrl, (u64)priv->per_mdio_base_addr, PER_MDIO_CTRL_OFFSET); return 0; } } while (--loop_wait); printf("CA NI %s: PHY write timeout!!!\n", __func__); return -ETIMEDOUT; } int ca_mdio_write(u32 addr, u32 offset, u16 data) { u32 reg_addr, reg_val; struct NI_MDIO_OPER_T mdio_oper; /* support range: 1~31*/ if (addr < CA_MDIO_ADDR_MIN || addr > CA_MDIO_ADDR_MAX) return -EINVAL; /* the phy addr 5 is connect to RGMII */ if (addr >= 5) return ca_mdio_write_rgmii(addr, offset, data); memset(&mdio_oper, 0, sizeof(mdio_oper)); mdio_oper.reg_off = offset; mdio_oper.phy_addr = addr; mdio_oper.reg_base = CA_NI_MDIO_REG_BASE; reg_val = data; memcpy(®_addr, &mdio_oper, sizeof(reg_addr)); ca_reg_write(®_val, (u64)reg_addr, 0); return 0; } static int ca_mdio_read_rgmii(u32 addr, u32 offset, u16 *data) { u32 loop_wait = __MDIO_ACCESS_TIMEOUT; struct PER_MDIO_ADDR_t mdio_addr; struct PER_MDIO_CTRL_t mdio_ctrl; struct PER_MDIO_RDDATA_t read_data; struct cortina_ni_priv *priv = dev_get_priv(curr_dev); memset(&mdio_addr, 0, sizeof(mdio_addr)); mdio_addr.mdio_addr = addr; mdio_addr.mdio_offset = offset; mdio_addr.mdio_rd_wr = __MDIO_RD_FLAG; ca_reg_write(&mdio_addr, (u64)priv->per_mdio_base_addr, PER_MDIO_ADDR_OFFSET); memset(&mdio_ctrl, 0, sizeof(mdio_ctrl)); mdio_ctrl.mdiostart = 1; ca_reg_write(&mdio_ctrl, (u64)priv->per_mdio_base_addr, PER_MDIO_CTRL_OFFSET); do { ca_reg_read(&mdio_ctrl, (u64)priv->per_mdio_base_addr, PER_MDIO_CTRL_OFFSET); if (mdio_ctrl.mdiodone) { ca_reg_write(&mdio_ctrl, (u64)priv->per_mdio_base_addr, PER_MDIO_CTRL_OFFSET); ca_reg_read(&read_data, (u64)priv->per_mdio_base_addr, PER_MDIO_RDDATA_OFFSET); *data = read_data.mdio_rddata; return 0; } } while (--loop_wait); printf("CA NI %s: TIMEOUT!!\n", __func__); return -ETIMEDOUT; } int ca_mdio_read(u32 addr, u32 offset, u16 *data) { u32 reg_addr, reg_val; struct NI_MDIO_OPER_T mdio_oper; if (!data) return -EINVAL; /* support range: 1~31*/ if (addr < CA_MDIO_ADDR_MIN || addr > CA_MDIO_ADDR_MAX) return -EINVAL; /* the phy addr 5 is connect to RGMII */ if (addr >= 5) return ca_mdio_read_rgmii(addr, offset, data); memset(&mdio_oper, 0, sizeof(mdio_oper)); mdio_oper.reg_off = offset; mdio_oper.phy_addr = addr; mdio_oper.reg_base = CA_NI_MDIO_REG_BASE; reg_val = *data; memcpy(®_addr, &mdio_oper, sizeof(reg_addr)); ca_reg_read(®_val, (u64)reg_addr, 0); *data = reg_val; return 0; } int ca_miiphy_read(const char *devname, u8 addr, u8 reg, u16 *value) { return ca_mdio_read(addr, reg, value); } int ca_miiphy_write(const char *devname, u8 addr, u8 reg, u16 value) { return ca_mdio_write(addr, reg, value); } static int cortina_mdio_read(struct mii_dev *bus, int addr, int devad, int reg) { u16 data; ca_mdio_read(addr, reg, &data); return data; } static int cortina_mdio_write(struct mii_dev *bus, int addr, int devad, int reg, u16 val) { return ca_mdio_write(addr, reg, val); } static void ca_ni_setup_mac_addr(void) { u8 mac[6]; struct NI_HV_GLB_MAC_ADDR_CFG0_t mac_addr_cfg0; struct NI_HV_GLB_MAC_ADDR_CFG1_t mac_addr_cfg1; struct NI_HV_PT_PORT_STATIC_CFG_t port_static_cfg; struct NI_HV_XRAM_CPUXRAM_CFG_t cpuxram_cfg; struct cortina_ni_priv *priv = dev_get_priv(curr_dev); /* parsing ethaddr and set to NI registers. */ if (eth_env_get_enetaddr("ethaddr", mac)) { /* The complete MAC address consists of * {MAC_ADDR0_mac_addr0[0-3], MAC_ADDR1_mac_addr1[4], * PT_PORT_STATIC_CFG_mac_addr6[5]}. */ mac_addr_cfg0.mac_addr0 = (mac[0] << 24) + (mac[1] << 16) + (mac[2] << 8) + mac[3]; ca_reg_write(&mac_addr_cfg0, (u64)priv->ni_hv_base_addr, NI_HV_GLB_MAC_ADDR_CFG0_OFFSET); memset(&mac_addr_cfg1, 0, sizeof(mac_addr_cfg1)); mac_addr_cfg1.mac_addr1 = mac[4]; ca_reg_write(&mac_addr_cfg1, (u64)priv->ni_hv_base_addr, NI_HV_GLB_MAC_ADDR_CFG1_OFFSET); ca_reg_read(&port_static_cfg, (u64)priv->ni_hv_base_addr, NI_HV_PT_PORT_STATIC_CFG_OFFSET + (APB0_NI_HV_PT_STRIDE * priv->active_port)); port_static_cfg.mac_addr6 = mac[5]; ca_reg_write(&port_static_cfg, (u64)priv->ni_hv_base_addr, NI_HV_PT_PORT_STATIC_CFG_OFFSET + (APB0_NI_HV_PT_STRIDE * priv->active_port)); /* received only Broadcast and Address matched packets */ ca_reg_read(&cpuxram_cfg, (u64)priv->ni_hv_base_addr, NI_HV_XRAM_CPUXRAM_CFG_OFFSET); cpuxram_cfg.xram_mgmt_promisc_mode = 0; cpuxram_cfg.rx_0_cpu_pkt_dis = 0; cpuxram_cfg.tx_0_cpu_pkt_dis = 0; ca_reg_write(&cpuxram_cfg, (u64)priv->ni_hv_base_addr, NI_HV_XRAM_CPUXRAM_CFG_OFFSET); } else { /* received all packets(promiscuous mode) */ ca_reg_read(&cpuxram_cfg, (u64)priv->ni_hv_base_addr, NI_HV_XRAM_CPUXRAM_CFG_OFFSET); cpuxram_cfg.xram_mgmt_promisc_mode = 3; cpuxram_cfg.rx_0_cpu_pkt_dis = 0; cpuxram_cfg.tx_0_cpu_pkt_dis = 0; ca_reg_write(&cpuxram_cfg, (u64)priv->ni_hv_base_addr, NI_HV_XRAM_CPUXRAM_CFG_OFFSET); } } static void ca_ni_enable_tx_rx(void) { struct NI_HV_PT_RXMAC_CFG_t rxmac_cfg; struct NI_HV_PT_TXMAC_CFG_t txmac_cfg; struct cortina_ni_priv *priv = dev_get_priv(curr_dev); /* Enable TX and RX functions */ ca_reg_read(&rxmac_cfg, (u64)priv->ni_hv_base_addr, NI_HV_PT_RXMAC_CFG_OFFSET + (APB0_NI_HV_PT_STRIDE * priv->active_port)); rxmac_cfg.rx_en = 1; ca_reg_write(&rxmac_cfg, (u64)priv->ni_hv_base_addr, NI_HV_PT_RXMAC_CFG_OFFSET + (APB0_NI_HV_PT_STRIDE * priv->active_port)); ca_reg_read(&txmac_cfg, (u64)priv->ni_hv_base_addr, NI_HV_PT_TXMAC_CFG_OFFSET + (APB0_NI_HV_PT_STRIDE * priv->active_port)); txmac_cfg.tx_en = 1; ca_reg_write(&txmac_cfg, (u64)priv->ni_hv_base_addr, NI_HV_PT_TXMAC_CFG_OFFSET + (APB0_NI_HV_PT_STRIDE * priv->active_port)); } #define AUTO_SCAN_TIMEOUT 3000 /* 3 seconds */ static int ca_ni_auto_scan_active_port(struct cortina_ni_priv *priv) { u8 i; u16 data; u32 start_time; start_time = get_timer(0); while (get_timer(start_time) < AUTO_SCAN_TIMEOUT) { for (i = 0; i < priv->valid_port_num; i++) { if (!priv->port_map[i].phy_addr) continue; ca_mdio_read(priv->port_map[i].phy_addr, 1, &data); if (data & 0x04) { priv->active_port = priv->port_map[i].port; return 0; } } } printf("CA NI %s: auto scan active_port timeout.\n", __func__); return -1; } static void ca_ni_led(int port, int status) { char label[10]; struct udevice *led_dev; if (IS_ENABLED(CONFIG_LED_CORTINA)) { snprintf(label, sizeof(label), "led%d", port); debug("%s: set port %d led %s.\n", __func__, port, status ? "on" : "off"); led_get_by_label(label, &led_dev); led_set_state(led_dev, status); } } static void ca_ni_reset(void) { int i; struct NI_HV_GLB_INIT_DONE_t init_done; struct NI_HV_GLB_INTF_RST_CONFIG_t intf_rst_config; struct NI_HV_GLB_STATIC_CFG_t static_cfg; struct GLOBAL_BLOCK_RESET_t glb_blk_reset; struct cortina_ni_priv *priv = dev_get_priv(curr_dev); /* NI global resets */ ca_reg_read(&glb_blk_reset, (u64)priv->glb_base_addr, GLOBAL_BLOCK_RESET_OFFSET); glb_blk_reset.reset_ni = 1; ca_reg_write(&glb_blk_reset, (u64)priv->glb_base_addr, GLOBAL_BLOCK_RESET_OFFSET); /* Remove resets */ glb_blk_reset.reset_ni = 0; ca_reg_write(&glb_blk_reset, (u64)priv->glb_base_addr, GLOBAL_BLOCK_RESET_OFFSET); /* check the ready bit of NI module */ for (i = 0; i < NI_READ_POLL_COUNT; i++) { ca_reg_read(&init_done, (u64)priv->ni_hv_base_addr, NI_HV_GLB_INIT_DONE_OFFSET); if (init_done.ni_init_done) break; } if (i == NI_READ_POLL_COUNT) { printf("CA NI %s: NI init done not ready, init_done=0x%x!!!\n", __func__, init_done.ni_init_done); } ca_reg_read(&intf_rst_config, (u64)priv->ni_hv_base_addr, NI_HV_GLB_INTF_RST_CONFIG_OFFSET); switch (priv->active_port) { case NI_PORT_0: intf_rst_config.intf_rst_p0 = 0; intf_rst_config.mac_rx_rst_p0 = 0; intf_rst_config.mac_tx_rst_p0 = 0; break; case NI_PORT_1: intf_rst_config.intf_rst_p1 = 0; intf_rst_config.mac_rx_rst_p1 = 0; intf_rst_config.mac_tx_rst_p1 = 0; break; case NI_PORT_2: intf_rst_config.intf_rst_p2 = 0; intf_rst_config.mac_rx_rst_p2 = 0; intf_rst_config.mac_tx_rst_p2 = 0; break; case NI_PORT_3: intf_rst_config.intf_rst_p3 = 0; intf_rst_config.mac_tx_rst_p3 = 0; intf_rst_config.mac_rx_rst_p3 = 0; break; case NI_PORT_4: intf_rst_config.intf_rst_p4 = 0; intf_rst_config.mac_tx_rst_p4 = 0; intf_rst_config.mac_rx_rst_p4 = 0; break; } ca_reg_write(&intf_rst_config, (u64)priv->ni_hv_base_addr, NI_HV_GLB_INTF_RST_CONFIG_OFFSET); /* Only one GMAC can connect to CPU */ ca_reg_read(&static_cfg, (u64)priv->ni_hv_base_addr, NI_HV_GLB_STATIC_CFG_OFFSET); static_cfg.port_to_cpu = priv->active_port; static_cfg.txmib_mode = 1; static_cfg.rxmib_mode = 1; ca_reg_write(&static_cfg, (u64)priv->ni_hv_base_addr, NI_HV_GLB_STATIC_CFG_OFFSET); } static void ca_internal_gphy_cal(struct cortina_ni_priv *priv) { int i, port, num; u32 reg_off, value; num = priv->gphy_num; for (port = 0; port < 4; port++) { for (i = 0; i < num; i++) { reg_off = priv->gphy_values[i].reg_off + (port * 0x80); value = priv->gphy_values[i].value; ca_reg_write(&value, reg_off, 0); mdelay(50); } } } static int ca_mdio_register(struct udevice *dev) { int ret; struct cortina_ni_priv *priv = dev_get_priv(dev); struct mii_dev *mdio_bus = mdio_alloc(); if (!mdio_bus) return -ENOMEM; mdio_bus->read = cortina_mdio_read; mdio_bus->write = cortina_mdio_write; snprintf(mdio_bus->name, sizeof(mdio_bus->name), dev->name); mdio_bus->priv = (void *)priv; ret = mdio_register(mdio_bus); if (ret) return ret; priv->mdio_bus = mdio_bus; return 0; } static void ca_rgmii_init(struct cortina_ni_priv *priv) { struct GLOBAL_GLOBAL_CONFIG_t glb_config; struct GLOBAL_IO_DRIVE_CONTROL_t io_drive_control; /* Generating 25Mhz reference clock for switch */ ca_reg_read(&glb_config, (u64)priv->glb_base_addr, GLOBAL_GLOBAL_CONFIG_OFFSET); glb_config.refclk_sel = 0x01; glb_config.ext_reset = 0x01; ca_reg_write(&glb_config, (u64)priv->glb_base_addr, GLOBAL_GLOBAL_CONFIG_OFFSET); mdelay(20); /* Do external reset */ ca_reg_read(&glb_config, (u64)priv->glb_base_addr, GLOBAL_GLOBAL_CONFIG_OFFSET); glb_config.ext_reset = 0x0; ca_reg_write(&glb_config, (u64)priv->glb_base_addr, GLOBAL_GLOBAL_CONFIG_OFFSET); ca_reg_read(&io_drive_control, (u64)priv->glb_base_addr, GLOBAL_IO_DRIVE_CONTROL_OFFSET); io_drive_control.gmac_mode = 2; io_drive_control.gmac_dn = 1; io_drive_control.gmac_dp = 1; ca_reg_write(&io_drive_control, (u64)priv->glb_base_addr, GLOBAL_IO_DRIVE_CONTROL_OFFSET); } static int ca_phy_probe(struct udevice *dev) { int auto_scan_active_port = 0, tmp_port; char *buf; struct cortina_ni_priv *priv = dev_get_priv(dev); struct phy_device *int_phydev, *ext_phydev; /* Initialize internal phy device */ int_phydev = phy_connect(priv->mdio_bus, priv->port_map[NI_PORT_3].phy_addr, dev, priv->phy_interface); if (int_phydev) { int_phydev->supported &= PHY_GBIT_FEATURES; int_phydev->advertising = int_phydev->supported; phy_config(int_phydev); } else { printf("CA NI %s: There is no internal phy device\n", __func__); } /* Initialize external phy device */ ext_phydev = phy_connect(priv->mdio_bus, priv->port_map[NI_PORT_4].phy_addr, dev, priv->phy_interface); if (ext_phydev) { ext_phydev->supported &= PHY_GBIT_FEATURES; ext_phydev->advertising = int_phydev->supported; phy_config(ext_phydev); } else { printf("CA NI %s: There is no external phy device\n", __func__); } /* auto scan the first link up port as active_port */ buf = env_get("auto_scan_active_port"); if (buf != 0) { auto_scan_active_port = simple_strtoul(buf, NULL, 0); printf("CA NI %s: auto_scan_active_port=%d\n", __func__, auto_scan_active_port); } if (auto_scan_active_port) { ca_ni_auto_scan_active_port(priv); } else { buf = env_get("active_port"); if (buf != 0) { tmp_port = simple_strtoul(buf, NULL, 0); if (tmp_port < 0 && !(priv->valid_port_map && BIT(tmp_port))) { printf("CA NI ERROR: not support this port."); free(dev); free(priv); return 1; } priv->active_port = tmp_port; } } printf("CA NI %s: active_port=%d\n", __func__, priv->active_port); if (priv->active_port == NI_PORT_4) priv->phydev = ext_phydev; else priv->phydev = int_phydev; return 0; } static int cortina_eth_start(struct udevice *dev) { int ret; struct NI_HV_XRAM_CPUXRAM_ADRCFG_RX_t cpuxram_adrcfg_rx; struct NI_HV_XRAM_CPUXRAM_ADRCFG_TX_0_t cpuxram_adrcfg_tx; struct NI_HV_XRAM_CPUXRAM_CFG_t cpuxram_cfg; struct NI_HV_PT_PORT_STATIC_CFG_t port_static_cfg; struct NI_HV_PT_PORT_GLB_CFG_t port_glb_cfg; struct cortina_ni_priv *priv = dev_get_priv(dev); struct phy_device *phydev = priv->phydev; ret = phy_startup(priv->phydev); if (ret) { ca_ni_led(priv->active_port, CA_LED_OFF); printf("CA NI Could not initialize PHY %s, active_port=%d\n", priv->phydev->dev->name, priv->active_port); return ret; } if (!priv->phydev->link) { printf("CA NI %s: link down.\n", priv->phydev->dev->name); return 0; } ca_ni_led(priv->active_port, CA_LED_ON); printf("CA NI PHY ID 0x%08X %dMbps %s duplex\n", phydev->phy_id, phydev->speed, phydev->duplex == DUPLEX_HALF ? "half" : "full"); /* RX XRAM ADDRESS CONFIG (start and end address) */ memset(&cpuxram_adrcfg_rx, 0, sizeof(cpuxram_adrcfg_rx)); cpuxram_adrcfg_rx.rx_top_addr = RX_TOP_ADDR; cpuxram_adrcfg_rx.rx_base_addr = RX_BASE_ADDR; ca_reg_write(&cpuxram_adrcfg_rx, (u64)priv->ni_hv_base_addr, NI_HV_XRAM_CPUXRAM_ADRCFG_RX_OFFSET); /* TX XRAM ADDRESS CONFIG (start and end address) */ memset(&cpuxram_adrcfg_tx, 0, sizeof(cpuxram_adrcfg_tx)); cpuxram_adrcfg_tx.tx_top_addr = TX_TOP_ADDR; cpuxram_adrcfg_tx.tx_base_addr = TX_BASE_ADDR; ca_reg_write(&cpuxram_adrcfg_tx, (u64)priv->ni_hv_base_addr, NI_HV_XRAM_CPUXRAM_ADRCFG_TX_0_OFFSET); /* * Configuration for Management Ethernet Interface: * - RGMII 1000 mode or RGMII 100 mode * - MAC mode */ ca_reg_read(&port_static_cfg, (u64)priv->ni_hv_base_addr, NI_HV_PT_PORT_STATIC_CFG_OFFSET + (APB0_NI_HV_PT_STRIDE * priv->active_port)); if (phydev->speed == SPEED_1000) { /* port 4 connects to RGMII PHY */ if (phydev->addr == 5) port_static_cfg.int_cfg = GE_MAC_INTF_RGMII_1000; else port_static_cfg.int_cfg = GE_MAC_INTF_GMII; } else { /* port 4 connects to RGMII PHY */ if (phydev->addr == 5) port_static_cfg.int_cfg = GE_MAC_INTF_RGMII_100; else port_static_cfg.int_cfg = GE_MAC_INTF_MII; } ca_reg_write(&port_static_cfg, (u64)priv->ni_hv_base_addr, NI_HV_PT_PORT_STATIC_CFG_OFFSET + (APB0_NI_HV_PT_STRIDE * priv->active_port)); ca_reg_read(&port_glb_cfg, (u64)priv->ni_hv_base_addr, NI_HV_PT_PORT_GLB_CFG_OFFSET + (APB0_NI_HV_PT_STRIDE * priv->active_port)); port_glb_cfg.speed = phydev->speed == SPEED_10 ? 1 : 0; port_glb_cfg.duplex = phydev->duplex == DUPLEX_HALF ? 1 : 0; ca_reg_write(&port_glb_cfg, (u64)priv->ni_hv_base_addr, NI_HV_PT_PORT_GLB_CFG_OFFSET + (APB0_NI_HV_PT_STRIDE * priv->active_port)); /* Need to toggle the tx and rx cpu_pkt_dis bit */ /* after changing Address config register. */ ca_reg_read(&cpuxram_cfg, (u64)priv->ni_hv_base_addr, NI_HV_XRAM_CPUXRAM_CFG_OFFSET); cpuxram_cfg.rx_0_cpu_pkt_dis = 1; cpuxram_cfg.tx_0_cpu_pkt_dis = 1; ca_reg_write(&cpuxram_cfg, (u64)priv->ni_hv_base_addr, NI_HV_XRAM_CPUXRAM_CFG_OFFSET); ca_reg_read(&cpuxram_cfg, (u64)priv->ni_hv_base_addr, NI_HV_XRAM_CPUXRAM_CFG_OFFSET); cpuxram_cfg.rx_0_cpu_pkt_dis = 0; cpuxram_cfg.tx_0_cpu_pkt_dis = 0; ca_reg_write(&cpuxram_cfg, (u64)priv->ni_hv_base_addr, NI_HV_XRAM_CPUXRAM_CFG_OFFSET); ca_ni_enable_tx_rx(); return 0; } /********************************************* * Packet receive routine from Management FE * Expects a previously allocated buffer and * fills the length * Retruns 0 on success -1 on failure *******************************************/ static int cortina_eth_recv(struct udevice *dev, int flags, uchar **packetp) { u8 *ptr; u32 next_link, pktlen = 0; u32 sw_rx_rd_ptr, hw_rx_wr_ptr, *rx_xram_ptr, *data_ptr; int loop, index = 0, blk_num; struct cortina_ni_priv *priv = dev_get_priv(dev); struct NI_HEADER_X_T header_x; struct NI_PACKET_STATUS packet_status; struct NI_HV_XRAM_CPUXRAM_CPU_STA_RX_0_t cpuxram_cpu_sta_rx; struct NI_HV_XRAM_CPUXRAM_CPU_CFG_RX_0_t cpuxram_cpu_cfg_rx; /* get the hw write pointer */ memset(&cpuxram_cpu_sta_rx, 0, sizeof(cpuxram_cpu_sta_rx)); ca_reg_read(&cpuxram_cpu_sta_rx, (u64)priv->ni_hv_base_addr, NI_HV_XRAM_CPUXRAM_CPU_STA_RX_0_OFFSET); hw_rx_wr_ptr = cpuxram_cpu_sta_rx.pkt_wr_ptr; /* get the sw read pointer */ memset(&cpuxram_cpu_cfg_rx, 0, sizeof(cpuxram_cpu_cfg_rx)); ca_reg_read(&cpuxram_cpu_cfg_rx, (u64)priv->ni_hv_base_addr, NI_HV_XRAM_CPUXRAM_CPU_CFG_RX_0_OFFSET); sw_rx_rd_ptr = cpuxram_cpu_cfg_rx.pkt_rd_ptr; debug("%s: NI_HV_XRAM_CPUXRAM_CPU_STA_RX_0 = 0x%p, ", __func__, priv->ni_hv_base_addr + NI_HV_XRAM_CPUXRAM_CPU_STA_RX_0_OFFSET); debug("NI_HV_XRAM_CPUXRAM_CPU_CFG_RX_0 = 0x%p\n", priv->ni_hv_base_addr + NI_HV_XRAM_CPUXRAM_CPU_CFG_RX_0_OFFSET); debug("%s : RX hw_wr_ptr = %d, sw_rd_ptr = %d\n", __func__, hw_rx_wr_ptr, sw_rx_rd_ptr); while (sw_rx_rd_ptr != hw_rx_wr_ptr) { /* Point to the absolute memory address of XRAM * where read pointer is */ rx_xram_ptr = (u32 *) ((unsigned long)priv->ni_xram_base + sw_rx_rd_ptr * 8); /* Wrap around if required */ if (rx_xram_ptr >= (u32 *)(unsigned long)priv->rx_xram_end_adr) rx_xram_ptr = (u32 *) (unsigned long)priv->rx_xram_base_adr; /* Checking header XR. Do not update the read pointer yet */ /* skip unused 32-bit in Header XR */ rx_xram_ptr = ca_rdwrptr_adv_one(rx_xram_ptr, priv->rx_xram_base_adr, priv->rx_xram_end_adr); memcpy(&header_x, rx_xram_ptr, sizeof(header_x)); next_link = header_x.next_link; /* Header XR [31:0] */ if (*rx_xram_ptr == 0xffffffff) printf("CA NI %s: XRAM Error !\n", __func__); debug("%s : RX next link 0x%x\n", __func__, next_link); debug("%s : bytes_valid %x\n", __func__, header_x.bytes_valid); if (header_x.ownership == 0) { /* point to Packet status [31:0] */ rx_xram_ptr = ca_rdwrptr_adv_one(rx_xram_ptr, priv->rx_xram_base_adr, priv->rx_xram_end_adr); memcpy(&packet_status, rx_xram_ptr, sizeof(*rx_xram_ptr)); if (packet_status.valid == 0) { debug("%s: Invalid Packet !!, ", __func__); debug("next_link=%d\n", next_link); /* Update the software read pointer */ ca_reg_write(&next_link, (u64)priv->ni_hv_base_addr, NI_HV_XRAM_CPUXRAM_CPU_CFG_RX_0_OFFSET); return 0; } if (packet_status.drop || packet_status.runt || packet_status.oversize || packet_status.jabber || packet_status.crc_error || packet_status.jumbo) { debug("%s: Error Packet!!, ", __func__); debug("next_link=%d\n", next_link); /* Update the software read pointer */ ca_reg_write(&next_link, (u64)priv->ni_hv_base_addr, NI_HV_XRAM_CPUXRAM_CPU_CFG_RX_0_OFFSET); return 0; } /* check whether packet size is larger than 1514 */ if (packet_status.packet_size > 1518) { debug("%s: Error Packet !! Packet size=%d, ", __func__, packet_status.packet_size); debug("larger than 1518, next_link=%d\n", next_link); /* Update the software read pointer */ ca_reg_write(&next_link, (u64)priv->ni_hv_base_addr, NI_HV_XRAM_CPUXRAM_CPU_CFG_RX_0_OFFSET); return 0; } rx_xram_ptr = ca_rdwrptr_adv_one(rx_xram_ptr, priv->rx_xram_base_adr, priv->rx_xram_end_adr); pktlen = packet_status.packet_size; debug("%s : rx packet length = %d\n", __func__, packet_status.packet_size); rx_xram_ptr = ca_rdwrptr_adv_one(rx_xram_ptr, priv->rx_xram_base_adr, priv->rx_xram_end_adr); data_ptr = (u32 *)net_rx_packets[index]; /* Read out the packet */ /* Data is in little endian form in the XRAM */ /* Send the packet to upper layer */ debug("%s: packet data[]=", __func__); for (loop = 0; loop <= pktlen / 4; loop++) { ptr = (u8 *)rx_xram_ptr; if (loop < 10) debug("[0x%x]-[0x%x]-[0x%x]-[0x%x]", ptr[0], ptr[1], ptr[2], ptr[3]); *data_ptr++ = *rx_xram_ptr++; /* Wrap around if required */ if (rx_xram_ptr >= (u32 *) (unsigned long)priv->rx_xram_end_adr) { rx_xram_ptr = (u32 *)(unsigned long) (priv->rx_xram_base_adr); } } debug("\n"); net_process_received_packet(net_rx_packets[index], pktlen); if (++index >= PKTBUFSRX) index = 0; blk_num = net_rx_packets[index][0x2c] * 255 + net_rx_packets[index][0x2d]; debug("%s: tftp block number=%d\n", __func__, blk_num); /* Update the software read pointer */ ca_reg_write(&next_link, (u64)priv->ni_hv_base_addr, NI_HV_XRAM_CPUXRAM_CPU_CFG_RX_0_OFFSET); } /* get the hw write pointer */ ca_reg_read(&cpuxram_cpu_sta_rx, (u64)priv->ni_hv_base_addr, NI_HV_XRAM_CPUXRAM_CPU_STA_RX_0_OFFSET); hw_rx_wr_ptr = cpuxram_cpu_sta_rx.pkt_wr_ptr; /* get the sw read pointer */ ca_reg_read(&sw_rx_rd_ptr, (u64)priv->ni_hv_base_addr, NI_HV_XRAM_CPUXRAM_CPU_CFG_RX_0_OFFSET); } return 0; } static int cortina_eth_send(struct udevice *dev, void *packet, int length) { u32 hw_tx_rd_ptr = 0, sw_tx_wr_ptr = 0; u32 loop, new_pkt_len, ca_crc32; u32 *tx_xram_ptr, *data_ptr; u16 next_link = 0; u8 *ptr, *pkt_buf_ptr, valid_bytes = 0; int pad = 0; static u8 pkt_buf[2048]; struct NI_HEADER_X_T hdr_xt; struct NI_HV_XRAM_CPUXRAM_CPU_CFG_TX_0_t cpuxram_cpu_cfg_tx; struct cortina_ni_priv *priv = dev_get_priv(dev); if (!packet || length > 2032) return -1; /* Get the hardware read pointer */ ca_reg_read(&hw_tx_rd_ptr, (u64)priv->ni_hv_base_addr, NI_HV_XRAM_CPUXRAM_CPU_STAT_TX_0_OFFSET); /* Get the software write pointer */ ca_reg_read(&sw_tx_wr_ptr, (u64)priv->ni_hv_base_addr, NI_HV_XRAM_CPUXRAM_CPU_CFG_TX_0_OFFSET); debug("%s: NI_HV_XRAM_CPUXRAM_CPU_STAT_TX_0=0x%p, ", __func__, KSEG1_ATU_XLAT(priv->ni_hv_base_addr + NI_HV_XRAM_CPUXRAM_CPU_STAT_TX_0_OFFSET)); debug("NI_HV_XRAM_CPUXRAM_CPU_CFG_TX_0=0x%p\n", KSEG1_ATU_XLAT(priv->ni_hv_base_addr + NI_HV_XRAM_CPUXRAM_CPU_CFG_TX_0_OFFSET)); debug("%s : hw_tx_rd_ptr = %d\n", __func__, hw_tx_rd_ptr); debug("%s : sw_tx_wr_ptr = %d\n", __func__, sw_tx_wr_ptr); if (hw_tx_rd_ptr != sw_tx_wr_ptr) { printf("CA NI %s: Tx FIFO is not available!\n", __func__); return 1; } /* a workaround on 2015/10/01 * the packet size+CRC should be 8-byte alignment */ if (((length + 4) % 8) != 0) length += (8 - ((length + 4) % 8)); memset(pkt_buf, 0x00, sizeof(pkt_buf)); /* add 8-byte header_A at the beginning of packet */ memcpy(&pkt_buf[HEADER_A_SIZE], (const void *)packet, length); pad = 64 - (length + 4); /* if packet length < 60 */ pad = (pad < 0) ? 0 : pad; debug("%s: length=%d, pad=%d\n", __func__, length, pad); new_pkt_len = length + pad; /* new packet length */ pkt_buf_ptr = (u8 *)pkt_buf; /* Calculate the CRC32, skip 8-byte header_A */ ca_crc32 = crc32(0, (u8 *)(pkt_buf_ptr + HEADER_A_SIZE), new_pkt_len); debug("%s: crc32 is 0x%x\n", __func__, ca_crc32); debug("%s: ~crc32 is 0x%x\n", __func__, ~ca_crc32); debug("%s: pkt len %d\n", __func__, new_pkt_len); /* should add 8-byte header_! */ /* CRC will re-calculated by hardware */ memcpy((pkt_buf_ptr + new_pkt_len + HEADER_A_SIZE), (u8 *)(&ca_crc32), sizeof(ca_crc32)); new_pkt_len = new_pkt_len + 4; /* add CRC */ valid_bytes = new_pkt_len % 8; valid_bytes = valid_bytes ? valid_bytes : 0; debug("%s: valid_bytes %d\n", __func__, valid_bytes); /* should add 8-byte headerA */ next_link = sw_tx_wr_ptr + (new_pkt_len + 7 + HEADER_A_SIZE) / 8; /* for headr XT */ /* add header */ next_link = next_link + 1; /* Wrap around if required */ if (next_link > priv->tx_xram_end) { next_link = priv->tx_xram_start + (next_link - (priv->tx_xram_end + 1)); } debug("%s: TX next_link %x\n", __func__, next_link); memset(&hdr_xt, 0, sizeof(hdr_xt)); hdr_xt.ownership = 1; hdr_xt.bytes_valid = valid_bytes; hdr_xt.next_link = next_link; tx_xram_ptr = (u32 *)((unsigned long)priv->ni_xram_base + sw_tx_wr_ptr * 8); /* Wrap around if required */ if (tx_xram_ptr >= (u32 *)(unsigned long)priv->tx_xram_end_adr) tx_xram_ptr = (u32 *)(unsigned long)priv->tx_xram_base_adr; tx_xram_ptr = ca_rdwrptr_adv_one(tx_xram_ptr, priv->tx_xram_base_adr, priv->tx_xram_end_adr); memcpy(tx_xram_ptr, &hdr_xt, sizeof(*tx_xram_ptr)); tx_xram_ptr = ca_rdwrptr_adv_one(tx_xram_ptr, priv->tx_xram_base_adr, priv->tx_xram_end_adr); /* Now to copy the data. The first byte on the line goes first */ data_ptr = (u32 *)pkt_buf_ptr; debug("%s: packet data[]=", __func__); /* copy header_A to XRAM */ for (loop = 0; loop <= (new_pkt_len + HEADER_A_SIZE) / 4; loop++) { ptr = (u8 *)data_ptr; if ((loop % 4) == 0) debug("\n"); debug("[0x%x]-[0x%x]-[0x%x]-[0x%x]-", ptr[0], ptr[1], ptr[2], ptr[3]); *tx_xram_ptr = *data_ptr++; tx_xram_ptr = ca_rdwrptr_adv_one(tx_xram_ptr, priv->tx_xram_base_adr, priv->tx_xram_end_adr); } debug("\n"); /* Publish the software write pointer */ cpuxram_cpu_cfg_tx.pkt_wr_ptr = next_link; ca_reg_write(&cpuxram_cpu_cfg_tx, (u64)priv->ni_hv_base_addr, NI_HV_XRAM_CPUXRAM_CPU_CFG_TX_0_OFFSET); return 0; } static void cortina_eth_stop(struct udevice *netdev) { /* Nothing to do for now. */ } static int cortina_eth_probe(struct udevice *dev) { int ret, reg_value; struct cortina_ni_priv *priv; priv = dev_get_priv(dev); priv->rx_xram_base_adr = priv->ni_xram_base + (RX_BASE_ADDR * 8); priv->rx_xram_end_adr = priv->ni_xram_base + ((RX_TOP_ADDR + 1) * 8); priv->rx_xram_start = RX_BASE_ADDR; priv->rx_xram_end = RX_TOP_ADDR; priv->tx_xram_base_adr = priv->ni_xram_base + (TX_BASE_ADDR * 8); priv->tx_xram_end_adr = priv->ni_xram_base + ((TX_TOP_ADDR + 1) * 8); priv->tx_xram_start = TX_BASE_ADDR; priv->tx_xram_end = TX_TOP_ADDR; curr_dev = dev; debug("%s: rx_base_addr:%x\t rx_top_addr %x\n", __func__, priv->rx_xram_start, priv->rx_xram_end); debug("%s: tx_base_addr:%x\t tx_top_addr %x\n", __func__, priv->tx_xram_start, priv->tx_xram_end); debug("%s: rx physical start address = %x end address = %x\n", __func__, priv->rx_xram_base_adr, priv->rx_xram_end_adr); debug("%s: tx physical start address = %x end address = %x\n", __func__, priv->tx_xram_base_adr, priv->tx_xram_end_adr); /* MDIO register */ ret = ca_mdio_register(dev); if (ret) return ret; /* set MDIO pre-scale value */ ca_reg_read(®_value, (u64)priv->per_mdio_base_addr, PER_MDIO_CFG_OFFSET); reg_value = reg_value | 0x00280000; ca_reg_write(®_value, (u64)priv->per_mdio_base_addr, PER_MDIO_CFG_OFFSET); ca_phy_probe(dev); priv->phydev->addr = priv->port_map[priv->active_port].phy_addr; ca_ni_led(priv->active_port, CA_LED_ON); ca_ni_reset(); printf("CA NI %s: active_port=%d, phy_addr=%d\n", __func__, priv->active_port, priv->phydev->addr); printf("CA NI %s: phy_id=0x%x, phy_id & PHY_ID_MASK=0x%x\n", __func__, priv->phydev->phy_id, priv->phydev->phy_id & 0xFFFFFFF0); /* parsing ethaddr and set to NI registers. */ ca_ni_setup_mac_addr(); #ifdef MIIPHY_REGISTER /* the phy_read and phy_write * should meet the proto type of miiphy_register */ miiphy_register(dev->name, ca_miiphy_read, ca_miiphy_write); #endif if (priv->init_rgmii) { /* hardware settings for RGMII port */ ca_rgmii_init(priv); } if (priv->gphy_num > 0) { /* do internal gphy calibration */ ca_internal_gphy_cal(priv); } return 0; } static int ca_ni_of_to_plat(struct udevice *dev) { int i, ret; struct cortina_ni_priv *priv = dev_get_priv(dev); memset(priv, 0, sizeof(struct cortina_ni_priv)); priv->glb_base_addr = dev_remap_addr_index(dev, 0); if (!priv->glb_base_addr) return -ENOENT; printf("CA NI %s: priv->glb_base_addr for index 0 is 0x%p\n", __func__, priv->glb_base_addr); priv->per_mdio_base_addr = dev_remap_addr_index(dev, 1); if (!priv->per_mdio_base_addr) return -ENOENT; printf("CA NI %s: priv->per_mdio_base_addr for index 1 is 0x%p\n", __func__, priv->per_mdio_base_addr); priv->ni_hv_base_addr = dev_remap_addr_index(dev, 2); if (!priv->ni_hv_base_addr) return -ENOENT; printf("CA NI %s: priv->ni_hv_base_addr for index 2 is 0x%p\n", __func__, priv->ni_hv_base_addr); priv->valid_port_map = dev_read_u32_default(dev, "valid-port-map", 1); priv->valid_port_num = dev_read_u32_default(dev, "valid-port-num", 1); for (i = 0; i < priv->valid_port_num; i++) { ret = dev_read_u32_index(dev, "valid-ports", i * 2, &priv->port_map[i].phy_addr); ret = dev_read_u32_index(dev, "valid-ports", (i * 2) + 1, &priv->port_map[i].port); } priv->gphy_num = dev_read_u32_default(dev, "inter-gphy-num", 1); for (i = 0; i < priv->gphy_num; i++) { ret = dev_read_u32_index(dev, "inter-gphy-val", i * 2, &priv->gphy_values[i].reg_off); ret = dev_read_u32_index(dev, "inter-gphy-val", (i * 2) + 1, &priv->gphy_values[i].value); } priv->active_port = dev_read_u32_default(dev, "def-active-port", 1); priv->init_rgmii = dev_read_u32_default(dev, "init-rgmii", 1); priv->ni_xram_base = dev_read_u32_default(dev, "ni-xram-base", 1); return 0; } static const struct eth_ops cortina_eth_ops = { .start = cortina_eth_start, .send = cortina_eth_send, .recv = cortina_eth_recv, .stop = cortina_eth_stop, }; static const struct udevice_id cortina_eth_ids[] = { { .compatible = "eth_cortina" }, { } }; U_BOOT_DRIVER(eth_cortina) = { .name = "eth_cortina", .id = UCLASS_ETH, .of_match = cortina_eth_ids, .probe = cortina_eth_probe, .ops = &cortina_eth_ops, .priv_auto = sizeof(struct cortina_ni_priv), .plat_auto = sizeof(struct eth_pdata), .of_to_plat = ca_ni_of_to_plat, };