// SPDX-License-Identifier: GPL-2.0+ /* * Freescale i.MX28 SSP MMC driver * * Copyright (C) 2019 DENX Software Engineering * Lukasz Majewski, DENX Software Engineering, lukma@denx.de * * Copyright (C) 2011 Marek Vasut * on behalf of DENX Software Engineering GmbH * * Based on code from LTIB: * (C) Copyright 2008-2010 Freescale Semiconductor, Inc. * Terry Lv * * Copyright 2007, Freescale Semiconductor, Inc * Andy Fleming * * Based vaguely on the pxa mmc code: * (C) Copyright 2003 * Kyle Harris, Nexus Technologies, Inc. kharris@nexus-tech.net */ #include #include #include #include #include #include #include #include #include #include #include #include #include #define MXSMMC_MAX_TIMEOUT 10000 #define MXSMMC_SMALL_TRANSFER 512 #if !CONFIG_IS_ENABLED(DM_MMC) struct mxsmmc_priv { int id; int (*mmc_is_wp)(int); int (*mmc_cd)(int); struct mmc_config cfg; /* mmc configuration */ struct mxs_dma_desc *desc; uint32_t buswidth; struct mxs_ssp_regs *regs; }; #else /* CONFIG_IS_ENABLED(DM_MMC) */ #include #include #include struct mxsmmc_plat { #if CONFIG_IS_ENABLED(OF_PLATDATA) struct dtd_fsl_imx23_mmc dtplat; #endif struct mmc_config cfg; struct mmc mmc; fdt_addr_t base; int non_removable; int buswidth; int dma_id; int clk_id; }; struct mxsmmc_priv { int clkid; struct mxs_dma_desc *desc; u32 buswidth; struct mxs_ssp_regs *regs; unsigned int dma_channel; }; #endif #if !CONFIG_IS_ENABLED(DM_MMC) static int mxsmmc_send_cmd(struct mmc *mmc, struct mmc_cmd *cmd, struct mmc_data *data); static int mxsmmc_cd(struct mxsmmc_priv *priv) { struct mxs_ssp_regs *ssp_regs = priv->regs; if (priv->mmc_cd) return priv->mmc_cd(priv->id); return !(readl(&ssp_regs->hw_ssp_status) & SSP_STATUS_CARD_DETECT); } static int mxsmmc_set_ios(struct mmc *mmc) { struct mxsmmc_priv *priv = mmc->priv; struct mxs_ssp_regs *ssp_regs = priv->regs; /* Set the clock speed */ if (mmc->clock) mxs_set_ssp_busclock(priv->id, mmc->clock / 1000); switch (mmc->bus_width) { case 1: priv->buswidth = SSP_CTRL0_BUS_WIDTH_ONE_BIT; break; case 4: priv->buswidth = SSP_CTRL0_BUS_WIDTH_FOUR_BIT; break; case 8: priv->buswidth = SSP_CTRL0_BUS_WIDTH_EIGHT_BIT; break; } /* Set the bus width */ clrsetbits_le32(&ssp_regs->hw_ssp_ctrl0, SSP_CTRL0_BUS_WIDTH_MASK, priv->buswidth); debug("MMC%d: Set %d bits bus width\n", mmc->block_dev.devnum, mmc->bus_width); return 0; } static int mxsmmc_init(struct mmc *mmc) { struct mxsmmc_priv *priv = mmc->priv; struct mxs_ssp_regs *ssp_regs = priv->regs; /* Reset SSP */ mxs_reset_block(&ssp_regs->hw_ssp_ctrl0_reg); /* Reconfigure the SSP block for MMC operation */ writel(SSP_CTRL1_SSP_MODE_SD_MMC | SSP_CTRL1_WORD_LENGTH_EIGHT_BITS | SSP_CTRL1_DMA_ENABLE | SSP_CTRL1_POLARITY | SSP_CTRL1_RECV_TIMEOUT_IRQ_EN | SSP_CTRL1_DATA_CRC_IRQ_EN | SSP_CTRL1_DATA_TIMEOUT_IRQ_EN | SSP_CTRL1_RESP_TIMEOUT_IRQ_EN | SSP_CTRL1_RESP_ERR_IRQ_EN, &ssp_regs->hw_ssp_ctrl1_set); /* Set initial bit clock 400 KHz */ mxs_set_ssp_busclock(priv->id, 400); /* Send initial 74 clock cycles (185 us @ 400 KHz)*/ writel(SSP_CMD0_CONT_CLKING_EN, &ssp_regs->hw_ssp_cmd0_set); udelay(200); writel(SSP_CMD0_CONT_CLKING_EN, &ssp_regs->hw_ssp_cmd0_clr); return 0; } static const struct mmc_ops mxsmmc_ops = { .send_cmd = mxsmmc_send_cmd, .set_ios = mxsmmc_set_ios, .init = mxsmmc_init, }; int mxsmmc_initialize(struct bd_info *bis, int id, int (*wp)(int), int (*cd)(int)) { struct mmc *mmc = NULL; struct mxsmmc_priv *priv = NULL; int ret; const unsigned int mxsmmc_clk_id = mxs_ssp_clock_by_bus(id); if (!mxs_ssp_bus_id_valid(id)) return -ENODEV; priv = malloc(sizeof(struct mxsmmc_priv)); if (!priv) return -ENOMEM; priv->desc = mxs_dma_desc_alloc(); if (!priv->desc) { free(priv); return -ENOMEM; } ret = mxs_dma_init_channel(MXS_DMA_CHANNEL_AHB_APBH_SSP0 + id); if (ret) return ret; priv->mmc_is_wp = wp; priv->mmc_cd = cd; priv->id = id; priv->regs = mxs_ssp_regs_by_bus(id); priv->cfg.name = "MXS MMC"; priv->cfg.ops = &mxsmmc_ops; priv->cfg.voltages = MMC_VDD_32_33 | MMC_VDD_33_34; priv->cfg.host_caps = MMC_MODE_4BIT | MMC_MODE_8BIT | MMC_MODE_HS_52MHz | MMC_MODE_HS; /* * SSPCLK = 480 * 18 / 29 / 1 = 297.731 MHz * SSP bit rate = SSPCLK / (CLOCK_DIVIDE * (1 + CLOCK_RATE)), * CLOCK_DIVIDE has to be an even value from 2 to 254, and * CLOCK_RATE could be any integer from 0 to 255. */ priv->cfg.f_min = 400000; priv->cfg.f_max = mxc_get_clock(MXC_SSP0_CLK + mxsmmc_clk_id) * 1000 / 2; priv->cfg.b_max = 0x20; mmc = mmc_create(&priv->cfg, priv); if (!mmc) { mxs_dma_desc_free(priv->desc); free(priv); return -ENOMEM; } return 0; } #endif /* CONFIG_IS_ENABLED(DM_MMC) */ static int mxsmmc_send_cmd_pio(struct mxsmmc_priv *priv, struct mmc_data *data) { struct mxs_ssp_regs *ssp_regs = priv->regs; uint32_t *data_ptr; int timeout = MXSMMC_MAX_TIMEOUT; uint32_t reg; uint32_t data_count = data->blocksize * data->blocks; if (data->flags & MMC_DATA_READ) { data_ptr = (uint32_t *)data->dest; while (data_count && --timeout) { reg = readl(&ssp_regs->hw_ssp_status); if (!(reg & SSP_STATUS_FIFO_EMPTY)) { *data_ptr++ = readl(&ssp_regs->hw_ssp_data); data_count -= 4; timeout = MXSMMC_MAX_TIMEOUT; } else udelay(1000); } } else { data_ptr = (uint32_t *)data->src; timeout *= 100; while (data_count && --timeout) { reg = readl(&ssp_regs->hw_ssp_status); if (!(reg & SSP_STATUS_FIFO_FULL)) { writel(*data_ptr++, &ssp_regs->hw_ssp_data); data_count -= 4; timeout = MXSMMC_MAX_TIMEOUT; } else udelay(1000); } } return timeout ? 0 : -ECOMM; } static int mxsmmc_send_cmd_dma(struct mxsmmc_priv *priv, struct mmc_data *data) { uint32_t data_count = data->blocksize * data->blocks; int dmach; struct mxs_dma_desc *desc = priv->desc; void *addr; unsigned int flags; struct bounce_buffer bbstate; memset(desc, 0, sizeof(struct mxs_dma_desc)); desc->address = (dma_addr_t)desc; if (data->flags & MMC_DATA_READ) { priv->desc->cmd.data = MXS_DMA_DESC_COMMAND_DMA_WRITE; addr = data->dest; flags = GEN_BB_WRITE; } else { priv->desc->cmd.data = MXS_DMA_DESC_COMMAND_DMA_READ; addr = (void *)data->src; flags = GEN_BB_READ; } bounce_buffer_start(&bbstate, addr, data_count, flags); priv->desc->cmd.address = (dma_addr_t)bbstate.bounce_buffer; priv->desc->cmd.data |= MXS_DMA_DESC_IRQ | MXS_DMA_DESC_DEC_SEM | (data_count << MXS_DMA_DESC_BYTES_OFFSET); #if !CONFIG_IS_ENABLED(DM_MMC) dmach = MXS_DMA_CHANNEL_AHB_APBH_SSP0 + priv->id; #else dmach = priv->dma_channel; #endif mxs_dma_desc_append(dmach, priv->desc); if (mxs_dma_go(dmach)) { bounce_buffer_stop(&bbstate); return -ECOMM; } bounce_buffer_stop(&bbstate); return 0; } #if !CONFIG_IS_ENABLED(DM_MMC) /* * Sends a command out on the bus. Takes the mmc pointer, * a command pointer, and an optional data pointer. */ static int mxsmmc_send_cmd(struct mmc *mmc, struct mmc_cmd *cmd, struct mmc_data *data) { struct mxsmmc_priv *priv = mmc->priv; struct mxs_ssp_regs *ssp_regs = priv->regs; #else static int mxsmmc_send_cmd(struct udevice *dev, struct mmc_cmd *cmd, struct mmc_data *data) { struct mxsmmc_plat *plat = dev_get_plat(dev); struct mxsmmc_priv *priv = dev_get_priv(dev); struct mxs_ssp_regs *ssp_regs = priv->regs; struct mmc *mmc = &plat->mmc; #endif uint32_t reg; int timeout; uint32_t ctrl0; int ret; #if !CONFIG_IS_ENABLED(DM_MMC) int devnum = mmc->block_dev.devnum; #else int devnum = mmc_get_blk_desc(mmc)->devnum; #endif debug("MMC%d: CMD%d\n", devnum, cmd->cmdidx); /* Check bus busy */ timeout = MXSMMC_MAX_TIMEOUT; while (--timeout) { udelay(1000); reg = readl(&ssp_regs->hw_ssp_status); if (!(reg & (SSP_STATUS_BUSY | SSP_STATUS_DATA_BUSY | SSP_STATUS_CMD_BUSY))) { break; } } if (!timeout) { printf("MMC%d: Bus busy timeout!\n", devnum); return -ETIMEDOUT; } #if !CONFIG_IS_ENABLED(DM_MMC) /* See if card is present */ if (!mxsmmc_cd(priv)) { printf("MMC%d: No card detected!\n", devnum); return -ENOMEDIUM; } #endif /* Start building CTRL0 contents */ ctrl0 = priv->buswidth; /* Set up command */ if (!(cmd->resp_type & MMC_RSP_CRC)) ctrl0 |= SSP_CTRL0_IGNORE_CRC; if (cmd->resp_type & MMC_RSP_PRESENT) /* Need to get response */ ctrl0 |= SSP_CTRL0_GET_RESP; if (cmd->resp_type & MMC_RSP_136) /* It's a 136 bits response */ ctrl0 |= SSP_CTRL0_LONG_RESP; if (data && (data->blocksize * data->blocks < MXSMMC_SMALL_TRANSFER)) writel(SSP_CTRL1_DMA_ENABLE, &ssp_regs->hw_ssp_ctrl1_clr); else writel(SSP_CTRL1_DMA_ENABLE, &ssp_regs->hw_ssp_ctrl1_set); /* Command index */ reg = readl(&ssp_regs->hw_ssp_cmd0); reg &= ~(SSP_CMD0_CMD_MASK | SSP_CMD0_APPEND_8CYC); reg |= cmd->cmdidx << SSP_CMD0_CMD_OFFSET; if (cmd->cmdidx == MMC_CMD_STOP_TRANSMISSION) reg |= SSP_CMD0_APPEND_8CYC; writel(reg, &ssp_regs->hw_ssp_cmd0); /* Command argument */ writel(cmd->cmdarg, &ssp_regs->hw_ssp_cmd1); /* Set up data */ if (data) { /* READ or WRITE */ if (data->flags & MMC_DATA_READ) { ctrl0 |= SSP_CTRL0_READ; #if !CONFIG_IS_ENABLED(DM_MMC) } else if (priv->mmc_is_wp && priv->mmc_is_wp(devnum)) { printf("MMC%d: Can not write a locked card!\n", devnum); return -EOPNOTSUPP; #endif } ctrl0 |= SSP_CTRL0_DATA_XFER; reg = data->blocksize * data->blocks; #if defined(CONFIG_MX23) ctrl0 |= reg & SSP_CTRL0_XFER_COUNT_MASK; clrsetbits_le32(&ssp_regs->hw_ssp_cmd0, SSP_CMD0_BLOCK_SIZE_MASK | SSP_CMD0_BLOCK_COUNT_MASK, ((data->blocks - 1) << SSP_CMD0_BLOCK_COUNT_OFFSET) | ((ffs(data->blocksize) - 1) << SSP_CMD0_BLOCK_SIZE_OFFSET)); #elif defined(CONFIG_MX28) writel(reg, &ssp_regs->hw_ssp_xfer_size); reg = ((data->blocks - 1) << SSP_BLOCK_SIZE_BLOCK_COUNT_OFFSET) | ((ffs(data->blocksize) - 1) << SSP_BLOCK_SIZE_BLOCK_SIZE_OFFSET); writel(reg, &ssp_regs->hw_ssp_block_size); #endif } /* Kick off the command */ ctrl0 |= SSP_CTRL0_WAIT_FOR_IRQ | SSP_CTRL0_ENABLE | SSP_CTRL0_RUN; writel(ctrl0, &ssp_regs->hw_ssp_ctrl0); /* Wait for the command to complete */ timeout = MXSMMC_MAX_TIMEOUT; while (--timeout) { udelay(1000); reg = readl(&ssp_regs->hw_ssp_status); if (!(reg & SSP_STATUS_CMD_BUSY)) break; } if (!timeout) { printf("MMC%d: Command %d busy\n", devnum, cmd->cmdidx); return -ETIMEDOUT; } /* Check command timeout */ if (reg & SSP_STATUS_RESP_TIMEOUT) { debug("MMC%d: Command %d timeout (status 0x%08x)\n", devnum, cmd->cmdidx, reg); return -ETIMEDOUT; } /* Check command errors */ if (reg & (SSP_STATUS_RESP_CRC_ERR | SSP_STATUS_RESP_ERR)) { printf("MMC%d: Command %d error (status 0x%08x)!\n", devnum, cmd->cmdidx, reg); return -ECOMM; } /* Copy response to response buffer */ if (cmd->resp_type & MMC_RSP_136) { cmd->response[3] = readl(&ssp_regs->hw_ssp_sdresp0); cmd->response[2] = readl(&ssp_regs->hw_ssp_sdresp1); cmd->response[1] = readl(&ssp_regs->hw_ssp_sdresp2); cmd->response[0] = readl(&ssp_regs->hw_ssp_sdresp3); } else cmd->response[0] = readl(&ssp_regs->hw_ssp_sdresp0); /* Return if no data to process */ if (!data) return 0; if (data->blocksize * data->blocks < MXSMMC_SMALL_TRANSFER) { ret = mxsmmc_send_cmd_pio(priv, data); if (ret) { printf("MMC%d: Data timeout with command %d " "(status 0x%08x)!\n", devnum, cmd->cmdidx, reg); return ret; } } else { ret = mxsmmc_send_cmd_dma(priv, data); if (ret) { printf("MMC%d: DMA transfer failed\n", devnum); return ret; } } /* Check data errors */ reg = readl(&ssp_regs->hw_ssp_status); if (reg & (SSP_STATUS_TIMEOUT | SSP_STATUS_DATA_CRC_ERR | SSP_STATUS_FIFO_OVRFLW | SSP_STATUS_FIFO_UNDRFLW)) { printf("MMC%d: Data error with command %d (status 0x%08x)!\n", devnum, cmd->cmdidx, reg); return -ECOMM; } return 0; } #if CONFIG_IS_ENABLED(DM_MMC) /* Base numbers of i.MX2[38] clk for ssp0 IP block */ #define MXS_SSP_IMX23_CLKID_SSP0 33 #define MXS_SSP_IMX28_CLKID_SSP0 46 static int mxsmmc_get_cd(struct udevice *dev) { struct mxsmmc_plat *plat = dev_get_plat(dev); struct mxsmmc_priv *priv = dev_get_priv(dev); struct mxs_ssp_regs *ssp_regs = priv->regs; if (plat->non_removable) return 1; return !(readl(&ssp_regs->hw_ssp_status) & SSP_STATUS_CARD_DETECT); } static int mxsmmc_set_ios(struct udevice *dev) { struct mxsmmc_plat *plat = dev_get_plat(dev); struct mxsmmc_priv *priv = dev_get_priv(dev); struct mxs_ssp_regs *ssp_regs = priv->regs; struct mmc *mmc = &plat->mmc; /* Set the clock speed */ if (mmc->clock) mxs_set_ssp_busclock(priv->clkid, mmc->clock / 1000); switch (mmc->bus_width) { case 1: priv->buswidth = SSP_CTRL0_BUS_WIDTH_ONE_BIT; break; case 4: priv->buswidth = SSP_CTRL0_BUS_WIDTH_FOUR_BIT; break; case 8: priv->buswidth = SSP_CTRL0_BUS_WIDTH_EIGHT_BIT; break; } /* Set the bus width */ clrsetbits_le32(&ssp_regs->hw_ssp_ctrl0, SSP_CTRL0_BUS_WIDTH_MASK, priv->buswidth); debug("MMC%d: Set %d bits bus width\n", mmc_get_blk_desc(mmc)->devnum, mmc->bus_width); return 0; } static int mxsmmc_init(struct udevice *dev) { struct mxsmmc_priv *priv = dev_get_priv(dev); struct mxs_ssp_regs *ssp_regs = priv->regs; /* Reset SSP */ mxs_reset_block(&ssp_regs->hw_ssp_ctrl0_reg); /* Reconfigure the SSP block for MMC operation */ writel(SSP_CTRL1_SSP_MODE_SD_MMC | SSP_CTRL1_WORD_LENGTH_EIGHT_BITS | SSP_CTRL1_DMA_ENABLE | SSP_CTRL1_POLARITY | SSP_CTRL1_RECV_TIMEOUT_IRQ_EN | SSP_CTRL1_DATA_CRC_IRQ_EN | SSP_CTRL1_DATA_TIMEOUT_IRQ_EN | SSP_CTRL1_RESP_TIMEOUT_IRQ_EN | SSP_CTRL1_RESP_ERR_IRQ_EN, &ssp_regs->hw_ssp_ctrl1_set); /* Set initial bit clock 400 KHz */ mxs_set_ssp_busclock(priv->clkid, 400); /* Send initial 74 clock cycles (185 us @ 400 KHz)*/ writel(SSP_CMD0_CONT_CLKING_EN, &ssp_regs->hw_ssp_cmd0_set); udelay(200); writel(SSP_CMD0_CONT_CLKING_EN, &ssp_regs->hw_ssp_cmd0_clr); return 0; } static int mxsmmc_probe(struct udevice *dev) { struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev); struct mxsmmc_plat *plat = dev_get_plat(dev); struct mxsmmc_priv *priv = dev_get_priv(dev); struct blk_desc *bdesc; struct mmc *mmc; int ret, clkid; debug("%s: probe\n", __func__); #if CONFIG_IS_ENABLED(OF_PLATDATA) struct dtd_fsl_imx23_mmc *dtplat = &plat->dtplat; struct phandle_1_arg *p1a = &dtplat->clocks[0]; priv->buswidth = dtplat->bus_width; priv->regs = (struct mxs_ssp_regs *)dtplat->reg[0]; priv->dma_channel = dtplat->dmas[1]; clkid = p1a->arg[0]; plat->non_removable = dtplat->non_removable; debug("OF_PLATDATA: regs: 0x%p bw: %d clkid: %d non_removable: %d\n", priv->regs, priv->buswidth, clkid, plat->non_removable); #else priv->regs = (struct mxs_ssp_regs *)plat->base; priv->dma_channel = plat->dma_id; clkid = plat->clk_id; #endif #ifdef CONFIG_MX28 priv->clkid = clkid - MXS_SSP_IMX28_CLKID_SSP0; #else /* CONFIG_MX23 */ priv->clkid = clkid - MXS_SSP_IMX23_CLKID_SSP0; #endif mmc = &plat->mmc; mmc->cfg = &plat->cfg; mmc->dev = dev; priv->desc = mxs_dma_desc_alloc(); if (!priv->desc) { printf("%s: Cannot allocate DMA descriptor\n", __func__); return -ENOMEM; } ret = mxs_dma_init_channel(priv->dma_channel); if (ret) return ret; plat->cfg.name = "MXS MMC"; plat->cfg.voltages = MMC_VDD_32_33 | MMC_VDD_33_34; plat->cfg.host_caps = MMC_MODE_4BIT | MMC_MODE_8BIT | MMC_MODE_HS_52MHz | MMC_MODE_HS; /* * SSPCLK = 480 * 18 / 29 / 1 = 297.731 MHz * SSP bit rate = SSPCLK / (CLOCK_DIVIDE * (1 + CLOCK_RATE)), * CLOCK_DIVIDE has to be an even value from 2 to 254, and * CLOCK_RATE could be any integer from 0 to 255. */ plat->cfg.f_min = 400000; plat->cfg.f_max = mxc_get_clock(MXC_SSP0_CLK + priv->clkid) * 1000 / 2; plat->cfg.b_max = 0x20; bdesc = mmc_get_blk_desc(mmc); if (!bdesc) { printf("%s: No block device descriptor!\n", __func__); return -ENODEV; } if (plat->non_removable) bdesc->removable = 0; ret = mxsmmc_init(dev); if (ret) printf("%s: MMC%d init error %d\n", __func__, bdesc->devnum, ret); /* Set the initial clock speed */ mmc_set_clock(mmc, 400000, MMC_CLK_ENABLE); upriv->mmc = mmc; return 0; }; #if CONFIG_IS_ENABLED(BLK) static int mxsmmc_bind(struct udevice *dev) { struct mxsmmc_plat *plat = dev_get_plat(dev); return mmc_bind(dev, &plat->mmc, &plat->cfg); } #endif static const struct dm_mmc_ops mxsmmc_ops = { .get_cd = mxsmmc_get_cd, .send_cmd = mxsmmc_send_cmd, .set_ios = mxsmmc_set_ios, }; #if CONFIG_IS_ENABLED(OF_REAL) static int mxsmmc_of_to_plat(struct udevice *bus) { struct mxsmmc_plat *plat = dev_get_plat(bus); u32 prop[2]; int ret; plat->base = dev_read_addr(bus); plat->buswidth = dev_read_u32_default(bus, "bus-width", 1); plat->non_removable = dev_read_bool(bus, "non-removable"); ret = dev_read_u32_array(bus, "dmas", prop, ARRAY_SIZE(prop)); if (ret) { printf("%s: Reading 'dmas' property failed!\n", __func__); return ret; } plat->dma_id = prop[1]; ret = dev_read_u32_array(bus, "clocks", prop, ARRAY_SIZE(prop)); if (ret) { printf("%s: Reading 'clocks' property failed!\n", __func__); return ret; } plat->clk_id = prop[1]; debug("%s: base=0x%x, bus_width=%d %s dma_id=%d clk_id=%d\n", __func__, (uint)plat->base, plat->buswidth, plat->non_removable ? "non-removable" : NULL, plat->dma_id, plat->clk_id); return 0; } static const struct udevice_id mxsmmc_ids[] = { { .compatible = "fsl,imx23-mmc", }, { .compatible = "fsl,imx28-mmc", }, { /* sentinel */ } }; #endif U_BOOT_DRIVER(fsl_imx23_mmc) = { .name = "fsl_imx23_mmc", .id = UCLASS_MMC, #if CONFIG_IS_ENABLED(OF_REAL) .of_match = mxsmmc_ids, .of_to_plat = mxsmmc_of_to_plat, #endif .ops = &mxsmmc_ops, #if CONFIG_IS_ENABLED(BLK) .bind = mxsmmc_bind, #endif .probe = mxsmmc_probe, .priv_auto = sizeof(struct mxsmmc_priv), .plat_auto = sizeof(struct mxsmmc_plat), }; DM_DRIVER_ALIAS(fsl_imx23_mmc, fsl_imx28_mmc) #endif /* CONFIG_DM_MMC */