// SPDX-License-Identifier: GPL-2.0+ /* * Copyright 2019 Broadcom. * */ #include #include #include #include #include #include #include "mmc_private.h" #include #define MAX_TUNING_LOOP 40 DECLARE_GLOBAL_DATA_PTR; struct sdhci_iproc_host { struct sdhci_host host; u32 shadow_cmd; u32 shadow_blk; }; #define REG_OFFSET_IN_BITS(reg) ((reg) << 3 & 0x18) static inline struct sdhci_iproc_host *to_iproc(struct sdhci_host *host) { return (struct sdhci_iproc_host *)host; } #ifdef CONFIG_MMC_SDHCI_IO_ACCESSORS static u32 sdhci_iproc_readl(struct sdhci_host *host, int reg) { u32 val = readl(host->ioaddr + reg); #ifdef CONFIG_MMC_SDHCI_IO_ACCESSORS_TRACE printf("%s %d: readl [0x%02x] 0x%08x\n", host->name, host->index, reg, val); #endif return val; } static u16 sdhci_iproc_readw(struct sdhci_host *host, int reg) { u32 val = sdhci_iproc_readl(host, (reg & ~3)); u16 word = val >> REG_OFFSET_IN_BITS(reg) & 0xffff; return word; } static u8 sdhci_iproc_readb(struct sdhci_host *host, int reg) { u32 val = sdhci_iproc_readl(host, (reg & ~3)); u8 byte = val >> REG_OFFSET_IN_BITS(reg) & 0xff; return byte; } static void sdhci_iproc_writel(struct sdhci_host *host, u32 val, int reg) { u32 clock = 0; #ifdef CONFIG_MMC_SDHCI_IO_ACCESSORS_TRACE printf("%s %d: writel [0x%02x] 0x%08x\n", host->name, host->index, reg, val); #endif writel(val, host->ioaddr + reg); if (host->mmc) clock = host->mmc->clock; if (clock <= 400000) { /* Round up to micro-second four SD clock delay */ if (clock) udelay((4 * 1000000 + clock - 1) / clock); else udelay(10); } } /* * The Arasan has a bugette whereby it may lose the content of successive * writes to the same register that are within two SD-card clock cycles of * each other (a clock domain crossing problem). The data * register does not have this problem, which is just as well - otherwise we'd * have to nobble the DMA engine too. * * This wouldn't be a problem with the code except that we can only write the * controller with 32-bit writes. So two different 16-bit registers are * written back to back creates the problem. * * In reality, this only happens when SDHCI_BLOCK_SIZE and SDHCI_BLOCK_COUNT * are written followed by SDHCI_TRANSFER_MODE and SDHCI_COMMAND. * The BLOCK_SIZE and BLOCK_COUNT are meaningless until a command issued so * the work around can be further optimized. We can keep shadow values of * BLOCK_SIZE, BLOCK_COUNT, and TRANSFER_MODE until a COMMAND is issued. * Then, write the BLOCK_SIZE+BLOCK_COUNT in a single 32-bit write followed * by the TRANSFER+COMMAND in another 32-bit write. */ static void sdhci_iproc_writew(struct sdhci_host *host, u16 val, int reg) { struct sdhci_iproc_host *iproc_host = to_iproc(host); u32 word_shift = REG_OFFSET_IN_BITS(reg); u32 mask = 0xffff << word_shift; u32 oldval, newval; if (reg == SDHCI_COMMAND) { /* Write the block now as we are issuing a command */ if (iproc_host->shadow_blk != 0) { sdhci_iproc_writel(host, iproc_host->shadow_blk, SDHCI_BLOCK_SIZE); iproc_host->shadow_blk = 0; } oldval = iproc_host->shadow_cmd; } else if (reg == SDHCI_BLOCK_SIZE || reg == SDHCI_BLOCK_COUNT) { /* Block size and count are stored in shadow reg */ oldval = iproc_host->shadow_blk; } else { /* Read reg, all other registers are not shadowed */ oldval = sdhci_iproc_readl(host, (reg & ~3)); } newval = (oldval & ~mask) | (val << word_shift); if (reg == SDHCI_TRANSFER_MODE) { /* Save the transfer mode until the command is issued */ iproc_host->shadow_cmd = newval; } else if (reg == SDHCI_BLOCK_SIZE || reg == SDHCI_BLOCK_COUNT) { /* Save the block info until the command is issued */ iproc_host->shadow_blk = newval; } else { /* Command or other regular 32-bit write */ sdhci_iproc_writel(host, newval, reg & ~3); } } static void sdhci_iproc_writeb(struct sdhci_host *host, u8 val, int reg) { u32 oldval = sdhci_iproc_readl(host, (reg & ~3)); u32 byte_shift = REG_OFFSET_IN_BITS(reg); u32 mask = 0xff << byte_shift; u32 newval = (oldval & ~mask) | (val << byte_shift); sdhci_iproc_writel(host, newval, reg & ~3); } #endif static int sdhci_iproc_set_ios_post(struct sdhci_host *host) { struct mmc *mmc = (struct mmc *)host->mmc; u32 ctrl; if (mmc->signal_voltage == MMC_SIGNAL_VOLTAGE_180) { ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2); ctrl |= SDHCI_CTRL_VDD_180; sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2); } sdhci_set_uhs_timing(host); return 0; } static void sdhci_start_tuning(struct sdhci_host *host) { u32 ctrl; ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2); ctrl |= SDHCI_CTRL_EXEC_TUNING; sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2); sdhci_writel(host, SDHCI_INT_DATA_AVAIL, SDHCI_INT_ENABLE); sdhci_writel(host, SDHCI_INT_DATA_AVAIL, SDHCI_SIGNAL_ENABLE); } static void sdhci_end_tuning(struct sdhci_host *host) { /* Enable only interrupts served by the SD controller */ sdhci_writel(host, SDHCI_INT_DATA_MASK | SDHCI_INT_CMD_MASK, SDHCI_INT_ENABLE); /* Mask all sdhci interrupt sources */ sdhci_writel(host, 0x0, SDHCI_SIGNAL_ENABLE); } static int sdhci_iproc_execute_tuning(struct mmc *mmc, u8 opcode) { struct mmc_cmd cmd; u32 ctrl; u32 blocksize = SDHCI_MAKE_BLKSZ(SDHCI_DEFAULT_BOUNDARY_ARG, 64); struct sdhci_host *host = dev_get_priv(mmc->dev); char tuning_loop_counter = MAX_TUNING_LOOP; int ret = 0; sdhci_start_tuning(host); cmd.cmdidx = opcode; cmd.resp_type = MMC_RSP_R1; cmd.cmdarg = 0; if (opcode == MMC_CMD_SEND_TUNING_BLOCK_HS200 && mmc->bus_width == 8) blocksize = SDHCI_MAKE_BLKSZ(SDHCI_DEFAULT_BOUNDARY_ARG, 128); sdhci_writew(host, blocksize, SDHCI_BLOCK_SIZE); sdhci_writew(host, 1, SDHCI_BLOCK_COUNT); sdhci_writew(host, SDHCI_TRNS_READ, SDHCI_TRANSFER_MODE); do { mmc_send_cmd(mmc, &cmd, NULL); if (opcode == MMC_CMD_SEND_TUNING_BLOCK) /* * For tuning command, do not do busy loop. As tuning * is happening (CLK-DATA latching for setup/hold time * requirements), give time to complete */ udelay(1); ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2); if (tuning_loop_counter-- == 0) break; } while (ctrl & SDHCI_CTRL_EXEC_TUNING); if (tuning_loop_counter < 0 || (!(ctrl & SDHCI_CTRL_TUNED_CLK))) { ctrl &= ~(SDHCI_CTRL_TUNED_CLK | SDHCI_CTRL_EXEC_TUNING); sdhci_writel(host, ctrl, SDHCI_HOST_CONTROL2); printf("%s:Tuning failed, opcode = 0x%02x\n", __func__, opcode); ret = -EIO; } sdhci_end_tuning(host); return ret; } static struct sdhci_ops sdhci_platform_ops = { #ifdef CONFIG_MMC_SDHCI_IO_ACCESSORS .read_l = sdhci_iproc_readl, .read_w = sdhci_iproc_readw, .read_b = sdhci_iproc_readb, .write_l = sdhci_iproc_writel, .write_w = sdhci_iproc_writew, .write_b = sdhci_iproc_writeb, #endif .set_ios_post = sdhci_iproc_set_ios_post, .platform_execute_tuning = sdhci_iproc_execute_tuning, }; struct iproc_sdhci_plat { struct mmc_config cfg; struct mmc mmc; }; static int iproc_sdhci_probe(struct udevice *dev) { struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev); struct iproc_sdhci_plat *plat = dev_get_plat(dev); struct sdhci_host *host = dev_get_priv(dev); struct sdhci_iproc_host *iproc_host; int node = dev_of_offset(dev); u32 f_min_max[2]; int ret; iproc_host = malloc(sizeof(struct sdhci_iproc_host)); if (!iproc_host) { printf("%s: sdhci host malloc fail!\n", __func__); return -ENOMEM; } iproc_host->shadow_cmd = 0; iproc_host->shadow_blk = 0; host->name = dev->name; host->ioaddr = dev_read_addr_ptr(dev); host->quirks = SDHCI_QUIRK_BROKEN_R1B; host->host_caps = MMC_MODE_DDR_52MHz; host->index = fdtdec_get_uint(gd->fdt_blob, node, "index", 0); host->ops = &sdhci_platform_ops; host->version = sdhci_readw(host, SDHCI_HOST_VERSION); ret = fdtdec_get_int_array(gd->fdt_blob, dev_of_offset(dev), "clock-freq-min-max", f_min_max, 2); if (ret) { printf("sdhci: clock-freq-min-max not found\n"); free(iproc_host); return ret; } host->max_clk = f_min_max[1]; host->bus_width = fdtdec_get_int(gd->fdt_blob, dev_of_offset(dev), "bus-width", 4); /* Update host_caps for 8 bit bus width */ if (host->bus_width == 8) host->host_caps |= MMC_MODE_8BIT; memcpy(&iproc_host->host, host, sizeof(struct sdhci_host)); iproc_host->host.mmc = &plat->mmc; iproc_host->host.mmc->dev = dev; iproc_host->host.mmc->priv = &iproc_host->host; upriv->mmc = iproc_host->host.mmc; ret = sdhci_setup_cfg(&plat->cfg, &iproc_host->host, f_min_max[1], f_min_max[0]); if (ret) { free(iproc_host); return ret; } return sdhci_probe(dev); } static int iproc_sdhci_bind(struct udevice *dev) { struct iproc_sdhci_plat *plat = dev_get_plat(dev); return sdhci_bind(dev, &plat->mmc, &plat->cfg); } static const struct udevice_id iproc_sdhci_ids[] = { { .compatible = "brcm,iproc-sdhci" }, { } }; U_BOOT_DRIVER(iproc_sdhci_drv) = { .name = "iproc_sdhci", .id = UCLASS_MMC, .of_match = iproc_sdhci_ids, .ops = &sdhci_ops, .bind = iproc_sdhci_bind, .probe = iproc_sdhci_probe, .priv_auto = sizeof(struct sdhci_host), .plat_auto = sizeof(struct iproc_sdhci_plat), };