// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2018 Marvell International Ltd. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "octeontx_bch.h" static LIST_HEAD(octeontx_bch_devices); static unsigned int num_vfs = BCH_NR_VF; static void *bch_pf; static void *bch_vf; static void *token; static bool bch_pf_initialized; static bool bch_vf_initialized; static int pci_enable_sriov(struct udevice *dev, int nr_virtfn) { int ret; ret = pci_sriov_init(dev, nr_virtfn); if (ret) printf("%s(%s): pci_sriov_init returned %d\n", __func__, dev->name, ret); return ret; } void *octeontx_bch_getv(void) { if (!bch_vf) return NULL; if (bch_vf_initialized && bch_pf_initialized) return bch_vf; else return NULL; } void octeontx_bch_putv(void *token) { bch_vf_initialized = !!token; bch_vf = token; } void *octeontx_bch_getp(void) { return token; } void octeontx_bch_putp(void *token) { bch_pf = token; bch_pf_initialized = !!token; } static int do_bch_init(struct bch_device *bch) { return 0; } static void bch_reset(struct bch_device *bch) { writeq(1, bch->reg_base + BCH_CTL); mdelay(2); } static void bch_disable(struct bch_device *bch) { writeq(~0ull, bch->reg_base + BCH_ERR_INT_ENA_W1C); writeq(~0ull, bch->reg_base + BCH_ERR_INT); bch_reset(bch); } static u32 bch_check_bist_status(struct bch_device *bch) { return readq(bch->reg_base + BCH_BIST_RESULT); } static int bch_device_init(struct bch_device *bch) { u64 bist; int rc; debug("%s: Resetting...\n", __func__); /* Reset the PF when probed first */ bch_reset(bch); debug("%s: Checking BIST...\n", __func__); /* Check BIST status */ bist = (u64)bch_check_bist_status(bch); if (bist) { dev_err(dev, "BCH BIST failed with code 0x%llx\n", bist); return -ENODEV; } /* Get max VQs/VFs supported by the device */ bch->max_vfs = pci_sriov_get_totalvfs(bch->dev); debug("%s: %d vfs\n", __func__, bch->max_vfs); if (num_vfs > bch->max_vfs) { dev_warn(dev, "Num of VFs to enable %d is greater than max available. Enabling %d VFs.\n", num_vfs, bch->max_vfs); num_vfs = bch->max_vfs; } bch->vfs_enabled = bch->max_vfs; /* Get number of VQs/VFs to be enabled */ /* TODO: Get CLK frequency */ /* Reset device parameters */ debug("%s: Doing initialization\n", __func__); rc = do_bch_init(bch); return rc; } static int bch_sriov_configure(struct udevice *dev, int numvfs) { struct bch_device *bch = dev_get_priv(dev); int ret = -EBUSY; debug("%s(%s, %d), bch: %p, vfs_in_use: %d, enabled: %d\n", __func__, dev->name, numvfs, bch, bch->vfs_in_use, bch->vfs_enabled); if (bch->vfs_in_use) goto exit; ret = 0; if (numvfs > 0) { debug("%s: Enabling sriov\n", __func__); ret = pci_enable_sriov(dev, numvfs); if (ret == 0) { bch->flags |= BCH_FLAG_SRIOV_ENABLED; ret = numvfs; bch->vfs_enabled = numvfs; } } debug("VFs enabled: %d\n", ret); exit: debug("%s: Returning %d\n", __func__, ret); return ret; } static int octeontx_pci_bchpf_probe(struct udevice *dev) { struct bch_device *bch; int ret; debug("%s(%s)\n", __func__, dev->name); bch = dev_get_priv(dev); if (!bch) return -ENOMEM; bch->reg_base = dm_pci_map_bar(dev, PCI_BASE_ADDRESS_0, 0, 0, PCI_REGION_TYPE, PCI_REGION_MEM); bch->dev = dev; debug("%s: base address: %p\n", __func__, bch->reg_base); ret = bch_device_init(bch); if (ret) { printf("%s(%s): init returned %d\n", __func__, dev->name, ret); return ret; } INIT_LIST_HEAD(&bch->list); list_add(&bch->list, &octeontx_bch_devices); token = (void *)dev; debug("%s: Configuring SRIOV\n", __func__); bch_sriov_configure(dev, num_vfs); debug("%s: Done.\n", __func__); octeontx_bch_putp(bch); return 0; } static const struct pci_device_id octeontx_bchpf_pci_id_table[] = { { PCI_VDEVICE(CAVIUM, PCI_DEVICE_ID_CAVIUM_BCH) }, {}, }; static const struct pci_device_id octeontx_bchvf_pci_id_table[] = { { PCI_VDEVICE(CAVIUM, PCI_DEVICE_ID_CAVIUM_BCHVF)}, {}, }; /** * Given a data block calculate the ecc data and fill in the response * * @param[in] block 8-byte aligned pointer to data block to calculate ECC * @param block_size Size of block in bytes, must be a multiple of two. * @param bch_level Number of errors that must be corrected. The number of * parity bytes is equal to ((15 * bch_level) + 7) / 8. * Must be 4, 8, 16, 24, 32, 40, 48, 56, 60 or 64. * @param[out] ecc 8-byte aligned pointer to where ecc data should go * @param[in] resp pointer to where responses will be written. * * Return: Zero on success, negative on failure. */ int octeontx_bch_encode(struct bch_vf *vf, dma_addr_t block, u16 block_size, u8 bch_level, dma_addr_t ecc, dma_addr_t resp) { union bch_cmd cmd; int rc; memset(&cmd, 0, sizeof(cmd)); cmd.s.cword.ecc_gen = eg_gen; cmd.s.cword.ecc_level = bch_level; cmd.s.cword.size = block_size; cmd.s.oword.ptr = ecc; cmd.s.iword.ptr = block; cmd.s.rword.ptr = resp; rc = octeontx_cmd_queue_write(QID_BCH, 1, sizeof(cmd) / sizeof(uint64_t), cmd.u); if (rc) return -1; octeontx_bch_write_doorbell(1, vf); return 0; } /** * Given a data block and ecc data correct the data block * * @param[in] block_ecc_in 8-byte aligned pointer to data block with ECC * data concatenated to the end to correct * @param block_size Size of block in bytes, must be a multiple of * two. * @param bch_level Number of errors that must be corrected. The * number of parity bytes is equal to * ((15 * bch_level) + 7) / 8. * Must be 4, 8, 16, 24, 32, 40, 48, 56, 60 or 64. * @param[out] block_out 8-byte aligned pointer to corrected data buffer. * This should not be the same as block_ecc_in. * @param[in] resp pointer to where responses will be written. * * Return: Zero on success, negative on failure. */ int octeontx_bch_decode(struct bch_vf *vf, dma_addr_t block_ecc_in, u16 block_size, u8 bch_level, dma_addr_t block_out, dma_addr_t resp) { union bch_cmd cmd; int rc; memset(&cmd, 0, sizeof(cmd)); cmd.s.cword.ecc_gen = eg_correct; cmd.s.cword.ecc_level = bch_level; cmd.s.cword.size = block_size; cmd.s.oword.ptr = block_out; cmd.s.iword.ptr = block_ecc_in; cmd.s.rword.ptr = resp; rc = octeontx_cmd_queue_write(QID_BCH, 1, sizeof(cmd) / sizeof(uint64_t), cmd.u); if (rc) return -1; octeontx_bch_write_doorbell(1, vf); return 0; } EXPORT_SYMBOL(octeontx_bch_decode); int octeontx_bch_wait(struct bch_vf *vf, union bch_resp *resp, dma_addr_t handle) { ulong start = get_timer(0); __iormb(); /* HW is updating *resp */ while (!resp->s.done && get_timer(start) < 10) __iormb(); /* HW is updating *resp */ if (resp->s.done) return 0; return -ETIMEDOUT; } struct bch_q octeontx_bch_q[QID_MAX]; static int octeontx_cmd_queue_initialize(struct udevice *dev, int queue_id, int max_depth, int fpa_pool, int pool_size) { /* some params are for later merge with CPT or cn83xx */ struct bch_q *q = &octeontx_bch_q[queue_id]; unsigned long paddr; u64 *chunk_buffer; int chunk = max_depth + 1; int i, size; if ((unsigned int)queue_id >= QID_MAX) return -EINVAL; if (max_depth & chunk) /* must be 2^N - 1 */ return -EINVAL; size = NQS * chunk * sizeof(u64); chunk_buffer = dma_alloc_coherent(size, &paddr); if (!chunk_buffer) return -ENOMEM; q->base_paddr = paddr; q->dev = dev; q->index = 0; q->max_depth = max_depth; q->pool_size_m1 = pool_size; q->base_vaddr = chunk_buffer; for (i = 0; i < NQS; i++) { u64 *ixp; int inext = (i + 1) * chunk - 1; int j = (i + 1) % NQS; int jnext = j * chunk; dma_addr_t jbase = q->base_paddr + jnext * sizeof(u64); ixp = &chunk_buffer[inext]; *ixp = jbase; } return 0; } static int octeontx_pci_bchvf_probe(struct udevice *dev) { struct bch_vf *vf; union bch_vqx_ctl ctl; union bch_vqx_cmd_buf cbuf; int err; debug("%s(%s)\n", __func__, dev->name); vf = dev_get_priv(dev); if (!vf) return -ENOMEM; vf->dev = dev; /* Map PF's configuration registers */ vf->reg_base = dm_pci_map_bar(dev, PCI_BASE_ADDRESS_0, 0, 0, PCI_REGION_TYPE, PCI_REGION_MEM); debug("%s: reg base: %p\n", __func__, vf->reg_base); err = octeontx_cmd_queue_initialize(dev, QID_BCH, QDEPTH - 1, 0, sizeof(union bch_cmd) * QDEPTH); if (err) { dev_err(dev, "octeontx_cmd_queue_initialize() failed\n"); goto release; } ctl.u = readq(vf->reg_base + BCH_VQX_CTL(0)); cbuf.u = 0; cbuf.s.ldwb = 1; cbuf.s.dfb = 1; cbuf.s.size = QDEPTH; writeq(cbuf.u, vf->reg_base + BCH_VQX_CMD_BUF(0)); writeq(ctl.u, vf->reg_base + BCH_VQX_CTL(0)); writeq(octeontx_bch_q[QID_BCH].base_paddr, vf->reg_base + BCH_VQX_CMD_PTR(0)); octeontx_bch_putv(vf); debug("%s: bch vf initialization complete\n", __func__); if (octeontx_bch_getv()) return octeontx_pci_nand_deferred_probe(); return -1; release: return err; } static int octeontx_pci_bchpf_remove(struct udevice *dev) { struct bch_device *bch = dev_get_priv(dev); bch_disable(bch); return 0; } U_BOOT_DRIVER(octeontx_pci_bchpf) = { .name = BCHPF_DRIVER_NAME, .id = UCLASS_MISC, .probe = octeontx_pci_bchpf_probe, .remove = octeontx_pci_bchpf_remove, .priv_auto = sizeof(struct bch_device), .flags = DM_FLAG_OS_PREPARE, }; U_BOOT_DRIVER(octeontx_pci_bchvf) = { .name = BCHVF_DRIVER_NAME, .id = UCLASS_MISC, .probe = octeontx_pci_bchvf_probe, .priv_auto = sizeof(struct bch_vf), }; U_BOOT_PCI_DEVICE(octeontx_pci_bchpf, octeontx_bchpf_pci_id_table); U_BOOT_PCI_DEVICE(octeontx_pci_bchvf, octeontx_bchvf_pci_id_table);