// SPDX-License-Identifier: GPL-2.0+ /* * Ingenic JZ MMC driver * * Copyright (c) 2013 Imagination Technologies * Author: Paul Burton */ #include #include #include #include #include #include #include #include #include #include #include #include /* Registers */ #define MSC_STRPCL 0x000 #define MSC_STAT 0x004 #define MSC_CLKRT 0x008 #define MSC_CMDAT 0x00c #define MSC_RESTO 0x010 #define MSC_RDTO 0x014 #define MSC_BLKLEN 0x018 #define MSC_NOB 0x01c #define MSC_SNOB 0x020 #define MSC_IMASK 0x024 #define MSC_IREG 0x028 #define MSC_CMD 0x02c #define MSC_ARG 0x030 #define MSC_RES 0x034 #define MSC_RXFIFO 0x038 #define MSC_TXFIFO 0x03c #define MSC_LPM 0x040 #define MSC_DMAC 0x044 #define MSC_DMANDA 0x048 #define MSC_DMADA 0x04c #define MSC_DMALEN 0x050 #define MSC_DMACMD 0x054 #define MSC_CTRL2 0x058 #define MSC_RTCNT 0x05c #define MSC_DBG 0x0fc /* MSC Clock and Control Register (MSC_STRPCL) */ #define MSC_STRPCL_EXIT_MULTIPLE BIT(7) #define MSC_STRPCL_EXIT_TRANSFER BIT(6) #define MSC_STRPCL_START_READWAIT BIT(5) #define MSC_STRPCL_STOP_READWAIT BIT(4) #define MSC_STRPCL_RESET BIT(3) #define MSC_STRPCL_START_OP BIT(2) #define MSC_STRPCL_CLOCK_CONTROL_STOP BIT(0) #define MSC_STRPCL_CLOCK_CONTROL_START BIT(1) /* MSC Status Register (MSC_STAT) */ #define MSC_STAT_AUTO_CMD_DONE BIT(31) #define MSC_STAT_IS_RESETTING BIT(15) #define MSC_STAT_SDIO_INT_ACTIVE BIT(14) #define MSC_STAT_PRG_DONE BIT(13) #define MSC_STAT_DATA_TRAN_DONE BIT(12) #define MSC_STAT_END_CMD_RES BIT(11) #define MSC_STAT_DATA_FIFO_AFULL BIT(10) #define MSC_STAT_IS_READWAIT BIT(9) #define MSC_STAT_CLK_EN BIT(8) #define MSC_STAT_DATA_FIFO_FULL BIT(7) #define MSC_STAT_DATA_FIFO_EMPTY BIT(6) #define MSC_STAT_CRC_RES_ERR BIT(5) #define MSC_STAT_CRC_READ_ERROR BIT(4) #define MSC_STAT_CRC_WRITE_ERROR BIT(2) #define MSC_STAT_CRC_WRITE_ERROR_NOSTS BIT(4) #define MSC_STAT_TIME_OUT_RES BIT(1) #define MSC_STAT_TIME_OUT_READ BIT(0) /* MSC Bus Clock Control Register (MSC_CLKRT) */ #define MSC_CLKRT_CLK_RATE_MASK 0x7 /* MSC Command Sequence Control Register (MSC_CMDAT) */ #define MSC_CMDAT_IO_ABORT BIT(11) #define MSC_CMDAT_BUS_WIDTH_1BIT (0x0 << 9) #define MSC_CMDAT_BUS_WIDTH_4BIT (0x2 << 9) #define MSC_CMDAT_DMA_EN BIT(8) #define MSC_CMDAT_INIT BIT(7) #define MSC_CMDAT_BUSY BIT(6) #define MSC_CMDAT_STREAM_BLOCK BIT(5) #define MSC_CMDAT_WRITE BIT(4) #define MSC_CMDAT_DATA_EN BIT(3) #define MSC_CMDAT_RESPONSE_MASK (0x7 << 0) #define MSC_CMDAT_RESPONSE_NONE (0x0 << 0) /* No response */ #define MSC_CMDAT_RESPONSE_R1 (0x1 << 0) /* Format R1 and R1b */ #define MSC_CMDAT_RESPONSE_R2 (0x2 << 0) /* Format R2 */ #define MSC_CMDAT_RESPONSE_R3 (0x3 << 0) /* Format R3 */ #define MSC_CMDAT_RESPONSE_R4 (0x4 << 0) /* Format R4 */ #define MSC_CMDAT_RESPONSE_R5 (0x5 << 0) /* Format R5 */ #define MSC_CMDAT_RESPONSE_R6 (0x6 << 0) /* Format R6 */ /* MSC Interrupts Mask Register (MSC_IMASK) */ #define MSC_IMASK_TIME_OUT_RES BIT(9) #define MSC_IMASK_TIME_OUT_READ BIT(8) #define MSC_IMASK_SDIO BIT(7) #define MSC_IMASK_TXFIFO_WR_REQ BIT(6) #define MSC_IMASK_RXFIFO_RD_REQ BIT(5) #define MSC_IMASK_END_CMD_RES BIT(2) #define MSC_IMASK_PRG_DONE BIT(1) #define MSC_IMASK_DATA_TRAN_DONE BIT(0) /* MSC Interrupts Status Register (MSC_IREG) */ #define MSC_IREG_TIME_OUT_RES BIT(9) #define MSC_IREG_TIME_OUT_READ BIT(8) #define MSC_IREG_SDIO BIT(7) #define MSC_IREG_TXFIFO_WR_REQ BIT(6) #define MSC_IREG_RXFIFO_RD_REQ BIT(5) #define MSC_IREG_END_CMD_RES BIT(2) #define MSC_IREG_PRG_DONE BIT(1) #define MSC_IREG_DATA_TRAN_DONE BIT(0) struct jz_mmc_plat { struct mmc_config cfg; struct mmc mmc; }; struct jz_mmc_priv { void __iomem *regs; u32 flags; /* priv flags */ #define JZ_MMC_BUS_WIDTH_MASK 0x3 #define JZ_MMC_BUS_WIDTH_1 0x0 #define JZ_MMC_BUS_WIDTH_4 0x2 #define JZ_MMC_BUS_WIDTH_8 0x3 #define JZ_MMC_SENT_INIT BIT(2) }; static int jz_mmc_clock_rate(void) { return 24000000; } #if CONFIG_IS_ENABLED(MMC_WRITE) static inline void jz_mmc_write_data(struct jz_mmc_priv *priv, struct mmc_data *data) { int sz = DIV_ROUND_UP(data->blocks * data->blocksize, 4); const void *buf = data->src; while (sz--) { u32 val = get_unaligned_le32(buf); wait_for_bit_le32(priv->regs + MSC_IREG, MSC_IREG_TXFIFO_WR_REQ, true, 10000, false); writel(val, priv->regs + MSC_TXFIFO); buf += 4; } } #else static void jz_mmc_write_data(struct jz_mmc_priv *priv, struct mmc_data *data) {} #endif static inline int jz_mmc_read_data(struct jz_mmc_priv *priv, struct mmc_data *data) { int sz = data->blocks * data->blocksize; void *buf = data->dest; u32 stat, val; do { stat = readl(priv->regs + MSC_STAT); if (stat & MSC_STAT_TIME_OUT_READ) return -ETIMEDOUT; if (stat & MSC_STAT_CRC_READ_ERROR) return -EINVAL; if (stat & MSC_STAT_DATA_FIFO_EMPTY) { udelay(10); continue; } do { val = readl(priv->regs + MSC_RXFIFO); if (sz == 1) *(u8 *)buf = (u8)val; else if (sz == 2) put_unaligned_le16(val, buf); else if (sz >= 4) put_unaligned_le32(val, buf); buf += 4; sz -= 4; stat = readl(priv->regs + MSC_STAT); } while (!(stat & MSC_STAT_DATA_FIFO_EMPTY)); } while (!(stat & MSC_STAT_DATA_TRAN_DONE)); return 0; } static int jz_mmc_send_cmd(struct mmc *mmc, struct jz_mmc_priv *priv, struct mmc_cmd *cmd, struct mmc_data *data) { u32 stat, mask, cmdat = 0; int i, ret; /* stop the clock */ writel(MSC_STRPCL_CLOCK_CONTROL_STOP, priv->regs + MSC_STRPCL); ret = wait_for_bit_le32(priv->regs + MSC_STAT, MSC_STAT_CLK_EN, false, 10000, false); if (ret) return ret; writel(0, priv->regs + MSC_DMAC); /* setup command */ writel(cmd->cmdidx, priv->regs + MSC_CMD); writel(cmd->cmdarg, priv->regs + MSC_ARG); if (data) { /* setup data */ cmdat |= MSC_CMDAT_DATA_EN; if (data->flags & MMC_DATA_WRITE) cmdat |= MSC_CMDAT_WRITE; writel(data->blocks, priv->regs + MSC_NOB); writel(data->blocksize, priv->regs + MSC_BLKLEN); } else { writel(0, priv->regs + MSC_NOB); writel(0, priv->regs + MSC_BLKLEN); } /* setup response */ switch (cmd->resp_type) { case MMC_RSP_NONE: break; case MMC_RSP_R1: case MMC_RSP_R1b: cmdat |= MSC_CMDAT_RESPONSE_R1; break; case MMC_RSP_R2: cmdat |= MSC_CMDAT_RESPONSE_R2; break; case MMC_RSP_R3: cmdat |= MSC_CMDAT_RESPONSE_R3; break; default: break; } if (cmd->resp_type & MMC_RSP_BUSY) cmdat |= MSC_CMDAT_BUSY; /* set init for the first command only */ if (!(priv->flags & JZ_MMC_SENT_INIT)) { cmdat |= MSC_CMDAT_INIT; priv->flags |= JZ_MMC_SENT_INIT; } cmdat |= (priv->flags & JZ_MMC_BUS_WIDTH_MASK) << 9; /* write the data setup */ writel(cmdat, priv->regs + MSC_CMDAT); /* unmask interrupts */ mask = 0xffffffff & ~(MSC_IMASK_END_CMD_RES | MSC_IMASK_TIME_OUT_RES); if (data) { mask &= ~MSC_IMASK_DATA_TRAN_DONE; if (data->flags & MMC_DATA_WRITE) { mask &= ~MSC_IMASK_TXFIFO_WR_REQ; } else { mask &= ~(MSC_IMASK_RXFIFO_RD_REQ | MSC_IMASK_TIME_OUT_READ); } } writel(mask, priv->regs + MSC_IMASK); /* clear interrupts */ writel(0xffffffff, priv->regs + MSC_IREG); /* start the command (& the clock) */ writel(MSC_STRPCL_START_OP | MSC_STRPCL_CLOCK_CONTROL_START, priv->regs + MSC_STRPCL); /* wait for completion */ for (i = 0; i < 100; i++) { stat = readl(priv->regs + MSC_IREG); stat &= MSC_IREG_END_CMD_RES | MSC_IREG_TIME_OUT_RES; if (stat) break; mdelay(1); } writel(stat, priv->regs + MSC_IREG); if (stat & MSC_IREG_TIME_OUT_RES) return -ETIMEDOUT; if (cmd->resp_type & MMC_RSP_PRESENT) { /* read the response */ if (cmd->resp_type & MMC_RSP_136) { u16 a, b, c, i; a = readw(priv->regs + MSC_RES); for (i = 0; i < 4; i++) { b = readw(priv->regs + MSC_RES); c = readw(priv->regs + MSC_RES); cmd->response[i] = (a << 24) | (b << 8) | (c >> 8); a = c; } } else { cmd->response[0] = readw(priv->regs + MSC_RES) << 24; cmd->response[0] |= readw(priv->regs + MSC_RES) << 8; cmd->response[0] |= readw(priv->regs + MSC_RES) & 0xff; } } if (data) { if (data->flags & MMC_DATA_WRITE) jz_mmc_write_data(priv, data); else if (data->flags & MMC_DATA_READ) { ret = jz_mmc_read_data(priv, data); if (ret) return ret; } } return 0; } static int jz_mmc_set_ios(struct mmc *mmc, struct jz_mmc_priv *priv) { u32 real_rate = jz_mmc_clock_rate(); u8 clk_div = 0; /* calculate clock divide */ while ((real_rate > mmc->clock) && (clk_div < 7)) { real_rate >>= 1; clk_div++; } writel(clk_div & MSC_CLKRT_CLK_RATE_MASK, priv->regs + MSC_CLKRT); /* set the bus width for the next command */ priv->flags &= ~JZ_MMC_BUS_WIDTH_MASK; if (mmc->bus_width == 8) priv->flags |= JZ_MMC_BUS_WIDTH_8; else if (mmc->bus_width == 4) priv->flags |= JZ_MMC_BUS_WIDTH_4; else priv->flags |= JZ_MMC_BUS_WIDTH_1; return 0; } static int jz_mmc_core_init(struct mmc *mmc) { struct jz_mmc_priv *priv = mmc->priv; int ret; /* Reset */ writel(MSC_STRPCL_RESET, priv->regs + MSC_STRPCL); ret = wait_for_bit_le32(priv->regs + MSC_STAT, MSC_STAT_IS_RESETTING, false, 10000, false); if (ret) return ret; /* Maximum timeouts */ writel(0xffff, priv->regs + MSC_RESTO); writel(0xffffffff, priv->regs + MSC_RDTO); /* Enable low power mode */ writel(0x1, priv->regs + MSC_LPM); return 0; } #if !CONFIG_IS_ENABLED(DM_MMC) static int jz_mmc_legacy_send_cmd(struct mmc *mmc, struct mmc_cmd *cmd, struct mmc_data *data) { struct jz_mmc_priv *priv = mmc->priv; return jz_mmc_send_cmd(mmc, priv, cmd, data); } static int jz_mmc_legacy_set_ios(struct mmc *mmc) { struct jz_mmc_priv *priv = mmc->priv; return jz_mmc_set_ios(mmc, priv); }; static const struct mmc_ops jz_msc_ops = { .send_cmd = jz_mmc_legacy_send_cmd, .set_ios = jz_mmc_legacy_set_ios, .init = jz_mmc_core_init, }; static struct jz_mmc_priv jz_mmc_priv_static; static struct jz_mmc_plat jz_mmc_plat_static = { .cfg = { .name = "MSC", .ops = &jz_msc_ops, .voltages = MMC_VDD_27_28 | MMC_VDD_28_29 | MMC_VDD_29_30 | MMC_VDD_30_31 | MMC_VDD_31_32 | MMC_VDD_32_33 | MMC_VDD_33_34 | MMC_VDD_34_35 | MMC_VDD_35_36, .host_caps = MMC_MODE_4BIT | MMC_MODE_HS_52MHz | MMC_MODE_HS, .f_min = 375000, .f_max = 48000000, .b_max = CONFIG_SYS_MMC_MAX_BLK_COUNT, }, }; int jz_mmc_init(void __iomem *base) { struct mmc *mmc; jz_mmc_priv_static.regs = base; mmc = mmc_create(&jz_mmc_plat_static.cfg, &jz_mmc_priv_static); return mmc ? 0 : -ENODEV; } #else /* CONFIG_DM_MMC */ #include DECLARE_GLOBAL_DATA_PTR; static int jz_mmc_dm_send_cmd(struct udevice *dev, struct mmc_cmd *cmd, struct mmc_data *data) { struct jz_mmc_priv *priv = dev_get_priv(dev); struct mmc *mmc = mmc_get_mmc_dev(dev); return jz_mmc_send_cmd(mmc, priv, cmd, data); } static int jz_mmc_dm_set_ios(struct udevice *dev) { struct jz_mmc_priv *priv = dev_get_priv(dev); struct mmc *mmc = mmc_get_mmc_dev(dev); return jz_mmc_set_ios(mmc, priv); }; static const struct dm_mmc_ops jz_msc_ops = { .send_cmd = jz_mmc_dm_send_cmd, .set_ios = jz_mmc_dm_set_ios, }; static int jz_mmc_of_to_plat(struct udevice *dev) { struct jz_mmc_priv *priv = dev_get_priv(dev); struct jz_mmc_plat *plat = dev_get_plat(dev); struct mmc_config *cfg; int ret; priv->regs = map_physmem(dev_read_addr(dev), 0x100, MAP_NOCACHE); cfg = &plat->cfg; cfg->name = "MSC"; cfg->host_caps = MMC_MODE_HS_52MHz | MMC_MODE_HS; ret = mmc_of_parse(dev, cfg); if (ret < 0) { dev_err(dev, "failed to parse host caps\n"); return ret; } cfg->f_min = 400000; cfg->f_max = 52000000; cfg->voltages = MMC_VDD_32_33 | MMC_VDD_33_34 | MMC_VDD_165_195; cfg->b_max = CONFIG_SYS_MMC_MAX_BLK_COUNT; return 0; } static int jz_mmc_bind(struct udevice *dev) { struct jz_mmc_plat *plat = dev_get_plat(dev); return mmc_bind(dev, &plat->mmc, &plat->cfg); } static int jz_mmc_probe(struct udevice *dev) { struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev); struct jz_mmc_priv *priv = dev_get_priv(dev); struct jz_mmc_plat *plat = dev_get_plat(dev); plat->mmc.priv = priv; upriv->mmc = &plat->mmc; return jz_mmc_core_init(&plat->mmc); } static const struct udevice_id jz_mmc_ids[] = { { .compatible = "ingenic,jz4780-mmc" }, { } }; U_BOOT_DRIVER(jz_mmc_drv) = { .name = "jz_mmc", .id = UCLASS_MMC, .of_match = jz_mmc_ids, .of_to_plat = jz_mmc_of_to_plat, .bind = jz_mmc_bind, .probe = jz_mmc_probe, .priv_auto = sizeof(struct jz_mmc_priv), .plat_auto = sizeof(struct jz_mmc_plat), .ops = &jz_msc_ops, }; #endif /* CONFIG_DM_MMC */