// SPDX-License-Identifier: GPL-2.0+ /* * Device manager * * Copyright (c) 2013 Google, Inc * * (C) Copyright 2012 * Pavel Herrmann */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include DECLARE_GLOBAL_DATA_PTR; static int device_bind_common(struct udevice *parent, const struct driver *drv, const char *name, void *plat, ulong driver_data, ofnode node, uint of_plat_size, struct udevice **devp) { struct udevice *dev; struct uclass *uc; int size, ret = 0; bool auto_seq = true; void *ptr; if (CONFIG_IS_ENABLED(OF_PLATDATA_NO_BIND)) return -ENOSYS; if (devp) *devp = NULL; if (!name) return -EINVAL; ret = uclass_get(drv->id, &uc); if (ret) { debug("Missing uclass for driver %s\n", drv->name); return ret; } dev = calloc(1, sizeof(struct udevice)); if (!dev) return -ENOMEM; INIT_LIST_HEAD(&dev->sibling_node); INIT_LIST_HEAD(&dev->child_head); INIT_LIST_HEAD(&dev->uclass_node); #if CONFIG_IS_ENABLED(DEVRES) INIT_LIST_HEAD(&dev->devres_head); #endif dev_set_plat(dev, plat); dev->driver_data = driver_data; dev->name = name; dev_set_ofnode(dev, node); dev->parent = parent; dev->driver = drv; dev->uclass = uc; dev->seq_ = -1; if (CONFIG_IS_ENABLED(DM_SEQ_ALIAS) && (uc->uc_drv->flags & DM_UC_FLAG_SEQ_ALIAS)) { /* * Some devices, such as a SPI bus, I2C bus and serial ports * are numbered using aliases. */ if (CONFIG_IS_ENABLED(OF_CONTROL) && !CONFIG_IS_ENABLED(OF_PLATDATA)) { if (uc->uc_drv->name && ofnode_valid(node)) { if (!dev_read_alias_seq(dev, &dev->seq_)) { auto_seq = false; log_debug(" - seq=%d\n", dev->seq_); } } } } if (auto_seq && !(uc->uc_drv->flags & DM_UC_FLAG_NO_AUTO_SEQ)) dev->seq_ = uclass_find_next_free_seq(uc); /* Check if we need to allocate plat */ if (drv->plat_auto) { bool alloc = !plat; /* * For of-platdata, we try use the existing data, but if * plat_auto is larger, we must allocate a new space */ if (CONFIG_IS_ENABLED(OF_PLATDATA)) { if (of_plat_size) dev_or_flags(dev, DM_FLAG_OF_PLATDATA); if (of_plat_size < drv->plat_auto) alloc = true; } if (alloc) { dev_or_flags(dev, DM_FLAG_ALLOC_PDATA); ptr = calloc(1, drv->plat_auto); if (!ptr) { ret = -ENOMEM; goto fail_alloc1; } /* * For of-platdata, copy the old plat into the new * space */ if (CONFIG_IS_ENABLED(OF_PLATDATA) && plat) memcpy(ptr, plat, of_plat_size); dev_set_plat(dev, ptr); } } size = uc->uc_drv->per_device_plat_auto; if (size) { dev_or_flags(dev, DM_FLAG_ALLOC_UCLASS_PDATA); ptr = calloc(1, size); if (!ptr) { ret = -ENOMEM; goto fail_alloc2; } dev_set_uclass_plat(dev, ptr); } if (parent) { size = parent->driver->per_child_plat_auto; if (!size) size = parent->uclass->uc_drv->per_child_plat_auto; if (size) { dev_or_flags(dev, DM_FLAG_ALLOC_PARENT_PDATA); ptr = calloc(1, size); if (!ptr) { ret = -ENOMEM; goto fail_alloc3; } dev_set_parent_plat(dev, ptr); } /* put dev into parent's successor list */ list_add_tail(&dev->sibling_node, &parent->child_head); } ret = uclass_bind_device(dev); if (ret) goto fail_uclass_bind; /* if we fail to bind we remove device from successors and free it */ if (drv->bind) { ret = drv->bind(dev); if (ret) goto fail_bind; } if (parent && parent->driver->child_post_bind) { ret = parent->driver->child_post_bind(dev); if (ret) goto fail_child_post_bind; } if (uc->uc_drv->post_bind) { ret = uc->uc_drv->post_bind(dev); if (ret) goto fail_uclass_post_bind; } if (parent) pr_debug("Bound device %s to %s\n", dev->name, parent->name); if (devp) *devp = dev; dev_or_flags(dev, DM_FLAG_BOUND); return 0; fail_uclass_post_bind: /* There is no child unbind() method, so no clean-up required */ fail_child_post_bind: if (CONFIG_IS_ENABLED(DM_DEVICE_REMOVE)) { if (drv->unbind && drv->unbind(dev)) { dm_warn("unbind() method failed on dev '%s' on error path\n", dev->name); } } fail_bind: if (CONFIG_IS_ENABLED(DM_DEVICE_REMOVE)) { if (uclass_unbind_device(dev)) { dm_warn("Failed to unbind dev '%s' on error path\n", dev->name); } } fail_uclass_bind: if (CONFIG_IS_ENABLED(DM_DEVICE_REMOVE)) { list_del(&dev->sibling_node); if (dev_get_flags(dev) & DM_FLAG_ALLOC_PARENT_PDATA) { free(dev_get_parent_plat(dev)); dev_set_parent_plat(dev, NULL); } } fail_alloc3: if (CONFIG_IS_ENABLED(DM_DEVICE_REMOVE)) { if (dev_get_flags(dev) & DM_FLAG_ALLOC_UCLASS_PDATA) { free(dev_get_uclass_plat(dev)); dev_set_uclass_plat(dev, NULL); } } fail_alloc2: if (CONFIG_IS_ENABLED(DM_DEVICE_REMOVE)) { if (dev_get_flags(dev) & DM_FLAG_ALLOC_PDATA) { free(dev_get_plat(dev)); dev_set_plat(dev, NULL); } } fail_alloc1: devres_release_all(dev); free(dev); return ret; } int device_bind_with_driver_data(struct udevice *parent, const struct driver *drv, const char *name, ulong driver_data, ofnode node, struct udevice **devp) { return device_bind_common(parent, drv, name, NULL, driver_data, node, 0, devp); } int device_bind(struct udevice *parent, const struct driver *drv, const char *name, void *plat, ofnode node, struct udevice **devp) { return device_bind_common(parent, drv, name, plat, 0, node, 0, devp); } int device_bind_by_name(struct udevice *parent, bool pre_reloc_only, const struct driver_info *info, struct udevice **devp) { struct driver *drv; uint plat_size = 0; int ret; drv = lists_driver_lookup_name(info->name); if (!drv) return -ENOENT; if (pre_reloc_only && !(drv->flags & DM_FLAG_PRE_RELOC)) return -EPERM; #if CONFIG_IS_ENABLED(OF_PLATDATA) plat_size = info->plat_size; #endif ret = device_bind_common(parent, drv, info->name, (void *)info->plat, 0, ofnode_null(), plat_size, devp); if (ret) return ret; return ret; } int device_reparent(struct udevice *dev, struct udevice *new_parent) { struct udevice *pos, *n; assert(dev); assert(new_parent); device_foreach_child_safe(pos, n, dev->parent) { if (pos->driver != dev->driver) continue; list_del(&dev->sibling_node); list_add_tail(&dev->sibling_node, &new_parent->child_head); dev->parent = new_parent; break; } return 0; } static void *alloc_priv(int size, uint flags) { void *priv; if (flags & DM_FLAG_ALLOC_PRIV_DMA) { size = ROUND(size, ARCH_DMA_MINALIGN); priv = memalign(ARCH_DMA_MINALIGN, size); if (priv) { memset(priv, '\0', size); /* * Ensure that the zero bytes are flushed to memory. * This prevents problems if the driver uses this as * both an input and an output buffer: * * 1. Zeroes written to buffer (here) and sit in the * cache * 2. Driver issues a read command to DMA * 3. CPU runs out of cache space and evicts some cache * data in the buffer, writing zeroes to RAM from * the memset() above * 4. DMA completes * 5. Buffer now has some DMA data and some zeroes * 6. Data being read is now incorrect * * To prevent this, ensure that the cache is clean * within this range at the start. The driver can then * use normal flush-after-write, invalidate-before-read * procedures. */ flush_dcache_range((ulong)priv, (ulong)priv + size); } } else { priv = calloc(1, size); } return priv; } /** * device_alloc_priv() - Allocate priv/plat data required by the device * * @dev: Device to process * Return: 0 if OK, -ENOMEM if out of memory */ static int device_alloc_priv(struct udevice *dev) { const struct driver *drv; void *ptr; int size; drv = dev->driver; assert(drv); /* Allocate private data if requested and not reentered */ if (drv->priv_auto && !dev_get_priv(dev)) { ptr = alloc_priv(drv->priv_auto, drv->flags); if (!ptr) return -ENOMEM; dev_set_priv(dev, ptr); } /* Allocate private data if requested and not reentered */ size = dev->uclass->uc_drv->per_device_auto; if (size && !dev_get_uclass_priv(dev)) { ptr = alloc_priv(size, dev->uclass->uc_drv->flags); if (!ptr) return -ENOMEM; dev_set_uclass_priv(dev, ptr); } /* Allocate parent data for this child */ if (dev->parent) { size = dev->parent->driver->per_child_auto; if (!size) size = dev->parent->uclass->uc_drv->per_child_auto; if (size && !dev_get_parent_priv(dev)) { ptr = alloc_priv(size, drv->flags); if (!ptr) return -ENOMEM; dev_set_parent_priv(dev, ptr); } } return 0; } int device_of_to_plat(struct udevice *dev) { const struct driver *drv; int ret; if (!dev) return -EINVAL; if (dev_get_flags(dev) & DM_FLAG_PLATDATA_VALID) return 0; /* * This is not needed if binding is disabled, since data is allocated * at build time. */ if (!CONFIG_IS_ENABLED(OF_PLATDATA_NO_BIND)) { /* Ensure all parents have ofdata */ if (dev->parent) { ret = device_of_to_plat(dev->parent); if (ret) goto fail; /* * The device might have already been probed during * the call to device_probe() on its parent device * (e.g. PCI bridge devices). Test the flags again * so that we don't mess up the device. */ if (dev_get_flags(dev) & DM_FLAG_PLATDATA_VALID) return 0; } ret = device_alloc_priv(dev); if (ret) goto fail; } drv = dev->driver; assert(drv); if (drv->of_to_plat && (CONFIG_IS_ENABLED(OF_PLATDATA) || dev_has_ofnode(dev))) { ret = drv->of_to_plat(dev); if (ret) goto fail; } dev_or_flags(dev, DM_FLAG_PLATDATA_VALID); return 0; fail: device_free(dev); return ret; } /** * device_get_dma_constraints() - Populate device's DMA constraints * * Gets a device's DMA constraints from firmware. This information is later * used by drivers to translate physcal addresses to the device's bus address * space. For now only device-tree is supported. * * @dev: Pointer to target device * Return: 0 if OK or if no DMA constraints were found, error otherwise */ static int device_get_dma_constraints(struct udevice *dev) { struct udevice *parent = dev->parent; phys_addr_t cpu = 0; dma_addr_t bus = 0; u64 size = 0; int ret; if (!CONFIG_IS_ENABLED(DM_DMA) || !parent || !dev_has_ofnode(parent)) return 0; /* * We start parsing for dma-ranges from the device's bus node. This is * specially important on nested buses. */ ret = dev_get_dma_range(parent, &cpu, &bus, &size); /* Don't return an error if no 'dma-ranges' were found */ if (ret && ret != -ENOENT) { dm_warn("%s: failed to get DMA range, %d\n", dev->name, ret); return ret; } dev_set_dma_offset(dev, cpu - bus); return 0; } int device_probe(struct udevice *dev) { const struct driver *drv; int ret; if (!dev) return -EINVAL; if (dev_get_flags(dev) & DM_FLAG_ACTIVATED) return 0; ret = device_notify(dev, EVT_DM_PRE_PROBE); if (ret) return ret; drv = dev->driver; assert(drv); ret = device_of_to_plat(dev); if (ret) goto fail; /* Ensure all parents are probed */ if (dev->parent) { ret = device_probe(dev->parent); if (ret) goto fail; /* * The device might have already been probed during * the call to device_probe() on its parent device * (e.g. PCI bridge devices). Test the flags again * so that we don't mess up the device. */ if (dev_get_flags(dev) & DM_FLAG_ACTIVATED) return 0; } dev_or_flags(dev, DM_FLAG_ACTIVATED); if (CONFIG_IS_ENABLED(POWER_DOMAIN) && dev->parent && (device_get_uclass_id(dev) != UCLASS_POWER_DOMAIN) && !(drv->flags & DM_FLAG_DEFAULT_PD_CTRL_OFF)) { ret = dev_power_domain_on(dev); if (ret) goto fail; } /* * Process pinctrl for everything except the root device, and * continue regardless of the result of pinctrl. Don't process pinctrl * settings for pinctrl devices since the device may not yet be * probed. * * This call can produce some non-intuitive results. For example, on an * x86 device where dev is the main PCI bus, the pinctrl device may be * child or grandchild of that bus, meaning that the child will be * probed here. If the child happens to be the P2SB and the pinctrl * device is a child of that, then both the pinctrl and P2SB will be * probed by this call. This works because the DM_FLAG_ACTIVATED flag * is set just above. However, the PCI bus' probe() method and * associated uclass methods have not yet been called. */ if (dev->parent && device_get_uclass_id(dev) != UCLASS_PINCTRL) { ret = pinctrl_select_state(dev, "default"); if (ret && ret != -ENOSYS) log_debug("Device '%s' failed to configure default pinctrl: %d (%s)\n", dev->name, ret, errno_str(ret)); } if (CONFIG_IS_ENABLED(IOMMU) && dev->parent && (device_get_uclass_id(dev) != UCLASS_IOMMU)) { ret = dev_iommu_enable(dev); if (ret) goto fail; } ret = device_get_dma_constraints(dev); if (ret) goto fail; ret = uclass_pre_probe_device(dev); if (ret) goto fail; if (dev->parent && dev->parent->driver->child_pre_probe) { ret = dev->parent->driver->child_pre_probe(dev); if (ret) goto fail; } /* Only handle devices that have a valid ofnode */ if (dev_has_ofnode(dev)) { /* * Process 'assigned-{clocks/clock-parents/clock-rates}' * properties */ ret = clk_set_defaults(dev, CLK_DEFAULTS_PRE); if (ret) goto fail; } if (drv->probe) { ret = drv->probe(dev); if (ret) goto fail; } ret = uclass_post_probe_device(dev); if (ret) goto fail_uclass; if (dev->parent && device_get_uclass_id(dev) == UCLASS_PINCTRL) { ret = pinctrl_select_state(dev, "default"); if (ret && ret != -ENOSYS) log_debug("Device '%s' failed to configure default pinctrl: %d (%s)\n", dev->name, ret, errno_str(ret)); } ret = device_notify(dev, EVT_DM_POST_PROBE); if (ret) goto fail_event; return 0; fail_event: fail_uclass: if (device_remove(dev, DM_REMOVE_NORMAL)) { dm_warn("%s: Device '%s' failed to remove on error path\n", __func__, dev->name); } fail: dev_bic_flags(dev, DM_FLAG_ACTIVATED); device_free(dev); return ret; } void *dev_get_plat(const struct udevice *dev) { if (!dev) { dm_warn("%s: null device\n", __func__); return NULL; } return dm_priv_to_rw(dev->plat_); } void *dev_get_parent_plat(const struct udevice *dev) { if (!dev) { dm_warn("%s: null device\n", __func__); return NULL; } return dm_priv_to_rw(dev->parent_plat_); } void *dev_get_uclass_plat(const struct udevice *dev) { if (!dev) { dm_warn("%s: null device\n", __func__); return NULL; } return dm_priv_to_rw(dev->uclass_plat_); } void *dev_get_priv(const struct udevice *dev) { if (!dev) { dm_warn("%s: null device\n", __func__); return NULL; } return dm_priv_to_rw(dev->priv_); } /* notrace is needed as this is called by timer_get_rate() */ notrace void *dev_get_uclass_priv(const struct udevice *dev) { if (!dev) { dm_warn("%s: null device\n", __func__); return NULL; } return dm_priv_to_rw(dev->uclass_priv_); } void *dev_get_parent_priv(const struct udevice *dev) { if (!dev) { dm_warn("%s: null device\n", __func__); return NULL; } return dm_priv_to_rw(dev->parent_priv_); } void *dev_get_attach_ptr(const struct udevice *dev, enum dm_tag_t tag) { switch (tag) { case DM_TAG_PLAT: return dev_get_plat(dev); case DM_TAG_PARENT_PLAT: return dev_get_parent_plat(dev); case DM_TAG_UC_PLAT: return dev_get_uclass_plat(dev); case DM_TAG_PRIV: return dev_get_priv(dev); case DM_TAG_PARENT_PRIV: return dev_get_parent_priv(dev); case DM_TAG_UC_PRIV: return dev_get_uclass_priv(dev); default: return NULL; } } int dev_get_attach_size(const struct udevice *dev, enum dm_tag_t tag) { const struct udevice *parent = dev_get_parent(dev); const struct uclass *uc = dev->uclass; const struct uclass_driver *uc_drv = uc->uc_drv; const struct driver *parent_drv = NULL; int size = 0; if (parent) parent_drv = parent->driver; switch (tag) { case DM_TAG_PLAT: size = dev->driver->plat_auto; break; case DM_TAG_PARENT_PLAT: if (parent) { size = parent_drv->per_child_plat_auto; if (!size) size = parent->uclass->uc_drv->per_child_plat_auto; } break; case DM_TAG_UC_PLAT: size = uc_drv->per_device_plat_auto; break; case DM_TAG_PRIV: size = dev->driver->priv_auto; break; case DM_TAG_PARENT_PRIV: if (parent) { size = parent_drv->per_child_auto; if (!size) size = parent->uclass->uc_drv->per_child_auto; } break; case DM_TAG_UC_PRIV: size = uc_drv->per_device_auto; break; default: break; } return size; } static int device_get_device_tail(struct udevice *dev, int ret, struct udevice **devp) { if (ret) return ret; ret = device_probe(dev); if (ret) return ret; *devp = dev; return 0; } #if CONFIG_IS_ENABLED(OF_REAL) /** * device_find_by_ofnode() - Return device associated with given ofnode * * The returned device is *not* activated. * * @node: The ofnode for which a associated device should be looked up * @devp: Pointer to structure to hold the found device * Return: 0 if OK, -ve on error */ static int device_find_by_ofnode(ofnode node, struct udevice **devp) { struct uclass *uc; struct udevice *dev; int ret; list_for_each_entry(uc, gd->uclass_root, sibling_node) { ret = uclass_find_device_by_ofnode(uc->uc_drv->id, node, &dev); if (!ret || dev) { *devp = dev; return 0; } } return -ENODEV; } #endif int device_get_child(const struct udevice *parent, int index, struct udevice **devp) { struct udevice *dev; device_foreach_child(dev, parent) { if (!index--) return device_get_device_tail(dev, 0, devp); } return -ENODEV; } int device_get_child_count(const struct udevice *parent) { struct udevice *dev; int count = 0; device_foreach_child(dev, parent) count++; return count; } int device_get_decendent_count(const struct udevice *parent) { const struct udevice *dev; int count = 1; device_foreach_child(dev, parent) count += device_get_decendent_count(dev); return count; } int device_find_child_by_seq(const struct udevice *parent, int seq, struct udevice **devp) { struct udevice *dev; *devp = NULL; device_foreach_child(dev, parent) { if (dev->seq_ == seq) { *devp = dev; return 0; } } return -ENODEV; } int device_get_child_by_seq(const struct udevice *parent, int seq, struct udevice **devp) { struct udevice *dev; int ret; *devp = NULL; ret = device_find_child_by_seq(parent, seq, &dev); return device_get_device_tail(dev, ret, devp); } int device_find_child_by_of_offset(const struct udevice *parent, int of_offset, struct udevice **devp) { struct udevice *dev; *devp = NULL; device_foreach_child(dev, parent) { if (dev_of_offset(dev) == of_offset) { *devp = dev; return 0; } } return -ENODEV; } int device_get_child_by_of_offset(const struct udevice *parent, int node, struct udevice **devp) { struct udevice *dev; int ret; *devp = NULL; ret = device_find_child_by_of_offset(parent, node, &dev); return device_get_device_tail(dev, ret, devp); } static struct udevice *_device_find_global_by_ofnode(struct udevice *parent, ofnode ofnode) { struct udevice *dev, *found; if (ofnode_equal(dev_ofnode(parent), ofnode)) return parent; device_foreach_child(dev, parent) { found = _device_find_global_by_ofnode(dev, ofnode); if (found) return found; } return NULL; } int device_find_global_by_ofnode(ofnode ofnode, struct udevice **devp) { *devp = _device_find_global_by_ofnode(gd->dm_root, ofnode); return *devp ? 0 : -ENOENT; } int device_get_global_by_ofnode(ofnode ofnode, struct udevice **devp) { struct udevice *dev; dev = _device_find_global_by_ofnode(gd->dm_root, ofnode); return device_get_device_tail(dev, dev ? 0 : -ENOENT, devp); } #if CONFIG_IS_ENABLED(OF_PLATDATA) int device_get_by_ofplat_idx(uint idx, struct udevice **devp) { struct udevice *dev; if (CONFIG_IS_ENABLED(OF_PLATDATA_INST)) { struct udevice *base = ll_entry_start(struct udevice, udevice); dev = base + idx; } else { struct driver_rt *drt = gd_dm_driver_rt() + idx; dev = drt->dev; } *devp = NULL; return device_get_device_tail(dev, dev ? 0 : -ENOENT, devp); } #endif int device_find_first_child(const struct udevice *parent, struct udevice **devp) { if (list_empty(&parent->child_head)) { *devp = NULL; } else { *devp = list_first_entry(&parent->child_head, struct udevice, sibling_node); } return 0; } int device_find_next_child(struct udevice **devp) { struct udevice *dev = *devp; struct udevice *parent = dev->parent; if (list_is_last(&dev->sibling_node, &parent->child_head)) { *devp = NULL; } else { *devp = list_entry(dev->sibling_node.next, struct udevice, sibling_node); } return 0; } int device_find_first_inactive_child(const struct udevice *parent, enum uclass_id uclass_id, struct udevice **devp) { struct udevice *dev; *devp = NULL; device_foreach_child(dev, parent) { if (!device_active(dev) && device_get_uclass_id(dev) == uclass_id) { *devp = dev; return 0; } } return -ENODEV; } int device_find_first_child_by_uclass(const struct udevice *parent, enum uclass_id uclass_id, struct udevice **devp) { struct udevice *dev; *devp = NULL; device_foreach_child(dev, parent) { if (device_get_uclass_id(dev) == uclass_id) { *devp = dev; return 0; } } return -ENODEV; } int device_find_child_by_namelen(const struct udevice *parent, const char *name, int len, struct udevice **devp) { struct udevice *dev; *devp = NULL; device_foreach_child(dev, parent) { if (!strncmp(dev->name, name, len) && strlen(dev->name) == len) { *devp = dev; return 0; } } return -ENODEV; } int device_find_child_by_name(const struct udevice *parent, const char *name, struct udevice **devp) { return device_find_child_by_namelen(parent, name, strlen(name), devp); } int device_first_child_err(struct udevice *parent, struct udevice **devp) { struct udevice *dev; device_find_first_child(parent, &dev); if (!dev) return -ENODEV; return device_get_device_tail(dev, 0, devp); } int device_next_child_err(struct udevice **devp) { struct udevice *dev = *devp; device_find_next_child(&dev); if (!dev) return -ENODEV; return device_get_device_tail(dev, 0, devp); } int device_first_child_ofdata_err(struct udevice *parent, struct udevice **devp) { struct udevice *dev; int ret; device_find_first_child(parent, &dev); if (!dev) return -ENODEV; ret = device_of_to_plat(dev); if (ret) return ret; *devp = dev; return 0; } int device_next_child_ofdata_err(struct udevice **devp) { struct udevice *dev = *devp; int ret; device_find_next_child(&dev); if (!dev) return -ENODEV; ret = device_of_to_plat(dev); if (ret) return ret; *devp = dev; return 0; } struct udevice *dev_get_parent(const struct udevice *child) { return child->parent; } ulong dev_get_driver_data(const struct udevice *dev) { return dev->driver_data; } const void *dev_get_driver_ops(const struct udevice *dev) { if (!dev || !dev->driver->ops) return NULL; return dev->driver->ops; } enum uclass_id device_get_uclass_id(const struct udevice *dev) { return dev->uclass->uc_drv->id; } const char *dev_get_uclass_name(const struct udevice *dev) { if (!dev) return NULL; return dev->uclass->uc_drv->name; } bool device_has_children(const struct udevice *dev) { return !list_empty(&dev->child_head); } bool device_has_active_children(const struct udevice *dev) { struct udevice *child; for (device_find_first_child(dev, &child); child; device_find_next_child(&child)) { if (device_active(child)) return true; } return false; } bool device_is_last_sibling(const struct udevice *dev) { struct udevice *parent = dev->parent; if (!parent) return false; return list_is_last(&dev->sibling_node, &parent->child_head); } void device_set_name_alloced(struct udevice *dev) { dev_or_flags(dev, DM_FLAG_NAME_ALLOCED); } int device_set_name(struct udevice *dev, const char *name) { name = strdup(name); if (!name) return -ENOMEM; dev->name = name; device_set_name_alloced(dev); return 0; } void dev_set_priv(struct udevice *dev, void *priv) { dev->priv_ = priv; } void dev_set_parent_priv(struct udevice *dev, void *parent_priv) { dev->parent_priv_ = parent_priv; } void dev_set_uclass_priv(struct udevice *dev, void *uclass_priv) { dev->uclass_priv_ = uclass_priv; } void dev_set_plat(struct udevice *dev, void *plat) { dev->plat_ = plat; } void dev_set_parent_plat(struct udevice *dev, void *parent_plat) { dev->parent_plat_ = parent_plat; } void dev_set_uclass_plat(struct udevice *dev, void *uclass_plat) { dev->uclass_plat_ = uclass_plat; } #if CONFIG_IS_ENABLED(OF_REAL) bool device_is_compatible(const struct udevice *dev, const char *compat) { return ofnode_device_is_compatible(dev_ofnode(dev), compat); } bool of_machine_is_compatible(const char *compat) { return ofnode_device_is_compatible(ofnode_root(), compat); } int dev_disable_by_path(const char *path) { struct uclass *uc; ofnode node = ofnode_path(path); struct udevice *dev; int ret = 1; if (!of_live_active()) return -ENOSYS; list_for_each_entry(uc, gd->uclass_root, sibling_node) { ret = uclass_find_device_by_ofnode(uc->uc_drv->id, node, &dev); if (!ret) break; } if (ret) return ret; ret = device_remove(dev, DM_REMOVE_NORMAL); if (ret) return ret; ret = device_unbind(dev); if (ret) return ret; return ofnode_set_enabled(node, false); } int dev_enable_by_path(const char *path) { ofnode node = ofnode_path(path); ofnode pnode = ofnode_get_parent(node); struct udevice *parent; int ret = 1; if (!of_live_active()) return -ENOSYS; ret = device_find_by_ofnode(pnode, &parent); if (ret) return ret; ret = ofnode_set_enabled(node, true); if (ret) return ret; return lists_bind_fdt(parent, node, NULL, NULL, false); } #endif #if CONFIG_IS_ENABLED(OF_PLATDATA_RT) static struct udevice_rt *dev_get_rt(const struct udevice *dev) { struct udevice *base = ll_entry_start(struct udevice, udevice); uint each_size = dm_udevice_size(); int idx = ((void *)dev - (void *)base) / each_size; struct udevice_rt *urt = gd_dm_udevice_rt() + idx; return urt; } u32 dev_get_flags(const struct udevice *dev) { const struct udevice_rt *urt = dev_get_rt(dev); return urt->flags_; } void dev_or_flags(const struct udevice *dev, u32 or) { struct udevice_rt *urt = dev_get_rt(dev); urt->flags_ |= or; } void dev_bic_flags(const struct udevice *dev, u32 bic) { struct udevice_rt *urt = dev_get_rt(dev); urt->flags_ &= ~bic; } #endif /* OF_PLATDATA_RT */