// SPDX-License-Identifier: GPL-2.0+ /* * Copyright 2018-2019 NXP */ #include #include #include #include #include #include #include static unsigned int g_cdd_rr_max[4]; static unsigned int g_cdd_rw_max[4]; static unsigned int g_cdd_wr_max[4]; static unsigned int g_cdd_ww_max[4]; void ddr_cfg_umctl2(struct dram_cfg_param *ddrc_cfg, int num) { int i = 0; for (i = 0; i < num; i++) { reg32_write(ddrc_cfg->reg, ddrc_cfg->val); ddrc_cfg++; } } #ifdef CONFIG_IMX8M_DRAM_INLINE_ECC void ddrc_inline_ecc_scrub(unsigned int start_address, unsigned int range_address) { unsigned int tmp; /* Step1: Enable quasi-dynamic programming */ reg32_write(DDRC_SWCTL(0), 0x00000000); /* Step2: Set ECCCFG1.ecc_parity_region_lock to 1 */ reg32setbit(DDRC_ECCCFG1(0), 0x4); /* Step3: Block the AXI ports from taking the transaction */ reg32_write(DDRC_PCTRL_0(0), 0x0); /* Step4: Set scrub start address */ reg32_write(DDRC_SBRSTART0(0), start_address); /* Step5: Set scrub range address */ reg32_write(DDRC_SBRRANGE0(0), range_address); /* Step6: Set scrub_mode to write */ reg32_write(DDRC_SBRCTL(0), 0x00000014); /* Step7: Set the desired pattern through SBRWDATA0 registers */ reg32_write(DDRC_SBRWDATA0(0), 0x55aa55aa); /* Step8: Enable the SBR by programming SBRCTL.scrub_en=1 */ reg32setbit(DDRC_SBRCTL(0), 0x0); /* Step9: Poll SBRSTAT.scrub_done=1 */ tmp = reg32_read(DDRC_SBRSTAT(0)); while (tmp != 0x00000002) tmp = reg32_read(DDRC_SBRSTAT(0)) & 0x2; /* Step10: Poll SBRSTAT.scrub_busy=0 */ tmp = reg32_read(DDRC_SBRSTAT(0)); while (tmp != 0x0) tmp = reg32_read(DDRC_SBRSTAT(0)) & 0x1; /* Step11: Disable SBR by programming SBRCTL.scrub_en=0 */ clrbits_le32(DDRC_SBRCTL(0), 0x1); /* Step12: Prepare for normal scrub operation(Read) and set scrub_interval*/ reg32_write(DDRC_SBRCTL(0), 0x100); /* Step13: Enable the SBR by programming SBRCTL.scrub_en=1 */ reg32_write(DDRC_SBRCTL(0), 0x101); /* Step14: Enable AXI ports by programming */ reg32_write(DDRC_PCTRL_0(0), 0x1); /* Step15: Disable quasi-dynamic programming */ reg32_write(DDRC_SWCTL(0), 0x00000001); } void ddrc_inline_ecc_scrub_end(unsigned int start_address, unsigned int range_address) { /* Step1: Enable quasi-dynamic programming */ reg32_write(DDRC_SWCTL(0), 0x00000000); /* Step2: Block the AXI ports from taking the transaction */ reg32_write(DDRC_PCTRL_0(0), 0x0); /* Step3: Set scrub start address */ reg32_write(DDRC_SBRSTART0(0), start_address); /* Step4: Set scrub range address */ reg32_write(DDRC_SBRRANGE0(0), range_address); /* Step5: Disable SBR by programming SBRCTL.scrub_en=0 */ clrbits_le32(DDRC_SBRCTL(0), 0x1); /* Step6: Prepare for normal scrub operation(Read) and set scrub_interval */ reg32_write(DDRC_SBRCTL(0), 0x100); /* Step7: Enable the SBR by programming SBRCTL.scrub_en=1 */ reg32_write(DDRC_SBRCTL(0), 0x101); /* Step8: Enable AXI ports by programming */ reg32_write(DDRC_PCTRL_0(0), 0x1); /* Step9: Disable quasi-dynamic programming */ reg32_write(DDRC_SWCTL(0), 0x00000001); } #endif void __weak board_dram_ecc_scrub(void) { } void lpddr4_mr_write(unsigned int mr_rank, unsigned int mr_addr, unsigned int mr_data) { unsigned int tmp; /* * 1. Poll MRSTAT.mr_wr_busy until it is 0. * This checks that there is no outstanding MR transaction. * No writes should be performed to MRCTRL0 and MRCTRL1 if * MRSTAT.mr_wr_busy = 1. */ do { tmp = reg32_read(DDRC_MRSTAT(0)); } while (tmp & 0x1); /* * 2. Write the MRCTRL0.mr_type, MRCTRL0.mr_addr, MRCTRL0.mr_rank and * (for MRWs) MRCTRL1.mr_data to define the MR transaction. */ reg32_write(DDRC_MRCTRL0(0), (mr_rank << 4)); reg32_write(DDRC_MRCTRL1(0), (mr_addr << 8) | mr_data); reg32setbit(DDRC_MRCTRL0(0), 31); } unsigned int lpddr4_mr_read(unsigned int mr_rank, unsigned int mr_addr) { unsigned int tmp; reg32_write(DRC_PERF_MON_MRR0_DAT(0), 0x1); do { tmp = reg32_read(DDRC_MRSTAT(0)); } while (tmp & 0x1); reg32_write(DDRC_MRCTRL0(0), (mr_rank << 4) | 0x1); reg32_write(DDRC_MRCTRL1(0), (mr_addr << 8)); reg32setbit(DDRC_MRCTRL0(0), 31); do { tmp = reg32_read(DRC_PERF_MON_MRR0_DAT(0)); } while ((tmp & 0x8) == 0); tmp = reg32_read(DRC_PERF_MON_MRR1_DAT(0)); reg32_write(DRC_PERF_MON_MRR0_DAT(0), 0x4); while (tmp) { //try to find a significant byte in the word if (tmp & 0xff) { tmp &= 0xff; break; } tmp >>= 8; } return tmp; } static unsigned int look_for_max(unsigned int data[], unsigned int addr_start, unsigned int addr_end) { unsigned int i, imax = 0; for (i = addr_start; i <= addr_end; i++) { if (((data[i] >> 7) == 0) && data[i] > imax) imax = data[i]; } return imax; } void get_trained_CDD(u32 fsp) { unsigned int i, ddr_type, tmp; unsigned int cdd_cha[12], cdd_chb[12]; unsigned int cdd_cha_rr_max, cdd_cha_rw_max, cdd_cha_wr_max, cdd_cha_ww_max; unsigned int cdd_chb_rr_max, cdd_chb_rw_max, cdd_chb_wr_max, cdd_chb_ww_max; ddr_type = reg32_read(DDRC_MSTR(0)) & 0x3f; if (ddr_type == 0x20) { for (i = 0; i < 6; i++) { tmp = reg32_read(IP2APB_DDRPHY_IPS_BASE_ADDR(0) + (0x54013 + i) * 4); cdd_cha[i * 2] = tmp & 0xff; cdd_cha[i * 2 + 1] = (tmp >> 8) & 0xff; } for (i = 0; i < 7; i++) { tmp = reg32_read(IP2APB_DDRPHY_IPS_BASE_ADDR(0) + (0x5402c + i) * 4); if (i == 0) { cdd_cha[0] = (tmp >> 8) & 0xff; } else if (i == 6) { cdd_cha[11] = tmp & 0xff; } else { cdd_chb[i * 2 - 1] = tmp & 0xff; cdd_chb[i * 2] = (tmp >> 8) & 0xff; } } cdd_cha_rr_max = look_for_max(cdd_cha, 0, 1); cdd_cha_rw_max = look_for_max(cdd_cha, 2, 5); cdd_cha_wr_max = look_for_max(cdd_cha, 6, 9); cdd_cha_ww_max = look_for_max(cdd_cha, 10, 11); cdd_chb_rr_max = look_for_max(cdd_chb, 0, 1); cdd_chb_rw_max = look_for_max(cdd_chb, 2, 5); cdd_chb_wr_max = look_for_max(cdd_chb, 6, 9); cdd_chb_ww_max = look_for_max(cdd_chb, 10, 11); g_cdd_rr_max[fsp] = cdd_cha_rr_max > cdd_chb_rr_max ? cdd_cha_rr_max : cdd_chb_rr_max; g_cdd_rw_max[fsp] = cdd_cha_rw_max > cdd_chb_rw_max ? cdd_cha_rw_max : cdd_chb_rw_max; g_cdd_wr_max[fsp] = cdd_cha_wr_max > cdd_chb_wr_max ? cdd_cha_wr_max : cdd_chb_wr_max; g_cdd_ww_max[fsp] = cdd_cha_ww_max > cdd_chb_ww_max ? cdd_cha_ww_max : cdd_chb_ww_max; } else { unsigned int ddr4_cdd[64]; for (i = 0; i < 29; i++) { tmp = reg32_read(IP2APB_DDRPHY_IPS_BASE_ADDR(0) + (0x54012 + i) * 4); ddr4_cdd[i * 2] = tmp & 0xff; ddr4_cdd[i * 2 + 1] = (tmp >> 8) & 0xff; } g_cdd_rr_max[fsp] = look_for_max(ddr4_cdd, 1, 12); g_cdd_ww_max[fsp] = look_for_max(ddr4_cdd, 13, 24); g_cdd_rw_max[fsp] = look_for_max(ddr4_cdd, 25, 40); g_cdd_wr_max[fsp] = look_for_max(ddr4_cdd, 41, 56); } } void update_umctl2_rank_space_setting(unsigned int pstat_num) { unsigned int i, ddr_type; unsigned int addr_slot, rdata, tmp, tmp_t; unsigned int ddrc_w2r, ddrc_r2w, ddrc_wr_gap, ddrc_rd_gap; ddr_type = reg32_read(DDRC_MSTR(0)) & 0x3f; for (i = 0; i < pstat_num; i++) { addr_slot = i ? (i + 1) * 0x1000 : 0; if (ddr_type == 0x20) { /* update r2w:[13:8], w2r:[5:0] */ rdata = reg32_read(DDRC_DRAMTMG2(0) + addr_slot); ddrc_w2r = rdata & 0x3f; if (is_imx8mp()) tmp = ddrc_w2r + (g_cdd_wr_max[i] >> 1); else tmp = ddrc_w2r + (g_cdd_wr_max[i] >> 1) + 1; ddrc_w2r = (tmp > 0x3f) ? 0x3f : tmp; ddrc_r2w = (rdata >> 8) & 0x3f; if (is_imx8mp()) tmp = ddrc_r2w + (g_cdd_rw_max[i] >> 1); else tmp = ddrc_r2w + (g_cdd_rw_max[i] >> 1) + 1; ddrc_r2w = (tmp > 0x3f) ? 0x3f : tmp; tmp_t = (rdata & 0xffffc0c0) | (ddrc_r2w << 8) | ddrc_w2r; reg32_write((DDRC_DRAMTMG2(0) + addr_slot), tmp_t); } else { /* update w2r:[5:0] */ rdata = reg32_read(DDRC_DRAMTMG9(0) + addr_slot); ddrc_w2r = rdata & 0x3f; if (is_imx8mp()) tmp = ddrc_w2r + (g_cdd_wr_max[i] >> 1); else tmp = ddrc_w2r + (g_cdd_wr_max[i] >> 1) + 1; ddrc_w2r = (tmp > 0x3f) ? 0x3f : tmp; tmp_t = (rdata & 0xffffffc0) | ddrc_w2r; reg32_write((DDRC_DRAMTMG9(0) + addr_slot), tmp_t); /* update r2w:[13:8] */ rdata = reg32_read(DDRC_DRAMTMG2(0) + addr_slot); ddrc_r2w = (rdata >> 8) & 0x3f; if (is_imx8mp()) tmp = ddrc_r2w + (g_cdd_rw_max[i] >> 1); else tmp = ddrc_r2w + (g_cdd_rw_max[i] >> 1) + 1; ddrc_r2w = (tmp > 0x3f) ? 0x3f : tmp; tmp_t = (rdata & 0xffffc0ff) | (ddrc_r2w << 8); reg32_write((DDRC_DRAMTMG2(0) + addr_slot), tmp_t); } if (!is_imx8mq()) { /* * update rankctl: wr_gap:11:8; rd:gap:7:4; quasi-dymic, doc wrong(static) */ rdata = reg32_read(DDRC_RANKCTL(0) + addr_slot); ddrc_wr_gap = (rdata >> 8) & 0xf; if (is_imx8mp()) tmp = ddrc_wr_gap + (g_cdd_ww_max[i] >> 1); else tmp = ddrc_wr_gap + (g_cdd_ww_max[i] >> 1) + 1; ddrc_wr_gap = (tmp > 0xf) ? 0xf : tmp; ddrc_rd_gap = (rdata >> 4) & 0xf; if (is_imx8mp()) tmp = ddrc_rd_gap + (g_cdd_rr_max[i] >> 1); else tmp = ddrc_rd_gap + (g_cdd_rr_max[i] >> 1) + 1; ddrc_rd_gap = (tmp > 0xf) ? 0xf : tmp; tmp_t = (rdata & 0xfffff00f) | (ddrc_wr_gap << 8) | (ddrc_rd_gap << 4); reg32_write((DDRC_RANKCTL(0) + addr_slot), tmp_t); } } if (is_imx8mq()) { /* update rankctl: wr_gap:11:8; rd:gap:7:4; quasi-dymic, doc wrong(static) */ rdata = reg32_read(DDRC_RANKCTL(0)); ddrc_wr_gap = (rdata >> 8) & 0xf; tmp = ddrc_wr_gap + (g_cdd_ww_max[0] >> 1) + 1; ddrc_wr_gap = (tmp > 0xf) ? 0xf : tmp; ddrc_rd_gap = (rdata >> 4) & 0xf; tmp = ddrc_rd_gap + (g_cdd_rr_max[0] >> 1) + 1; ddrc_rd_gap = (tmp > 0xf) ? 0xf : tmp; tmp_t = (rdata & 0xfffff00f) | (ddrc_wr_gap << 8) | (ddrc_rd_gap << 4); reg32_write(DDRC_RANKCTL(0), tmp_t); } } int ddr_init(struct dram_timing_info *dram_timing) { unsigned int tmp, initial_drate, target_freq; int ret; debug("DDRINFO: start DRAM init\n"); /* Step1: Follow the power up procedure */ if (is_imx8mq()) { reg32_write(SRC_DDRC_RCR_ADDR + 0x04, 0x8F00000F); reg32_write(SRC_DDRC_RCR_ADDR, 0x8F00000F); reg32_write(SRC_DDRC_RCR_ADDR + 0x04, 0x8F000000); } else { reg32_write(SRC_DDRC_RCR_ADDR, 0x8F00001F); reg32_write(SRC_DDRC_RCR_ADDR, 0x8F00000F); } debug("DDRINFO: cfg clk\n"); /* change the clock source of dram_apb_clk_root: source 4 800MHz /4 = 200MHz */ clock_set_target_val(DRAM_APB_CLK_ROOT, CLK_ROOT_ON | CLK_ROOT_SOURCE_SEL(4) | CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV4)); /* disable iso */ reg32_write(0x303A00EC, 0x0000ffff); /* PGC_CPU_MAPPING */ reg32setbit(0x303A00F8, 5); /* PU_PGC_SW_PUP_REQ */ initial_drate = dram_timing->fsp_msg[0].drate; /* default to the frequency point 0 clock */ ddrphy_init_set_dfi_clk(initial_drate); /* D-aasert the presetn */ reg32_write(SRC_DDRC_RCR_ADDR, 0x8F000006); /* Step2: Program the dwc_ddr_umctl2 registers */ debug("DDRINFO: ddrc config start\n"); ddr_cfg_umctl2(dram_timing->ddrc_cfg, dram_timing->ddrc_cfg_num); debug("DDRINFO: ddrc config done\n"); /* Step3: De-assert reset signal(core_ddrc_rstn & aresetn_n) */ reg32_write(SRC_DDRC_RCR_ADDR, 0x8F000004); reg32_write(SRC_DDRC_RCR_ADDR, 0x8F000000); /* * Step4: Disable auto-refreshes, self-refresh, powerdown, and * assertion of dfi_dram_clk_disable by setting RFSHCTL3.dis_auto_refresh = 1, * PWRCTL.powerdown_en = 0, and PWRCTL.selfref_en = 0, PWRCTL.en_dfi_dram_clk_disable = 0 */ reg32_write(DDRC_DBG1(0), 0x00000000); reg32_write(DDRC_RFSHCTL3(0), 0x0000001); reg32_write(DDRC_PWRCTL(0), 0xa0); /* if ddr type is LPDDR4, do it */ tmp = reg32_read(DDRC_MSTR(0)); if (tmp & (0x1 << 5) && !is_imx8mn()) reg32_write(DDRC_DDR_SS_GPR0, 0x01); /* LPDDR4 mode */ /* determine the initial boot frequency */ target_freq = reg32_read(DDRC_MSTR2(0)) & 0x3; target_freq = (tmp & (0x1 << 29)) ? target_freq : 0x0; /* Step5: Set SWCT.sw_done to 0 */ reg32_write(DDRC_SWCTL(0), 0x00000000); /* Set the default boot frequency point */ clrsetbits_le32(DDRC_DFIMISC(0), (0x1f << 8), target_freq << 8); /* Step6: Set DFIMISC.dfi_init_complete_en to 0 */ clrbits_le32(DDRC_DFIMISC(0), 0x1); /* Step7: Set SWCTL.sw_done to 1; need to polling SWSTAT.sw_done_ack */ reg32_write(DDRC_SWCTL(0), 0x00000001); do { tmp = reg32_read(DDRC_SWSTAT(0)); } while ((tmp & 0x1) == 0x0); /* * Step8 ~ Step13: Start PHY initialization and training by * accessing relevant PUB registers */ debug("DDRINFO:ddrphy config start\n"); ret = ddr_cfg_phy(dram_timing); if (ret) return ret; debug("DDRINFO: ddrphy config done\n"); /* * step14 CalBusy.0 =1, indicates the calibrator is actively * calibrating. Wait Calibrating done. */ do { tmp = reg32_read(DDRPHY_CalBusy(0)); } while ((tmp & 0x1)); debug("DDRINFO:ddrphy calibration done\n"); /* Step15: Set SWCTL.sw_done to 0 */ reg32_write(DDRC_SWCTL(0), 0x00000000); /* Apply rank-to-rank workaround */ update_umctl2_rank_space_setting(dram_timing->fsp_msg_num - 1); /* Step16: Set DFIMISC.dfi_init_start to 1 */ setbits_le32(DDRC_DFIMISC(0), (0x1 << 5)); /* Step17: Set SWCTL.sw_done to 1; need to polling SWSTAT.sw_done_ack */ reg32_write(DDRC_SWCTL(0), 0x00000001); do { tmp = reg32_read(DDRC_SWSTAT(0)); } while ((tmp & 0x1) == 0x0); /* Step18: Polling DFISTAT.dfi_init_complete = 1 */ do { tmp = reg32_read(DDRC_DFISTAT(0)); } while ((tmp & 0x1) == 0x0); /* Step19: Set SWCTL.sw_done to 0 */ reg32_write(DDRC_SWCTL(0), 0x00000000); /* Step20: Set DFIMISC.dfi_init_start to 0 */ clrbits_le32(DDRC_DFIMISC(0), (0x1 << 5)); /* Step21: optional */ /* Step22: Set DFIMISC.dfi_init_complete_en to 1 */ setbits_le32(DDRC_DFIMISC(0), 0x1); /* Step23: Set PWRCTL.selfref_sw to 0 */ clrbits_le32(DDRC_PWRCTL(0), (0x1 << 5)); /* Step24: Set SWCTL.sw_done to 1; need polling SWSTAT.sw_done_ack */ reg32_write(DDRC_SWCTL(0), 0x00000001); do { tmp = reg32_read(DDRC_SWSTAT(0)); } while ((tmp & 0x1) == 0x0); /* Step25: Wait for dwc_ddr_umctl2 to move to normal operating mode by monitoring * STAT.operating_mode signal */ do { tmp = reg32_read(DDRC_STAT(0)); } while ((tmp & 0x3) != 0x1); /* Step26: Set back register in Step4 to the original values if desired */ reg32_write(DDRC_RFSHCTL3(0), 0x0000000); /* enable port 0 */ reg32_write(DDRC_PCTRL_0(0), 0x00000001); debug("DDRINFO: ddrmix config done\n"); board_dram_ecc_scrub(); /* enable selfref_en by default */ setbits_le32(DDRC_PWRCTL(0), 0x1); /* save the dram timing config into memory */ dram_config_save(dram_timing, CONFIG_SAVED_DRAM_TIMING_BASE); return 0; } ulong ddrphy_addr_remap(uint32_t paddr_apb_from_ctlr) { return 4 * paddr_apb_from_ctlr; }