// SPDX-License-Identifier: GPL-2.0+ /* * Chromium OS cros_ec driver * * Copyright (c) 2012 The Chromium OS Authors. */ /* * This is the interface to the Chrome OS EC. It provides keyboard functions, * power control and battery management. Quite a few other functions are * provided to enable the EC software to be updated, talk to the EC's I2C bus * and store a small amount of data in a memory which persists while the EC * is not reset. */ #define LOG_CATEGORY UCLASS_CROS_EC #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef DEBUG_TRACE #define debug_trace(fmt, b...) debug(fmt, #b) #else #define debug_trace(fmt, b...) #endif enum { /* Timeout waiting for a flash erase command to complete */ CROS_EC_CMD_TIMEOUT_MS = 5000, /* Timeout waiting for a synchronous hash to be recomputed */ CROS_EC_CMD_HASH_TIMEOUT_MS = 2000, /* Wait 10 ms between attempts to check if EC's hash is ready */ CROS_EC_HASH_CHECK_DELAY_MS = 10, }; #define INVALID_HCMD 0xFF /* * Map UHEPI masks to non UHEPI commands in order to support old EC FW * which does not support UHEPI command. */ static const struct { u8 set_cmd; u8 clear_cmd; u8 get_cmd; } event_map[] = { [EC_HOST_EVENT_MAIN] = { INVALID_HCMD, EC_CMD_HOST_EVENT_CLEAR, INVALID_HCMD, }, [EC_HOST_EVENT_B] = { INVALID_HCMD, EC_CMD_HOST_EVENT_CLEAR_B, EC_CMD_HOST_EVENT_GET_B, }, [EC_HOST_EVENT_SCI_MASK] = { EC_CMD_HOST_EVENT_SET_SCI_MASK, INVALID_HCMD, EC_CMD_HOST_EVENT_GET_SCI_MASK, }, [EC_HOST_EVENT_SMI_MASK] = { EC_CMD_HOST_EVENT_SET_SMI_MASK, INVALID_HCMD, EC_CMD_HOST_EVENT_GET_SMI_MASK, }, [EC_HOST_EVENT_ALWAYS_REPORT_MASK] = { INVALID_HCMD, INVALID_HCMD, INVALID_HCMD, }, [EC_HOST_EVENT_ACTIVE_WAKE_MASK] = { EC_CMD_HOST_EVENT_SET_WAKE_MASK, INVALID_HCMD, EC_CMD_HOST_EVENT_GET_WAKE_MASK, }, [EC_HOST_EVENT_LAZY_WAKE_MASK_S0IX] = { EC_CMD_HOST_EVENT_SET_WAKE_MASK, INVALID_HCMD, EC_CMD_HOST_EVENT_GET_WAKE_MASK, }, [EC_HOST_EVENT_LAZY_WAKE_MASK_S3] = { EC_CMD_HOST_EVENT_SET_WAKE_MASK, INVALID_HCMD, EC_CMD_HOST_EVENT_GET_WAKE_MASK, }, [EC_HOST_EVENT_LAZY_WAKE_MASK_S5] = { EC_CMD_HOST_EVENT_SET_WAKE_MASK, INVALID_HCMD, EC_CMD_HOST_EVENT_GET_WAKE_MASK, }, }; void cros_ec_dump_data(const char *name, int cmd, const uint8_t *data, int len) { #ifdef DEBUG int i; printf("%s: ", name); if (cmd != -1) printf("cmd=%#x: ", cmd); for (i = 0; i < len; i++) printf("%02x ", data[i]); printf("\n"); #endif } /* * Calculate a simple 8-bit checksum of a data block * * @param data Data block to checksum * @param size Size of data block in bytes * Return: checksum value (0 to 255) */ int cros_ec_calc_checksum(const uint8_t *data, int size) { int csum, i; for (i = csum = 0; i < size; i++) csum += data[i]; return csum & 0xff; } /** * Create a request packet for protocol version 3. * * The packet is stored in the device's internal output buffer. * * @param dev CROS-EC device * @param cmd Command to send (EC_CMD_...) * @param cmd_version Version of command to send (EC_VER_...) * @param dout Output data (may be NULL If dout_len=0) * @param dout_len Size of output data in bytes * Return: packet size in bytes, or <0 if error. */ static int create_proto3_request(struct cros_ec_dev *cdev, int cmd, int cmd_version, const void *dout, int dout_len) { struct ec_host_request *rq = (struct ec_host_request *)cdev->dout; int out_bytes = dout_len + sizeof(*rq); /* Fail if output size is too big */ if (out_bytes > (int)sizeof(cdev->dout)) { debug("%s: Cannot send %d bytes\n", __func__, dout_len); return -EC_RES_REQUEST_TRUNCATED; } /* Fill in request packet */ rq->struct_version = EC_HOST_REQUEST_VERSION; rq->checksum = 0; rq->command = cmd; rq->command_version = cmd_version; rq->reserved = 0; rq->data_len = dout_len; /* Copy data after header */ memcpy(rq + 1, dout, dout_len); /* Write checksum field so the entire packet sums to 0 */ rq->checksum = (uint8_t)(-cros_ec_calc_checksum(cdev->dout, out_bytes)); cros_ec_dump_data("out", cmd, cdev->dout, out_bytes); /* Return size of request packet */ return out_bytes; } /** * Prepare the device to receive a protocol version 3 response. * * @param dev CROS-EC device * @param din_len Maximum size of response in bytes * Return: maximum expected number of bytes in response, or <0 if error. */ static int prepare_proto3_response_buffer(struct cros_ec_dev *cdev, int din_len) { int in_bytes = din_len + sizeof(struct ec_host_response); /* Fail if input size is too big */ if (in_bytes > (int)sizeof(cdev->din)) { debug("%s: Cannot receive %d bytes\n", __func__, din_len); return -EC_RES_RESPONSE_TOO_BIG; } /* Return expected size of response packet */ return in_bytes; } /** * Handle a protocol version 3 response packet. * * The packet must already be stored in the device's internal input buffer. * * @param dev CROS-EC device * @param dinp Returns pointer to response data * @param din_len Maximum size of response in bytes * Return: number of bytes of response data, or <0 if error. Note that error * codes can be from errno.h or -ve EC_RES_INVALID_CHECKSUM values (and they * overlap!) */ static int handle_proto3_response(struct cros_ec_dev *dev, uint8_t **dinp, int din_len) { struct ec_host_response *rs = (struct ec_host_response *)dev->din; int in_bytes; int csum; cros_ec_dump_data("in-header", -1, dev->din, sizeof(*rs)); /* Check input data */ if (rs->struct_version != EC_HOST_RESPONSE_VERSION) { debug("%s: EC response version mismatch\n", __func__); return -EC_RES_INVALID_RESPONSE; } if (rs->reserved) { debug("%s: EC response reserved != 0\n", __func__); return -EC_RES_INVALID_RESPONSE; } if (rs->data_len > din_len) { debug("%s: EC returned too much data\n", __func__); return -EC_RES_RESPONSE_TOO_BIG; } cros_ec_dump_data("in-data", -1, dev->din + sizeof(*rs), rs->data_len); /* Update in_bytes to actual data size */ in_bytes = sizeof(*rs) + rs->data_len; /* Verify checksum */ csum = cros_ec_calc_checksum(dev->din, in_bytes); if (csum) { debug("%s: EC response checksum invalid: 0x%02x\n", __func__, csum); return -EC_RES_INVALID_CHECKSUM; } /* Return error result, if any */ if (rs->result) return -(int)rs->result; /* If we're still here, set response data pointer and return length */ *dinp = (uint8_t *)(rs + 1); return rs->data_len; } static int send_command_proto3(struct cros_ec_dev *cdev, int cmd, int cmd_version, const void *dout, int dout_len, uint8_t **dinp, int din_len) { struct dm_cros_ec_ops *ops; int out_bytes, in_bytes; int rv; /* Create request packet */ out_bytes = create_proto3_request(cdev, cmd, cmd_version, dout, dout_len); if (out_bytes < 0) return out_bytes; /* Prepare response buffer */ in_bytes = prepare_proto3_response_buffer(cdev, din_len); if (in_bytes < 0) return in_bytes; ops = dm_cros_ec_get_ops(cdev->dev); rv = ops->packet ? ops->packet(cdev->dev, out_bytes, in_bytes) : -ENOSYS; if (rv < 0) return rv; /* Process the response */ return handle_proto3_response(cdev, dinp, din_len); } static int send_command(struct cros_ec_dev *dev, uint cmd, int cmd_version, const void *dout, int dout_len, uint8_t **dinp, int din_len) { struct dm_cros_ec_ops *ops; int ret = -1; /* Handle protocol version 3 support */ if (dev->protocol_version == 3) { return send_command_proto3(dev, cmd, cmd_version, dout, dout_len, dinp, din_len); } ops = dm_cros_ec_get_ops(dev->dev); ret = ops->command(dev->dev, cmd, cmd_version, (const uint8_t *)dout, dout_len, dinp, din_len); return ret; } /** * Send a command to the CROS-EC device and return the reply. * * The device's internal input/output buffers are used. * * @param dev CROS-EC device * @param cmd Command to send (EC_CMD_...) * @param cmd_version Version of command to send (EC_VER_...) * @param dout Output data (may be NULL If dout_len=0) * @param dout_len Size of output data in bytes * @param dinp Response data (may be NULL If din_len=0). * If not NULL, it will be updated to point to the data * and will always be double word aligned (64-bits) * @param din_len Maximum size of response in bytes * Return: number of bytes in response, or -ve on error */ static int ec_command_inptr(struct udevice *dev, uint cmd, int cmd_version, const void *dout, int dout_len, uint8_t **dinp, int din_len) { struct cros_ec_dev *cdev = dev_get_uclass_priv(dev); uint8_t *din = NULL; int len; len = send_command(cdev, cmd, cmd_version, dout, dout_len, &din, din_len); /* If the command doesn't complete, wait a while */ if (len == -EC_RES_IN_PROGRESS) { struct ec_response_get_comms_status *resp = NULL; ulong start; /* Wait for command to complete */ start = get_timer(0); do { int ret; mdelay(50); /* Insert some reasonable delay */ ret = send_command(cdev, EC_CMD_GET_COMMS_STATUS, 0, NULL, 0, (uint8_t **)&resp, sizeof(*resp)); if (ret < 0) return ret; if (get_timer(start) > CROS_EC_CMD_TIMEOUT_MS) { debug("%s: Command %#02x timeout\n", __func__, cmd); return -EC_RES_TIMEOUT; } } while (resp->flags & EC_COMMS_STATUS_PROCESSING); /* OK it completed, so read the status response */ /* not sure why it was 0 for the last argument */ len = send_command(cdev, EC_CMD_RESEND_RESPONSE, 0, NULL, 0, &din, din_len); } debug("%s: len=%d, din=%p\n", __func__, len, din); if (dinp) { /* If we have any data to return, it must be 64bit-aligned */ assert(len <= 0 || !((uintptr_t)din & 7)); *dinp = din; } return len; } /** * Send a command to the CROS-EC device and return the reply. * * The device's internal input/output buffers are used. * * @param dev CROS-EC device * @param cmd Command to send (EC_CMD_...) * @param cmd_version Version of command to send (EC_VER_...) * @param dout Output data (may be NULL If dout_len=0) * @param dout_len Size of output data in bytes * @param din Response data (may be NULL If din_len=0). * It not NULL, it is a place for ec_command() to copy the * data to. * @param din_len Maximum size of response in bytes * Return: number of bytes in response, or -ve on error */ static int ec_command(struct udevice *dev, uint cmd, int cmd_version, const void *dout, int dout_len, void *din, int din_len) { uint8_t *in_buffer; int len; assert((din_len == 0) || din); len = ec_command_inptr(dev, cmd, cmd_version, dout, dout_len, &in_buffer, din_len); if (len > 0) { /* * If we were asked to put it somewhere, do so, otherwise just * disregard the result. */ if (din && in_buffer) { assert(len <= din_len); if (len > din_len) return -ENOSPC; memmove(din, in_buffer, len); } } return len; } int cros_ec_scan_keyboard(struct udevice *dev, struct mbkp_keyscan *scan) { if (ec_command(dev, EC_CMD_MKBP_STATE, 0, NULL, 0, scan, sizeof(scan->data)) != sizeof(scan->data)) return -1; return 0; } int cros_ec_get_next_event(struct udevice *dev, struct ec_response_get_next_event *event) { int ret; ret = ec_command(dev, EC_CMD_GET_NEXT_EVENT, 0, NULL, 0, event, sizeof(*event)); if (ret < 0) return ret; else if (ret != sizeof(*event)) return -EC_RES_INVALID_RESPONSE; return 0; } int cros_ec_read_id(struct udevice *dev, char *id, int maxlen) { struct ec_response_get_version *r; int ret; ret = ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0, (uint8_t **)&r, sizeof(*r)); if (ret != sizeof(*r)) { log_err("Got rc %d, expected %u\n", ret, (uint)sizeof(*r)); return -1; } if (maxlen > (int)sizeof(r->version_string_ro)) maxlen = sizeof(r->version_string_ro); switch (r->current_image) { case EC_IMAGE_RO: memcpy(id, r->version_string_ro, maxlen); break; case EC_IMAGE_RW: memcpy(id, r->version_string_rw, maxlen); break; default: log_err("Invalid EC image %d\n", r->current_image); return -1; } id[maxlen - 1] = '\0'; return 0; } int cros_ec_read_version(struct udevice *dev, struct ec_response_get_version **versionp) { if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0, (uint8_t **)versionp, sizeof(**versionp)) != sizeof(**versionp)) return -1; return 0; } int cros_ec_read_build_info(struct udevice *dev, char **strp) { if (ec_command_inptr(dev, EC_CMD_GET_BUILD_INFO, 0, NULL, 0, (uint8_t **)strp, EC_PROTO2_MAX_PARAM_SIZE) < 0) return -1; return 0; } int cros_ec_read_current_image(struct udevice *dev, enum ec_current_image *image) { struct ec_response_get_version *r; if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0, (uint8_t **)&r, sizeof(*r)) != sizeof(*r)) return -1; *image = r->current_image; return 0; } static int cros_ec_wait_on_hash_done(struct udevice *dev, struct ec_params_vboot_hash *p, struct ec_response_vboot_hash *hash) { ulong start; start = get_timer(0); while (hash->status == EC_VBOOT_HASH_STATUS_BUSY) { mdelay(CROS_EC_HASH_CHECK_DELAY_MS); p->cmd = EC_VBOOT_HASH_GET; if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, p, sizeof(*p), hash, sizeof(*hash)) < 0) return -1; if (get_timer(start) > CROS_EC_CMD_HASH_TIMEOUT_MS) { debug("%s: EC_VBOOT_HASH_GET timeout\n", __func__); return -EC_RES_TIMEOUT; } } return 0; } int cros_ec_read_hash(struct udevice *dev, uint hash_offset, struct ec_response_vboot_hash *hash) { struct ec_params_vboot_hash p; int rv; p.cmd = EC_VBOOT_HASH_GET; p.offset = hash_offset; if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p), hash, sizeof(*hash)) < 0) return -1; /* If the EC is busy calculating the hash, fidget until it's done. */ rv = cros_ec_wait_on_hash_done(dev, &p, hash); if (rv) return rv; /* If the hash is valid, we're done. Otherwise, we have to kick it off * again and wait for it to complete. Note that we explicitly assume * that hashing zero bytes is always wrong, even though that would * produce a valid hash value. */ if (hash->status == EC_VBOOT_HASH_STATUS_DONE && hash->size) return 0; debug("%s: No valid hash (status=%d size=%d). Compute one...\n", __func__, hash->status, hash->size); p.cmd = EC_VBOOT_HASH_START; p.hash_type = EC_VBOOT_HASH_TYPE_SHA256; p.nonce_size = 0; p.offset = hash_offset; if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p), hash, sizeof(*hash)) < 0) return -1; rv = cros_ec_wait_on_hash_done(dev, &p, hash); if (rv) return rv; if (hash->status != EC_VBOOT_HASH_STATUS_DONE) { log_err("Hash did not complete, status=%d\n", hash->status); return -EIO; } debug("%s: hash done\n", __func__); return 0; } static int cros_ec_invalidate_hash(struct udevice *dev) { struct ec_params_vboot_hash p; struct ec_response_vboot_hash *hash; /* We don't have an explict command for the EC to discard its current * hash value, so we'll just tell it to calculate one that we know is * wrong (we claim that hashing zero bytes is always invalid). */ p.cmd = EC_VBOOT_HASH_RECALC; p.hash_type = EC_VBOOT_HASH_TYPE_SHA256; p.nonce_size = 0; p.offset = 0; p.size = 0; debug("%s:\n", __func__); if (ec_command_inptr(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p), (uint8_t **)&hash, sizeof(*hash)) < 0) return -1; /* No need to wait for it to finish */ return 0; } int cros_ec_hello(struct udevice *dev, uint *handshakep) { struct ec_params_hello req; struct ec_response_hello *resp; req.in_data = 0x12345678; if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req, sizeof(req), (uint8_t **)&resp, sizeof(*resp)) < 0) return -EIO; if (resp->out_data != req.in_data + 0x01020304) { printf("Received invalid handshake %x\n", resp->out_data); if (handshakep) *handshakep = req.in_data; return -ENOTSYNC; } return 0; } int cros_ec_reboot(struct udevice *dev, enum ec_reboot_cmd cmd, uint8_t flags) { struct ec_params_reboot_ec p; p.cmd = cmd; p.flags = flags; if (ec_command_inptr(dev, EC_CMD_REBOOT_EC, 0, &p, sizeof(p), NULL, 0) < 0) return -1; if (!(flags & EC_REBOOT_FLAG_ON_AP_SHUTDOWN)) { ulong start; /* * EC reboot will take place immediately so delay to allow it * to complete. Note that some reboot types (EC_REBOOT_COLD) * will reboot the AP as well, in which case we won't actually * get to this point. */ mdelay(50); start = get_timer(0); while (cros_ec_hello(dev, NULL)) { if (get_timer(start) > 3000) { log_err("EC did not return from reboot\n"); return -ETIMEDOUT; } mdelay(5); } } return 0; } int cros_ec_interrupt_pending(struct udevice *dev) { struct cros_ec_dev *cdev = dev_get_uclass_priv(dev); /* no interrupt support : always poll */ if (!dm_gpio_is_valid(&cdev->ec_int)) return -ENOENT; return dm_gpio_get_value(&cdev->ec_int); } int cros_ec_info(struct udevice *dev, struct ec_response_mkbp_info *info) { if (ec_command(dev, EC_CMD_MKBP_INFO, 0, NULL, 0, info, sizeof(*info)) != sizeof(*info)) return -1; return 0; } int cros_ec_get_event_mask(struct udevice *dev, uint type, uint32_t *mask) { struct ec_response_host_event_mask rsp; int ret; ret = ec_command(dev, type, 0, NULL, 0, &rsp, sizeof(rsp)); if (ret < 0) return ret; else if (ret != sizeof(rsp)) return -EINVAL; *mask = rsp.mask; return 0; } int cros_ec_set_event_mask(struct udevice *dev, uint type, uint32_t mask) { struct ec_params_host_event_mask req; int ret; req.mask = mask; ret = ec_command(dev, type, 0, &req, sizeof(req), NULL, 0); if (ret < 0) return ret; return 0; } int cros_ec_get_host_events(struct udevice *dev, uint32_t *events_ptr) { struct ec_response_host_event_mask *resp; /* * Use the B copy of the event flags, because the main copy is already * used by ACPI/SMI. */ if (ec_command_inptr(dev, EC_CMD_HOST_EVENT_GET_B, 0, NULL, 0, (uint8_t **)&resp, sizeof(*resp)) < (int)sizeof(*resp)) return -1; if (resp->mask & EC_HOST_EVENT_MASK(EC_HOST_EVENT_INVALID)) return -1; *events_ptr = resp->mask; return 0; } int cros_ec_clear_host_events(struct udevice *dev, uint32_t events) { struct ec_params_host_event_mask params; params.mask = events; /* * Use the B copy of the event flags, so it affects the data returned * by cros_ec_get_host_events(). */ if (ec_command_inptr(dev, EC_CMD_HOST_EVENT_CLEAR_B, 0, ¶ms, sizeof(params), NULL, 0) < 0) return -1; return 0; } int cros_ec_flash_protect(struct udevice *dev, uint32_t set_mask, uint32_t set_flags, struct ec_response_flash_protect *resp) { struct ec_params_flash_protect params; params.mask = set_mask; params.flags = set_flags; if (ec_command(dev, EC_CMD_FLASH_PROTECT, EC_VER_FLASH_PROTECT, ¶ms, sizeof(params), resp, sizeof(*resp)) != sizeof(*resp)) return -1; return 0; } static int cros_ec_check_version(struct udevice *dev) { struct cros_ec_dev *cdev = dev_get_uclass_priv(dev); struct ec_params_hello req; struct dm_cros_ec_ops *ops; int ret; ops = dm_cros_ec_get_ops(dev); if (ops->check_version) { ret = ops->check_version(dev); if (ret) return ret; } /* * TODO(sjg@chromium.org). * There is a strange oddity here with the EC. We could just ignore * the response, i.e. pass the last two parameters as NULL and 0. * In this case we won't read back very many bytes from the EC. * On the I2C bus the EC gets upset about this and will try to send * the bytes anyway. This means that we will have to wait for that * to complete before continuing with a new EC command. * * This problem is probably unique to the I2C bus. * * So for now, just read all the data anyway. */ /* Try sending a version 3 packet */ cdev->protocol_version = 3; req.in_data = 0; ret = cros_ec_hello(dev, NULL); if (!ret || ret == -ENOTSYNC) return 0; /* Try sending a version 2 packet */ cdev->protocol_version = 2; ret = cros_ec_hello(dev, NULL); if (!ret || ret == -ENOTSYNC) return 0; /* * Fail if we're still here, since the EC doesn't understand any * protcol version we speak. Version 1 interface without command * version is no longer supported, and we don't know about any new * protocol versions. */ cdev->protocol_version = 0; printf("%s: ERROR: old EC interface not supported\n", __func__); return -1; } int cros_ec_test(struct udevice *dev) { uint out_data; int ret; ret = cros_ec_hello(dev, &out_data); if (ret == -ENOTSYNC) { printf("Received invalid handshake %x\n", out_data); return ret; } else if (ret) { printf("ec_command_inptr() returned error\n"); return ret; } return 0; } int cros_ec_flash_offset(struct udevice *dev, enum ec_flash_region region, uint32_t *offset, uint32_t *size) { struct ec_params_flash_region_info p; struct ec_response_flash_region_info *r; int ret; p.region = region; ret = ec_command_inptr(dev, EC_CMD_FLASH_REGION_INFO, EC_VER_FLASH_REGION_INFO, &p, sizeof(p), (uint8_t **)&r, sizeof(*r)); if (ret != sizeof(*r)) return -1; if (offset) *offset = r->offset; if (size) *size = r->size; return 0; } int cros_ec_flash_erase(struct udevice *dev, uint32_t offset, uint32_t size) { struct ec_params_flash_erase p; p.offset = offset; p.size = size; return ec_command_inptr(dev, EC_CMD_FLASH_ERASE, 0, &p, sizeof(p), NULL, 0); } /** * Write a single block to the flash * * Write a block of data to the EC flash. The size must not exceed the flash * write block size which you can obtain from cros_ec_flash_write_burst_size(). * * The offset starts at 0. You can obtain the region information from * cros_ec_flash_offset() to find out where to write for a particular region. * * Attempting to write to the region where the EC is currently running from * will result in an error. * * @param dev CROS-EC device * @param data Pointer to data buffer to write * @param offset Offset within flash to write to. * @param size Number of bytes to write * Return: 0 if ok, -1 on error */ static int cros_ec_flash_write_block(struct udevice *dev, const uint8_t *data, uint32_t offset, uint32_t size) { struct ec_params_flash_write *p; int ret; p = malloc(sizeof(*p) + size); if (!p) return -ENOMEM; p->offset = offset; p->size = size; assert(data && p->size <= EC_FLASH_WRITE_VER0_SIZE); memcpy(p + 1, data, p->size); ret = ec_command_inptr(dev, EC_CMD_FLASH_WRITE, 0, p, sizeof(*p) + size, NULL, 0) >= 0 ? 0 : -1; free(p); return ret; } /** * Return optimal flash write burst size */ static int cros_ec_flash_write_burst_size(struct udevice *dev) { return EC_FLASH_WRITE_VER0_SIZE; } /** * Check if a block of data is erased (all 0xff) * * This function is useful when dealing with flash, for checking whether a * data block is erased and thus does not need to be programmed. * * @param data Pointer to data to check (must be word-aligned) * @param size Number of bytes to check (must be word-aligned) * Return: 0 if erased, non-zero if any word is not erased */ static int cros_ec_data_is_erased(const uint32_t *data, int size) { assert(!(size & 3)); size /= sizeof(uint32_t); for (; size > 0; size -= 4, data++) if (*data != -1U) return 0; return 1; } /** * Read back flash parameters * * This function reads back parameters of the flash as reported by the EC * * @param dev Pointer to device * @param info Pointer to output flash info struct */ int cros_ec_read_flashinfo(struct udevice *dev, struct ec_response_flash_info *info) { int ret; ret = ec_command(dev, EC_CMD_FLASH_INFO, 0, NULL, 0, info, sizeof(*info)); if (ret < 0) return ret; return ret < sizeof(*info) ? -1 : 0; } int cros_ec_flash_write(struct udevice *dev, const uint8_t *data, uint32_t offset, uint32_t size) { struct cros_ec_dev *cdev = dev_get_uclass_priv(dev); uint32_t burst = cros_ec_flash_write_burst_size(dev); uint32_t end, off; int ret; if (!burst) return -EINVAL; /* * TODO: round up to the nearest multiple of write size. Can get away * without that on link right now because its write size is 4 bytes. */ end = offset + size; for (off = offset; off < end; off += burst, data += burst) { uint32_t todo; /* If the data is empty, there is no point in programming it */ todo = min(end - off, burst); if (cdev->optimise_flash_write && cros_ec_data_is_erased((uint32_t *)data, todo)) continue; ret = cros_ec_flash_write_block(dev, data, off, todo); if (ret) return ret; } return 0; } /** * Run verification on a slot * * @param me CrosEc instance * @param region Region to run verification on * Return: 0 if success or not applicable. Non-zero if verification failed. */ int cros_ec_efs_verify(struct udevice *dev, enum ec_flash_region region) { struct ec_params_efs_verify p; int rv; log_info("EFS: EC is verifying updated image...\n"); p.region = region; rv = ec_command(dev, EC_CMD_EFS_VERIFY, 0, &p, sizeof(p), NULL, 0); if (rv >= 0) { log_info("EFS: Verification success\n"); return 0; } if (rv == -EC_RES_INVALID_COMMAND) { log_info("EFS: EC doesn't support EFS_VERIFY command\n"); return 0; } log_info("EFS: Verification failed\n"); return rv; } /** * Read a single block from the flash * * Read a block of data from the EC flash. The size must not exceed the flash * write block size which you can obtain from cros_ec_flash_write_burst_size(). * * The offset starts at 0. You can obtain the region information from * cros_ec_flash_offset() to find out where to read for a particular region. * * @param dev CROS-EC device * @param data Pointer to data buffer to read into * @param offset Offset within flash to read from * @param size Number of bytes to read * Return: 0 if ok, -1 on error */ static int cros_ec_flash_read_block(struct udevice *dev, uint8_t *data, uint32_t offset, uint32_t size) { struct ec_params_flash_read p; p.offset = offset; p.size = size; return ec_command(dev, EC_CMD_FLASH_READ, 0, &p, sizeof(p), data, size) >= 0 ? 0 : -1; } int cros_ec_flash_read(struct udevice *dev, uint8_t *data, uint32_t offset, uint32_t size) { uint32_t burst = cros_ec_flash_write_burst_size(dev); uint32_t end, off; int ret; end = offset + size; for (off = offset; off < end; off += burst, data += burst) { ret = cros_ec_flash_read_block(dev, data, off, min(end - off, burst)); if (ret) return ret; } return 0; } int cros_ec_flash_update_rw(struct udevice *dev, const uint8_t *image, int image_size) { uint32_t rw_offset, rw_size; int ret; if (cros_ec_flash_offset(dev, EC_FLASH_REGION_ACTIVE, &rw_offset, &rw_size)) return -1; if (image_size > (int)rw_size) return -1; /* Invalidate the existing hash, just in case the AP reboots * unexpectedly during the update. If that happened, the EC RW firmware * would be invalid, but the EC would still have the original hash. */ ret = cros_ec_invalidate_hash(dev); if (ret) return ret; /* * Erase the entire RW section, so that the EC doesn't see any garbage * past the new image if it's smaller than the current image. * * TODO: could optimize this to erase just the current image, since * presumably everything past that is 0xff's. But would still need to * round up to the nearest multiple of erase size. */ ret = cros_ec_flash_erase(dev, rw_offset, rw_size); if (ret) return ret; /* Write the image */ ret = cros_ec_flash_write(dev, image, rw_offset, image_size); if (ret) return ret; return 0; } int cros_ec_get_sku_id(struct udevice *dev) { struct ec_sku_id_info *r; int ret; ret = ec_command_inptr(dev, EC_CMD_GET_SKU_ID, 0, NULL, 0, (uint8_t **)&r, sizeof(*r)); if (ret != sizeof(*r)) { if (ret >= 0) ret = -EIO; return ret; } return r->sku_id; } int cros_ec_read_nvdata(struct udevice *dev, uint8_t *block, int size) { struct ec_params_vbnvcontext p; int len; if (size != EC_VBNV_BLOCK_SIZE && size != EC_VBNV_BLOCK_SIZE_V2) return -EINVAL; p.op = EC_VBNV_CONTEXT_OP_READ; len = ec_command(dev, EC_CMD_VBNV_CONTEXT, EC_VER_VBNV_CONTEXT, &p, sizeof(uint32_t) + size, block, size); if (len != size) { log_err("Expected %d bytes, got %d\n", size, len); return -EIO; } return 0; } int cros_ec_write_nvdata(struct udevice *dev, const uint8_t *block, int size) { struct ec_params_vbnvcontext p; int len; if (size != EC_VBNV_BLOCK_SIZE && size != EC_VBNV_BLOCK_SIZE_V2) return -EINVAL; p.op = EC_VBNV_CONTEXT_OP_WRITE; memcpy(p.block, block, size); len = ec_command_inptr(dev, EC_CMD_VBNV_CONTEXT, EC_VER_VBNV_CONTEXT, &p, sizeof(uint32_t) + size, NULL, 0); if (len < 0) return -1; return 0; } int cros_ec_battery_cutoff(struct udevice *dev, uint8_t flags) { struct ec_params_battery_cutoff p; int len; p.flags = flags; len = ec_command(dev, EC_CMD_BATTERY_CUT_OFF, 1, &p, sizeof(p), NULL, 0); if (len < 0) return -1; return 0; } int cros_ec_set_pwm_duty(struct udevice *dev, uint8_t index, uint16_t duty) { struct ec_params_pwm_set_duty p; int ret; p.duty = duty; p.pwm_type = EC_PWM_TYPE_GENERIC; p.index = index; ret = ec_command(dev, EC_CMD_PWM_SET_DUTY, 0, &p, sizeof(p), NULL, 0); if (ret < 0) return ret; return 0; } int cros_ec_set_ldo(struct udevice *dev, uint8_t index, uint8_t state) { struct ec_params_ldo_set params; params.index = index; params.state = state; if (ec_command_inptr(dev, EC_CMD_LDO_SET, 0, ¶ms, sizeof(params), NULL, 0)) return -1; return 0; } int cros_ec_get_ldo(struct udevice *dev, uint8_t index, uint8_t *state) { struct ec_params_ldo_get params; struct ec_response_ldo_get *resp; params.index = index; if (ec_command_inptr(dev, EC_CMD_LDO_GET, 0, ¶ms, sizeof(params), (uint8_t **)&resp, sizeof(*resp)) != sizeof(*resp)) return -1; *state = resp->state; return 0; } int cros_ec_register(struct udevice *dev) { struct cros_ec_dev *cdev = dev_get_uclass_priv(dev); char id[MSG_BYTES]; cdev->dev = dev; gpio_request_by_name(dev, "ec-interrupt", 0, &cdev->ec_int, GPIOD_IS_IN); cdev->optimise_flash_write = dev_read_bool(dev, "optimise-flash-write"); if (cros_ec_check_version(dev)) { debug("%s: Could not detect CROS-EC version\n", __func__); return -CROS_EC_ERR_CHECK_VERSION; } if (cros_ec_read_id(dev, id, sizeof(id))) { debug("%s: Could not read KBC ID\n", __func__); return -CROS_EC_ERR_READ_ID; } /* Remember this device for use by the cros_ec command */ debug("Google Chrome EC v%d CROS-EC driver ready, id '%s'\n", cdev->protocol_version, id); return 0; } int cros_ec_decode_ec_flash(struct udevice *dev, struct fdt_cros_ec *config) { ofnode flash_node, node; flash_node = dev_read_subnode(dev, "flash"); if (!ofnode_valid(flash_node)) { debug("Failed to find flash node\n"); return -1; } if (ofnode_read_fmap_entry(flash_node, &config->flash)) { debug("Failed to decode flash node in chrome-ec\n"); return -1; } config->flash_erase_value = ofnode_read_s32_default(flash_node, "erase-value", -1); ofnode_for_each_subnode(node, flash_node) { const char *name = ofnode_get_name(node); enum ec_flash_region region; if (0 == strcmp(name, "ro")) { region = EC_FLASH_REGION_RO; } else if (0 == strcmp(name, "rw")) { region = EC_FLASH_REGION_ACTIVE; } else if (0 == strcmp(name, "wp-ro")) { region = EC_FLASH_REGION_WP_RO; } else { debug("Unknown EC flash region name '%s'\n", name); return -1; } if (ofnode_read_fmap_entry(node, &config->region[region])) { debug("Failed to decode flash region in chrome-ec'\n"); return -1; } } return 0; } int cros_ec_i2c_tunnel(struct udevice *dev, int port, struct i2c_msg *in, int nmsgs) { union { struct ec_params_i2c_passthru p; uint8_t outbuf[EC_PROTO2_MAX_PARAM_SIZE]; } params; union { struct ec_response_i2c_passthru r; uint8_t inbuf[EC_PROTO2_MAX_PARAM_SIZE]; } response; struct ec_params_i2c_passthru *p = ¶ms.p; struct ec_response_i2c_passthru *r = &response.r; struct ec_params_i2c_passthru_msg *msg; uint8_t *pdata, *read_ptr = NULL; int read_len; int size; int rv; int i; p->port = port; p->num_msgs = nmsgs; size = sizeof(*p) + p->num_msgs * sizeof(*msg); /* Create a message to write the register address and optional data */ pdata = (uint8_t *)p + size; read_len = 0; for (i = 0, msg = p->msg; i < nmsgs; i++, msg++, in++) { bool is_read = in->flags & I2C_M_RD; msg->addr_flags = in->addr; msg->len = in->len; if (is_read) { msg->addr_flags |= EC_I2C_FLAG_READ; read_len += in->len; read_ptr = in->buf; if (sizeof(*r) + read_len > sizeof(response)) { puts("Read length too big for buffer\n"); return -1; } } else { if (pdata - (uint8_t *)p + in->len > sizeof(params)) { puts("Params too large for buffer\n"); return -1; } memcpy(pdata, in->buf, in->len); pdata += in->len; } } rv = ec_command(dev, EC_CMD_I2C_PASSTHRU, 0, p, pdata - (uint8_t *)p, r, sizeof(*r) + read_len); if (rv < 0) return rv; /* Parse response */ if (r->i2c_status & EC_I2C_STATUS_ERROR) { printf("Transfer failed with status=0x%x\n", r->i2c_status); return -1; } if (rv < sizeof(*r) + read_len) { puts("Truncated read response\n"); return -1; } /* We only support a single read message for each transfer */ if (read_len) memcpy(read_ptr, r->data, read_len); return 0; } int cros_ec_get_features(struct udevice *dev, u64 *featuresp) { struct ec_response_get_features r; int rv; rv = ec_command(dev, EC_CMD_GET_FEATURES, 0, NULL, 0, &r, sizeof(r)); if (rv != sizeof(r)) return -EIO; *featuresp = r.flags[0] | (u64)r.flags[1] << 32; return 0; } int cros_ec_check_feature(struct udevice *dev, uint feature) { struct ec_response_get_features r; int rv; rv = ec_command(dev, EC_CMD_GET_FEATURES, 0, NULL, 0, &r, sizeof(r)); if (rv != sizeof(r)) return -EIO; if (feature >= 8 * sizeof(r.flags)) return -EINVAL; return r.flags[feature / 32] & EC_FEATURE_MASK_0(feature) ? true : false; } /* * Query the EC for specified mask indicating enabled events. * The EC maintains separate event masks for SMI, SCI and WAKE. */ static int cros_ec_uhepi_cmd(struct udevice *dev, uint mask, uint action, uint64_t *value) { int ret; struct ec_params_host_event req; struct ec_response_host_event rsp; req.action = action; req.mask_type = mask; if (action != EC_HOST_EVENT_GET) req.value = *value; else *value = 0; ret = ec_command(dev, EC_CMD_HOST_EVENT, 0, &req, sizeof(req), &rsp, sizeof(rsp)); if (action != EC_HOST_EVENT_GET) return ret; if (ret == 0) *value = rsp.value; return ret; } static int cros_ec_handle_non_uhepi_cmd(struct udevice *dev, uint hcmd, uint action, uint64_t *value) { int ret = -1; struct ec_params_host_event_mask req; struct ec_response_host_event_mask rsp; if (hcmd == INVALID_HCMD) return ret; if (action != EC_HOST_EVENT_GET) req.mask = (uint32_t)*value; else *value = 0; ret = ec_command(dev, hcmd, 0, &req, sizeof(req), &rsp, sizeof(rsp)); if (action != EC_HOST_EVENT_GET) return ret; if (ret == 0) *value = rsp.mask; return ret; } bool cros_ec_is_uhepi_supported(struct udevice *dev) { #define UHEPI_SUPPORTED 1 #define UHEPI_NOT_SUPPORTED 2 static int uhepi_support; if (!uhepi_support) { uhepi_support = cros_ec_check_feature(dev, EC_FEATURE_UNIFIED_WAKE_MASKS) > 0 ? UHEPI_SUPPORTED : UHEPI_NOT_SUPPORTED; log_debug("Chrome EC: UHEPI %s\n", uhepi_support == UHEPI_SUPPORTED ? "supported" : "not supported"); } return uhepi_support == UHEPI_SUPPORTED; } static int cros_ec_get_mask(struct udevice *dev, uint type) { u64 value = 0; if (cros_ec_is_uhepi_supported(dev)) { cros_ec_uhepi_cmd(dev, type, EC_HOST_EVENT_GET, &value); } else { assert(type < ARRAY_SIZE(event_map)); cros_ec_handle_non_uhepi_cmd(dev, event_map[type].get_cmd, EC_HOST_EVENT_GET, &value); } return value; } static int cros_ec_clear_mask(struct udevice *dev, uint type, u64 mask) { if (cros_ec_is_uhepi_supported(dev)) return cros_ec_uhepi_cmd(dev, type, EC_HOST_EVENT_CLEAR, &mask); assert(type < ARRAY_SIZE(event_map)); return cros_ec_handle_non_uhepi_cmd(dev, event_map[type].clear_cmd, EC_HOST_EVENT_CLEAR, &mask); } uint64_t cros_ec_get_events_b(struct udevice *dev) { return cros_ec_get_mask(dev, EC_HOST_EVENT_B); } int cros_ec_clear_events_b(struct udevice *dev, uint64_t mask) { log_debug("Chrome EC: clear events_b mask to 0x%016llx\n", mask); return cros_ec_clear_mask(dev, EC_HOST_EVENT_B, mask); } int cros_ec_read_limit_power(struct udevice *dev, int *limit_powerp) { struct ec_params_charge_state p; struct ec_response_charge_state r; int ret; p.cmd = CHARGE_STATE_CMD_GET_PARAM; p.get_param.param = CS_PARAM_LIMIT_POWER; ret = ec_command(dev, EC_CMD_CHARGE_STATE, 0, &p, sizeof(p), &r, sizeof(r)); /* * If our EC doesn't support the LIMIT_POWER parameter, assume that * LIMIT_POWER is not requested. */ if (ret == -EC_RES_INVALID_PARAM || ret == -EC_RES_INVALID_COMMAND) { log_warning("PARAM_LIMIT_POWER not supported by EC\n"); return -ENOSYS; } if (ret != sizeof(r.get_param)) return -EINVAL; *limit_powerp = r.get_param.value; return 0; } int cros_ec_config_powerbtn(struct udevice *dev, uint32_t flags) { struct ec_params_config_power_button params; int ret; params.flags = flags; ret = ec_command(dev, EC_CMD_CONFIG_POWER_BUTTON, 0, ¶ms, sizeof(params), NULL, 0); if (ret < 0) return ret; return 0; } int cros_ec_get_lid_shutdown_mask(struct udevice *dev) { u32 mask; int ret; ret = cros_ec_get_event_mask(dev, EC_CMD_HOST_EVENT_GET_SMI_MASK, &mask); if (ret < 0) return ret; return !!(mask & EC_HOST_EVENT_MASK(EC_HOST_EVENT_LID_CLOSED)); } int cros_ec_set_lid_shutdown_mask(struct udevice *dev, int enable) { u32 mask; int ret; ret = cros_ec_get_event_mask(dev, EC_CMD_HOST_EVENT_GET_SMI_MASK, &mask); if (ret < 0) return ret; /* Set lid close event state in the EC SMI event mask */ if (enable) mask |= EC_HOST_EVENT_MASK(EC_HOST_EVENT_LID_CLOSED); else mask &= ~EC_HOST_EVENT_MASK(EC_HOST_EVENT_LID_CLOSED); ret = cros_ec_set_event_mask(dev, EC_CMD_HOST_EVENT_SET_SMI_MASK, mask); if (ret < 0) return ret; printf("EC: %sabled lid close event\n", enable ? "en" : "dis"); return 0; } int cros_ec_vstore_supported(struct udevice *dev) { return cros_ec_check_feature(dev, EC_FEATURE_VSTORE); } int cros_ec_vstore_info(struct udevice *dev, u32 *lockedp) { struct ec_response_vstore_info *resp; if (ec_command_inptr(dev, EC_CMD_VSTORE_INFO, 0, NULL, 0, (uint8_t **)&resp, sizeof(*resp)) != sizeof(*resp)) return -EIO; if (lockedp) *lockedp = resp->slot_locked; return resp->slot_count; } /* * cros_ec_vstore_read - Read data from EC vstore slot * * @slot: vstore slot to read from * @data: buffer to store read data, must be EC_VSTORE_SLOT_SIZE bytes */ int cros_ec_vstore_read(struct udevice *dev, int slot, uint8_t *data) { struct ec_params_vstore_read req; struct ec_response_vstore_read *resp; req.slot = slot; if (ec_command_inptr(dev, EC_CMD_VSTORE_READ, 0, &req, sizeof(req), (uint8_t **)&resp, sizeof(*resp)) != sizeof(*resp)) return -EIO; if (!data || req.slot >= EC_VSTORE_SLOT_MAX) return -EINVAL; memcpy(data, resp->data, sizeof(resp->data)); return 0; } /* * cros_ec_vstore_write - Save data into EC vstore slot * * @slot: vstore slot to write into * @data: data to write * @size: size of data in bytes * * Maximum size of data is EC_VSTORE_SLOT_SIZE. It is the callers * responsibility to check the number of implemented slots by * querying the vstore info. */ int cros_ec_vstore_write(struct udevice *dev, int slot, const uint8_t *data, size_t size) { struct ec_params_vstore_write req; if (slot >= EC_VSTORE_SLOT_MAX || size > EC_VSTORE_SLOT_SIZE) return -EINVAL; req.slot = slot; memcpy(req.data, data, size); if (ec_command(dev, EC_CMD_VSTORE_WRITE, 0, &req, sizeof(req), NULL, 0)) return -EIO; return 0; } int cros_ec_get_switches(struct udevice *dev) { struct dm_cros_ec_ops *ops; int ret; ops = dm_cros_ec_get_ops(dev); if (!ops->get_switches) return -ENOSYS; ret = ops->get_switches(dev); if (ret < 0) return log_msg_ret("get", ret); return ret; } int cros_ec_read_batt_charge(struct udevice *dev, uint *chargep) { struct ec_params_charge_state req; struct ec_response_charge_state resp; int ret; req.cmd = CHARGE_STATE_CMD_GET_STATE; ret = ec_command(dev, EC_CMD_CHARGE_STATE, 0, &req, sizeof(req), &resp, sizeof(resp)); if (ret) return log_msg_ret("read", ret); *chargep = resp.get_state.batt_state_of_charge; return 0; } UCLASS_DRIVER(cros_ec) = { .id = UCLASS_CROS_EC, .name = "cros-ec", .per_device_auto = sizeof(struct cros_ec_dev), #if CONFIG_IS_ENABLED(OF_REAL) .post_bind = dm_scan_fdt_dev, #endif .flags = DM_UC_FLAG_ALLOC_PRIV_DMA, };