// SPDX-License-Identifier: GPL-2.0+ /* * (C) Copyright 2015 Miao Yan * (C) Copyright 2021 Asherah Connor */ #define LOG_CATEGORY UCLASS_QFW #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(CONFIG_GENERATE_ACPI_TABLE) && !defined(CONFIG_SANDBOX) /* * This function allocates memory for ACPI tables * * @entry : BIOS linker command entry which tells where to allocate memory * (either high memory or low memory) * @addr : The address that should be used for low memory allcation. If the * memory allocation request is 'ZONE_HIGH' then this parameter will * be ignored. * @return: 0 on success, or negative value on failure */ static int bios_linker_allocate(struct udevice *dev, struct bios_linker_entry *entry, ulong *addr) { uint32_t size, align; struct fw_file *file; unsigned long aligned_addr; align = le32_to_cpu(entry->alloc.align); /* align must be power of 2 */ if (align & (align - 1)) { printf("error: wrong alignment %u\n", align); return -EINVAL; } file = qfw_find_file(dev, entry->alloc.file); if (!file) { printf("error: can't find file %s\n", entry->alloc.file); return -ENOENT; } size = be32_to_cpu(file->cfg.size); /* * ZONE_HIGH means we need to allocate from high memory, since * malloc space is already at the end of RAM, so we directly use it. * If allocation zone is ZONE_FSEG, then we use the 'addr' passed * in which is low memory */ if (entry->alloc.zone == BIOS_LINKER_LOADER_ALLOC_ZONE_HIGH) { aligned_addr = (unsigned long)memalign(align, size); if (!aligned_addr) { printf("error: allocating resource\n"); return -ENOMEM; } if (aligned_addr < gd->arch.table_start_high) gd->arch.table_start_high = aligned_addr; if (aligned_addr + size > gd->arch.table_end_high) gd->arch.table_end_high = aligned_addr + size; } else if (entry->alloc.zone == BIOS_LINKER_LOADER_ALLOC_ZONE_FSEG) { aligned_addr = ALIGN(*addr, align); } else { printf("error: invalid allocation zone\n"); return -EINVAL; } debug("bios_linker_allocate: allocate file %s, size %u, zone %d, align %u, addr 0x%lx\n", file->cfg.name, size, entry->alloc.zone, align, aligned_addr); qfw_read_entry(dev, be16_to_cpu(file->cfg.select), size, (void *)aligned_addr); file->addr = aligned_addr; /* adjust address for low memory allocation */ if (entry->alloc.zone == BIOS_LINKER_LOADER_ALLOC_ZONE_FSEG) *addr = (aligned_addr + size); return 0; } /* * This function patches ACPI tables previously loaded * by bios_linker_allocate() * * @entry : BIOS linker command entry which tells how to patch * ACPI tables * @return: 0 on success, or negative value on failure */ static int bios_linker_add_pointer(struct udevice *dev, struct bios_linker_entry *entry) { struct fw_file *dest, *src; uint32_t offset = le32_to_cpu(entry->pointer.offset); uint64_t pointer = 0; dest = qfw_find_file(dev, entry->pointer.dest_file); if (!dest || !dest->addr) return -ENOENT; src = qfw_find_file(dev, entry->pointer.src_file); if (!src || !src->addr) return -ENOENT; debug("bios_linker_add_pointer: dest->addr 0x%lx, src->addr 0x%lx, offset 0x%x size %u, 0x%llx\n", dest->addr, src->addr, offset, entry->pointer.size, pointer); memcpy(&pointer, (char *)dest->addr + offset, entry->pointer.size); pointer = le64_to_cpu(pointer); pointer += (unsigned long)src->addr; pointer = cpu_to_le64(pointer); memcpy((char *)dest->addr + offset, &pointer, entry->pointer.size); return 0; } /* * This function updates checksum fields of ACPI tables previously loaded * by bios_linker_allocate() * * @entry : BIOS linker command entry which tells where to update ACPI table * checksums * @return: 0 on success, or negative value on failure */ static int bios_linker_add_checksum(struct udevice *dev, struct bios_linker_entry *entry) { struct fw_file *file; uint8_t *data, cksum = 0; uint8_t *cksum_start; file = qfw_find_file(dev, entry->cksum.file); if (!file || !file->addr) return -ENOENT; data = (uint8_t *)(file->addr + le32_to_cpu(entry->cksum.offset)); cksum_start = (uint8_t *)(file->addr + le32_to_cpu(entry->cksum.start)); cksum = table_compute_checksum(cksum_start, le32_to_cpu(entry->cksum.length)); *data = cksum; return 0; } /* This function loads and patches ACPI tables provided by QEMU */ ulong write_acpi_tables(ulong addr) { int i, ret; struct fw_file *file; struct bios_linker_entry *table_loader; struct bios_linker_entry *entry; uint32_t size; struct udevice *dev; ret = qfw_get_dev(&dev); if (ret) { printf("error: no qfw\n"); return addr; } /* make sure fw_list is loaded */ ret = qfw_read_firmware_list(dev); if (ret) { printf("error: can't read firmware file list\n"); return addr; } file = qfw_find_file(dev, "etc/table-loader"); if (!file) { printf("error: can't find etc/table-loader\n"); return addr; } size = be32_to_cpu(file->cfg.size); if ((size % sizeof(*entry)) != 0) { printf("error: table-loader maybe corrupted\n"); return addr; } table_loader = malloc(size); if (!table_loader) { printf("error: no memory for table-loader\n"); return addr; } /* QFW always puts tables at high addresses */ gd->arch.table_start_high = (ulong)table_loader; gd->arch.table_end_high = (ulong)table_loader; qfw_read_entry(dev, be16_to_cpu(file->cfg.select), size, table_loader); for (i = 0; i < (size / sizeof(*entry)); i++) { entry = table_loader + i; switch (le32_to_cpu(entry->command)) { case BIOS_LINKER_LOADER_COMMAND_ALLOCATE: ret = bios_linker_allocate(dev, entry, &addr); if (ret) goto out; break; case BIOS_LINKER_LOADER_COMMAND_ADD_POINTER: ret = bios_linker_add_pointer(dev, entry); if (ret) goto out; break; case BIOS_LINKER_LOADER_COMMAND_ADD_CHECKSUM: ret = bios_linker_add_checksum(dev, entry); if (ret) goto out; break; default: break; } } out: if (ret) { struct fw_cfg_file_iter iter; for (file = qfw_file_iter_init(dev, &iter); !qfw_file_iter_end(&iter); file = qfw_file_iter_next(&iter)) { if (file->addr) { free((void *)file->addr); file->addr = 0; } } } free(table_loader); gd_set_acpi_start(acpi_get_rsdp_addr()); return addr; } ulong acpi_get_rsdp_addr(void) { int ret; struct fw_file *file; struct udevice *dev; ret = qfw_get_dev(&dev); if (ret) { printf("error: no qfw\n"); return 0; } file = qfw_find_file(dev, "etc/acpi/rsdp"); return file->addr; } #endif static void qfw_read_entry_io(struct qfw_dev *qdev, u16 entry, u32 size, void *address) { struct dm_qfw_ops *ops = dm_qfw_get_ops(qdev->dev); debug("%s: entry 0x%x, size %u address %p\n", __func__, entry, size, address); ops->read_entry_io(qdev->dev, entry, size, address); } static void qfw_read_entry_dma(struct qfw_dev *qdev, u16 entry, u32 size, void *address) { struct dm_qfw_ops *ops = dm_qfw_get_ops(qdev->dev); struct qfw_dma dma = { .length = cpu_to_be32(size), .address = cpu_to_be64((uintptr_t)address), .control = cpu_to_be32(FW_CFG_DMA_READ), }; /* * writing FW_CFG_INVALID will cause read operation to resume at last * offset, otherwise read will start at offset 0 */ if (entry != FW_CFG_INVALID) dma.control |= cpu_to_be32(FW_CFG_DMA_SELECT | (entry << 16)); debug("%s: entry 0x%x, size %u address %p, control 0x%x\n", __func__, entry, size, address, be32_to_cpu(dma.control)); barrier(); ops->read_entry_dma(qdev->dev, &dma); } void qfw_read_entry(struct udevice *dev, u16 entry, u32 size, void *address) { struct qfw_dev *qdev = dev_get_uclass_priv(dev); if (qdev->dma_present) qfw_read_entry_dma(qdev, entry, size, address); else qfw_read_entry_io(qdev, entry, size, address); } int qfw_register(struct udevice *dev) { struct qfw_dev *qdev = dev_get_uclass_priv(dev); u32 qemu, dma_enabled; qdev->dev = dev; INIT_LIST_HEAD(&qdev->fw_list); qfw_read_entry_io(qdev, FW_CFG_SIGNATURE, 4, &qemu); if (be32_to_cpu(qemu) != QEMU_FW_CFG_SIGNATURE) return -ENODEV; qfw_read_entry_io(qdev, FW_CFG_ID, 1, &dma_enabled); if (dma_enabled & FW_CFG_DMA_ENABLED) qdev->dma_present = true; return 0; } static int qfw_post_bind(struct udevice *dev) { int ret; ret = bootdev_setup_for_dev(dev, "qfw_bootdev"); if (ret) return log_msg_ret("dev", ret); return 0; } static int qfw_get_bootflow(struct udevice *dev, struct bootflow_iter *iter, struct bootflow *bflow) { const struct udevice *media = dev_get_parent(dev); int ret; if (!CONFIG_IS_ENABLED(BOOTSTD)) return -ENOSYS; log_debug("media=%s\n", media->name); ret = bootmeth_check(bflow->method, iter); if (ret) return log_msg_ret("check", ret); log_debug("iter->part=%d\n", iter->part); /* We only support the whole device, not partitions */ if (iter->part) return log_msg_ret("max", -ESHUTDOWN); log_debug("reading bootflow with method: %s\n", bflow->method->name); ret = bootmeth_read_bootflow(bflow->method, bflow); if (ret) return log_msg_ret("method", ret); return 0; } static int qfw_bootdev_bind(struct udevice *dev) { struct bootdev_uc_plat *ucp = dev_get_uclass_plat(dev); ucp->prio = BOOTDEVP_4_SCAN_FAST; return 0; } static int qfw_bootdev_hunt(struct bootdev_hunter *info, bool show) { int ret; ret = uclass_probe_all(UCLASS_QFW); if (ret && ret != -ENOENT) return log_msg_ret("vir", ret); return 0; } UCLASS_DRIVER(qfw) = { .id = UCLASS_QFW, .name = "qfw", .post_bind = qfw_post_bind, .per_device_auto = sizeof(struct qfw_dev), }; struct bootdev_ops qfw_bootdev_ops = { .get_bootflow = qfw_get_bootflow, }; static const struct udevice_id qfw_bootdev_ids[] = { { .compatible = "u-boot,bootdev-qfw" }, { } }; U_BOOT_DRIVER(qfw_bootdev) = { .name = "qfw_bootdev", .id = UCLASS_BOOTDEV, .ops = &qfw_bootdev_ops, .bind = qfw_bootdev_bind, .of_match = qfw_bootdev_ids, }; BOOTDEV_HUNTER(qfw_bootdev_hunter) = { .prio = BOOTDEVP_4_SCAN_FAST, .uclass = UCLASS_QFW, .hunt = qfw_bootdev_hunt, .drv = DM_DRIVER_REF(qfw_bootdev), };