// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2017, STMicroelectronics - All Rights Reserved * Author(s): Patrice Chotard, for STMicroelectronics. */ #define LOG_CATEGORY UCLASS_CLK #include #include #include #include #include #include #include #include #include #include #include /* RCC CR specific definitions */ #define RCC_CR_HSION BIT(0) #define RCC_CR_HSIRDY BIT(2) #define RCC_CR_HSEON BIT(16) #define RCC_CR_HSERDY BIT(17) #define RCC_CR_HSEBYP BIT(18) #define RCC_CR_PLL1ON BIT(24) #define RCC_CR_PLL1RDY BIT(25) #define RCC_CR_HSIDIV_MASK GENMASK(4, 3) #define RCC_CR_HSIDIV_SHIFT 3 #define RCC_CFGR_SW_MASK GENMASK(2, 0) #define RCC_CFGR_SW_HSI 0 #define RCC_CFGR_SW_CSI 1 #define RCC_CFGR_SW_HSE 2 #define RCC_CFGR_SW_PLL1 3 #define RCC_CFGR_TIMPRE BIT(15) #define RCC_PLLCKSELR_PLLSRC_HSI 0 #define RCC_PLLCKSELR_PLLSRC_CSI 1 #define RCC_PLLCKSELR_PLLSRC_HSE 2 #define RCC_PLLCKSELR_PLLSRC_NO_CLK 3 #define RCC_PLLCKSELR_PLLSRC_MASK GENMASK(1, 0) #define RCC_PLLCKSELR_DIVM1_SHIFT 4 #define RCC_PLLCKSELR_DIVM1_MASK GENMASK(9, 4) #define RCC_PLL1DIVR_DIVN1_MASK GENMASK(8, 0) #define RCC_PLL1DIVR_DIVP1_SHIFT 9 #define RCC_PLL1DIVR_DIVP1_MASK GENMASK(15, 9) #define RCC_PLL1DIVR_DIVQ1_SHIFT 16 #define RCC_PLL1DIVR_DIVQ1_MASK GENMASK(22, 16) #define RCC_PLL1DIVR_DIVR1_SHIFT 24 #define RCC_PLL1DIVR_DIVR1_MASK GENMASK(30, 24) #define RCC_PLL1FRACR_FRACN1_SHIFT 3 #define RCC_PLL1FRACR_FRACN1_MASK GENMASK(15, 3) #define RCC_PLLCFGR_PLL1RGE_SHIFT 2 #define PLL1RGE_1_2_MHZ 0 #define PLL1RGE_2_4_MHZ 1 #define PLL1RGE_4_8_MHZ 2 #define PLL1RGE_8_16_MHZ 3 #define RCC_PLLCFGR_DIVP1EN BIT(16) #define RCC_PLLCFGR_DIVQ1EN BIT(17) #define RCC_PLLCFGR_DIVR1EN BIT(18) #define RCC_D1CFGR_HPRE_MASK GENMASK(3, 0) #define RCC_D1CFGR_HPRE_DIVIDED BIT(3) #define RCC_D1CFGR_HPRE_DIVIDER GENMASK(2, 0) #define RCC_D1CFGR_HPRE_DIV2 8 #define RCC_D1CFGR_D1PPRE_SHIFT 4 #define RCC_D1CFGR_D1PPRE_DIVIDED BIT(6) #define RCC_D1CFGR_D1PPRE_DIVIDER GENMASK(5, 4) #define RCC_D1CFGR_D1CPRE_SHIFT 8 #define RCC_D1CFGR_D1CPRE_DIVIDER GENMASK(10, 8) #define RCC_D1CFGR_D1CPRE_DIVIDED BIT(11) #define RCC_D2CFGR_D2PPRE1_SHIFT 4 #define RCC_D2CFGR_D2PPRE1_DIVIDED BIT(6) #define RCC_D2CFGR_D2PPRE1_DIVIDER GENMASK(5, 4) #define RCC_D2CFGR_D2PPRE2_SHIFT 8 #define RCC_D2CFGR_D2PPRE2_DIVIDED BIT(10) #define RCC_D2CFGR_D2PPRE2_DIVIDER GENMASK(9, 8) #define RCC_D3CFGR_D3PPRE_SHIFT 4 #define RCC_D3CFGR_D3PPRE_DIVIDED BIT(6) #define RCC_D3CFGR_D3PPRE_DIVIDER GENMASK(5, 4) #define RCC_D1CCIPR_FMCSRC_MASK GENMASK(1, 0) #define FMCSRC_HCLKD1 0 #define FMCSRC_PLL1_Q_CK 1 #define FMCSRC_PLL2_R_CK 2 #define FMCSRC_PER_CK 3 #define RCC_D1CCIPR_QSPISRC_MASK GENMASK(5, 4) #define RCC_D1CCIPR_QSPISRC_SHIFT 4 #define QSPISRC_HCLKD1 0 #define QSPISRC_PLL1_Q_CK 1 #define QSPISRC_PLL2_R_CK 2 #define QSPISRC_PER_CK 3 #define PWR_CR3 0x0c #define PWR_CR3_SCUEN BIT(2) #define PWR_D3CR 0x18 #define PWR_D3CR_VOS_MASK GENMASK(15, 14) #define PWR_D3CR_VOS_SHIFT 14 #define VOS_SCALE_3 1 #define VOS_SCALE_2 2 #define VOS_SCALE_1 3 #define PWR_D3CR_VOSREADY BIT(13) struct stm32_rcc_regs { u32 cr; /* 0x00 Source Control Register */ u32 icscr; /* 0x04 Internal Clock Source Calibration Register */ u32 crrcr; /* 0x08 Clock Recovery RC Register */ u32 reserved1; /* 0x0c reserved */ u32 cfgr; /* 0x10 Clock Configuration Register */ u32 reserved2; /* 0x14 reserved */ u32 d1cfgr; /* 0x18 Domain 1 Clock Configuration Register */ u32 d2cfgr; /* 0x1c Domain 2 Clock Configuration Register */ u32 d3cfgr; /* 0x20 Domain 3 Clock Configuration Register */ u32 reserved3; /* 0x24 reserved */ u32 pllckselr; /* 0x28 PLLs Clock Source Selection Register */ u32 pllcfgr; /* 0x2c PLLs Configuration Register */ u32 pll1divr; /* 0x30 PLL1 Dividers Configuration Register */ u32 pll1fracr; /* 0x34 PLL1 Fractional Divider Register */ u32 pll2divr; /* 0x38 PLL2 Dividers Configuration Register */ u32 pll2fracr; /* 0x3c PLL2 Fractional Divider Register */ u32 pll3divr; /* 0x40 PLL3 Dividers Configuration Register */ u32 pll3fracr; /* 0x44 PLL3 Fractional Divider Register */ u32 reserved4; /* 0x48 reserved */ u32 d1ccipr; /* 0x4c Domain 1 Kernel Clock Configuration Register */ u32 d2ccip1r; /* 0x50 Domain 2 Kernel Clock Configuration Register */ u32 d2ccip2r; /* 0x54 Domain 2 Kernel Clock Configuration Register */ u32 d3ccipr; /* 0x58 Domain 3 Kernel Clock Configuration Register */ u32 reserved5; /* 0x5c reserved */ u32 cier; /* 0x60 Clock Source Interrupt Enable Register */ u32 cifr; /* 0x64 Clock Source Interrupt Flag Register */ u32 cicr; /* 0x68 Clock Source Interrupt Clear Register */ u32 reserved6; /* 0x6c reserved */ u32 bdcr; /* 0x70 Backup Domain Control Register */ u32 csr; /* 0x74 Clock Control and Status Register */ u32 reserved7; /* 0x78 reserved */ u32 ahb3rstr; /* 0x7c AHB3 Peripheral Reset Register */ u32 ahb1rstr; /* 0x80 AHB1 Peripheral Reset Register */ u32 ahb2rstr; /* 0x84 AHB2 Peripheral Reset Register */ u32 ahb4rstr; /* 0x88 AHB4 Peripheral Reset Register */ u32 apb3rstr; /* 0x8c APB3 Peripheral Reset Register */ u32 apb1lrstr; /* 0x90 APB1 low Peripheral Reset Register */ u32 apb1hrstr; /* 0x94 APB1 high Peripheral Reset Register */ u32 apb2rstr; /* 0x98 APB2 Clock Register */ u32 apb4rstr; /* 0x9c APB4 Clock Register */ u32 gcr; /* 0xa0 Global Control Register */ u32 reserved8; /* 0xa4 reserved */ u32 d3amr; /* 0xa8 D3 Autonomous mode Register */ u32 reserved9[9];/* 0xac to 0xcc reserved */ u32 rsr; /* 0xd0 Reset Status Register */ u32 ahb3enr; /* 0xd4 AHB3 Clock Register */ u32 ahb1enr; /* 0xd8 AHB1 Clock Register */ u32 ahb2enr; /* 0xdc AHB2 Clock Register */ u32 ahb4enr; /* 0xe0 AHB4 Clock Register */ u32 apb3enr; /* 0xe4 APB3 Clock Register */ u32 apb1lenr; /* 0xe8 APB1 low Clock Register */ u32 apb1henr; /* 0xec APB1 high Clock Register */ u32 apb2enr; /* 0xf0 APB2 Clock Register */ u32 apb4enr; /* 0xf4 APB4 Clock Register */ }; #define RCC_AHB3ENR offsetof(struct stm32_rcc_regs, ahb3enr) #define RCC_AHB1ENR offsetof(struct stm32_rcc_regs, ahb1enr) #define RCC_AHB2ENR offsetof(struct stm32_rcc_regs, ahb2enr) #define RCC_AHB4ENR offsetof(struct stm32_rcc_regs, ahb4enr) #define RCC_APB3ENR offsetof(struct stm32_rcc_regs, apb3enr) #define RCC_APB1LENR offsetof(struct stm32_rcc_regs, apb1lenr) #define RCC_APB1HENR offsetof(struct stm32_rcc_regs, apb1henr) #define RCC_APB2ENR offsetof(struct stm32_rcc_regs, apb2enr) #define RCC_APB4ENR offsetof(struct stm32_rcc_regs, apb4enr) struct clk_cfg { u32 gate_offset; u8 gate_bit_idx; const char *name; }; /* * the way all these entries are sorted in this array could seem * unlogical, but we are dependant of kernel DT_bindings, * where clocks are separate in 2 banks, peripheral clocks and * kernel clocks. */ static const struct clk_cfg clk_map[] = { {RCC_AHB3ENR, 31, "d1sram1"}, /* peripheral clocks */ {RCC_AHB3ENR, 30, "itcm"}, {RCC_AHB3ENR, 29, "dtcm2"}, {RCC_AHB3ENR, 28, "dtcm1"}, {RCC_AHB3ENR, 8, "flitf"}, {RCC_AHB3ENR, 5, "jpgdec"}, {RCC_AHB3ENR, 4, "dma2d"}, {RCC_AHB3ENR, 0, "mdma"}, {RCC_AHB1ENR, 28, "usb2ulpi"}, {RCC_AHB1ENR, 17, "eth1rx"}, {RCC_AHB1ENR, 16, "eth1tx"}, {RCC_AHB1ENR, 15, "eth1mac"}, {RCC_AHB1ENR, 14, "art"}, {RCC_AHB1ENR, 26, "usb1ulpi"}, {RCC_AHB1ENR, 1, "dma2"}, {RCC_AHB1ENR, 0, "dma1"}, {RCC_AHB2ENR, 31, "d2sram3"}, {RCC_AHB2ENR, 30, "d2sram2"}, {RCC_AHB2ENR, 29, "d2sram1"}, {RCC_AHB2ENR, 5, "hash"}, {RCC_AHB2ENR, 4, "crypt"}, {RCC_AHB2ENR, 0, "camitf"}, {RCC_AHB4ENR, 28, "bkpram"}, {RCC_AHB4ENR, 25, "hsem"}, {RCC_AHB4ENR, 21, "bdma"}, {RCC_AHB4ENR, 19, "crc"}, {RCC_AHB4ENR, 10, "gpiok"}, {RCC_AHB4ENR, 9, "gpioj"}, {RCC_AHB4ENR, 8, "gpioi"}, {RCC_AHB4ENR, 7, "gpioh"}, {RCC_AHB4ENR, 6, "gpiog"}, {RCC_AHB4ENR, 5, "gpiof"}, {RCC_AHB4ENR, 4, "gpioe"}, {RCC_AHB4ENR, 3, "gpiod"}, {RCC_AHB4ENR, 2, "gpioc"}, {RCC_AHB4ENR, 1, "gpiob"}, {RCC_AHB4ENR, 0, "gpioa"}, {RCC_APB3ENR, 6, "wwdg1"}, {RCC_APB1LENR, 29, "dac12"}, {RCC_APB1LENR, 11, "wwdg2"}, {RCC_APB1LENR, 8, "tim14"}, {RCC_APB1LENR, 7, "tim13"}, {RCC_APB1LENR, 6, "tim12"}, {RCC_APB1LENR, 5, "tim7"}, {RCC_APB1LENR, 4, "tim6"}, {RCC_APB1LENR, 3, "tim5"}, {RCC_APB1LENR, 2, "tim4"}, {RCC_APB1LENR, 1, "tim3"}, {RCC_APB1LENR, 0, "tim2"}, {RCC_APB1HENR, 5, "mdios"}, {RCC_APB1HENR, 4, "opamp"}, {RCC_APB1HENR, 1, "crs"}, {RCC_APB2ENR, 18, "tim17"}, {RCC_APB2ENR, 17, "tim16"}, {RCC_APB2ENR, 16, "tim15"}, {RCC_APB2ENR, 1, "tim8"}, {RCC_APB2ENR, 0, "tim1"}, {RCC_APB4ENR, 26, "tmpsens"}, {RCC_APB4ENR, 16, "rtcapb"}, {RCC_APB4ENR, 15, "vref"}, {RCC_APB4ENR, 14, "comp12"}, {RCC_APB4ENR, 1, "syscfg"}, {RCC_AHB3ENR, 16, "sdmmc1"}, /* kernel clocks */ {RCC_AHB3ENR, 14, "quadspi"}, {RCC_AHB3ENR, 12, "fmc"}, {RCC_AHB1ENR, 27, "usb2otg"}, {RCC_AHB1ENR, 25, "usb1otg"}, {RCC_AHB1ENR, 5, "adc12"}, {RCC_AHB2ENR, 9, "sdmmc2"}, {RCC_AHB2ENR, 6, "rng"}, {RCC_AHB4ENR, 24, "adc3"}, {RCC_APB3ENR, 4, "dsi"}, {RCC_APB3ENR, 3, "ltdc"}, {RCC_APB1LENR, 31, "usart8"}, {RCC_APB1LENR, 30, "usart7"}, {RCC_APB1LENR, 27, "hdmicec"}, {RCC_APB1LENR, 23, "i2c3"}, {RCC_APB1LENR, 22, "i2c2"}, {RCC_APB1LENR, 21, "i2c1"}, {RCC_APB1LENR, 20, "uart5"}, {RCC_APB1LENR, 19, "uart4"}, {RCC_APB1LENR, 18, "usart3"}, {RCC_APB1LENR, 17, "usart2"}, {RCC_APB1LENR, 16, "spdifrx"}, {RCC_APB1LENR, 15, "spi3"}, {RCC_APB1LENR, 14, "spi2"}, {RCC_APB1LENR, 9, "lptim1"}, {RCC_APB1HENR, 8, "fdcan"}, {RCC_APB1HENR, 2, "swp"}, {RCC_APB2ENR, 29, "hrtim"}, {RCC_APB2ENR, 28, "dfsdm1"}, {RCC_APB2ENR, 24, "sai3"}, {RCC_APB2ENR, 23, "sai2"}, {RCC_APB2ENR, 22, "sai1"}, {RCC_APB2ENR, 20, "spi5"}, {RCC_APB2ENR, 13, "spi4"}, {RCC_APB2ENR, 12, "spi1"}, {RCC_APB2ENR, 5, "usart6"}, {RCC_APB2ENR, 4, "usart1"}, {RCC_APB4ENR, 21, "sai4a"}, {RCC_APB4ENR, 21, "sai4b"}, {RCC_APB4ENR, 12, "lptim5"}, {RCC_APB4ENR, 11, "lptim4"}, {RCC_APB4ENR, 10, "lptim3"}, {RCC_APB4ENR, 9, "lptim2"}, {RCC_APB4ENR, 7, "i2c4"}, {RCC_APB4ENR, 5, "spi6"}, {RCC_APB4ENR, 3, "lpuart1"}, }; struct stm32_clk { struct stm32_rcc_regs *rcc_base; struct regmap *pwr_regmap; }; struct pll_psc { u8 divm; u16 divn; u8 divp; u8 divq; u8 divr; }; /* * OSC_HSE = 25 MHz * VCO = 500MHz * pll1_p = 250MHz / pll1_q = 250MHz pll1_r = 250Mhz */ struct pll_psc sys_pll_psc = { .divm = 4, .divn = 80, .divp = 2, .divq = 2, .divr = 2, }; enum apb { APB1, APB2, }; int configure_clocks(struct udevice *dev) { struct stm32_clk *priv = dev_get_priv(dev); struct stm32_rcc_regs *regs = priv->rcc_base; uint8_t *pwr_base = (uint8_t *)regmap_get_range(priv->pwr_regmap, 0); uint32_t pllckselr = 0; uint32_t pll1divr = 0; uint32_t pllcfgr = 0; /* Switch on HSI */ setbits_le32(®s->cr, RCC_CR_HSION); while (!(readl(®s->cr) & RCC_CR_HSIRDY)) ; /* Reset CFGR, now HSI is the default system clock */ writel(0, ®s->cfgr); /* Set all kernel domain clock registers to reset value*/ writel(0x0, ®s->d1ccipr); writel(0x0, ®s->d2ccip1r); writel(0x0, ®s->d2ccip2r); /* Set voltage scaling at scale 1 (1,15 - 1,26 Volts) */ clrsetbits_le32(pwr_base + PWR_D3CR, PWR_D3CR_VOS_MASK, VOS_SCALE_1 << PWR_D3CR_VOS_SHIFT); /* Lock supply configuration update */ clrbits_le32(pwr_base + PWR_CR3, PWR_CR3_SCUEN); while (!(readl(pwr_base + PWR_D3CR) & PWR_D3CR_VOSREADY)) ; /* disable HSE to configure it */ clrbits_le32(®s->cr, RCC_CR_HSEON); while ((readl(®s->cr) & RCC_CR_HSERDY)) ; /* clear HSE bypass and set it ON */ clrbits_le32(®s->cr, RCC_CR_HSEBYP); /* Switch on HSE */ setbits_le32(®s->cr, RCC_CR_HSEON); while (!(readl(®s->cr) & RCC_CR_HSERDY)) ; /* pll setup, disable it */ clrbits_le32(®s->cr, RCC_CR_PLL1ON); while ((readl(®s->cr) & RCC_CR_PLL1RDY)) ; /* Select HSE as PLL clock source */ pllckselr |= RCC_PLLCKSELR_PLLSRC_HSE; pllckselr |= sys_pll_psc.divm << RCC_PLLCKSELR_DIVM1_SHIFT; writel(pllckselr, ®s->pllckselr); pll1divr |= (sys_pll_psc.divr - 1) << RCC_PLL1DIVR_DIVR1_SHIFT; pll1divr |= (sys_pll_psc.divq - 1) << RCC_PLL1DIVR_DIVQ1_SHIFT; pll1divr |= (sys_pll_psc.divp - 1) << RCC_PLL1DIVR_DIVP1_SHIFT; pll1divr |= (sys_pll_psc.divn - 1); writel(pll1divr, ®s->pll1divr); pllcfgr |= PLL1RGE_4_8_MHZ << RCC_PLLCFGR_PLL1RGE_SHIFT; pllcfgr |= RCC_PLLCFGR_DIVP1EN; pllcfgr |= RCC_PLLCFGR_DIVQ1EN; pllcfgr |= RCC_PLLCFGR_DIVR1EN; writel(pllcfgr, ®s->pllcfgr); /* pll setup, enable it */ setbits_le32(®s->cr, RCC_CR_PLL1ON); /* set HPRE (/2) DI clk --> 125MHz */ clrsetbits_le32(®s->d1cfgr, RCC_D1CFGR_HPRE_MASK, RCC_D1CFGR_HPRE_DIV2); /* select PLL1 as system clock source (sys_ck)*/ clrsetbits_le32(®s->cfgr, RCC_CFGR_SW_MASK, RCC_CFGR_SW_PLL1); while ((readl(®s->cfgr) & RCC_CFGR_SW_MASK) != RCC_CFGR_SW_PLL1) ; /* sdram: use pll1_q as fmc_k clk */ clrsetbits_le32(®s->d1ccipr, RCC_D1CCIPR_FMCSRC_MASK, FMCSRC_PLL1_Q_CK); return 0; } static u32 stm32_get_HSI_divider(struct stm32_rcc_regs *regs) { u32 divider; /* get HSI divider value */ divider = readl(®s->cr) & RCC_CR_HSIDIV_MASK; divider = divider >> RCC_CR_HSIDIV_SHIFT; return divider; }; enum pllsrc { HSE, LSE, HSI, CSI, I2S, TIMER, PLLSRC_NB, }; static const char * const pllsrc_name[PLLSRC_NB] = { [HSE] = "clk-hse", [LSE] = "clk-lse", [HSI] = "clk-hsi", [CSI] = "clk-csi", [I2S] = "clk-i2s", [TIMER] = "timer-clk" }; static ulong stm32_get_rate(struct stm32_rcc_regs *regs, enum pllsrc pllsrc) { struct clk clk; struct udevice *fixed_clock_dev = NULL; u32 divider; int ret; const char *name = pllsrc_name[pllsrc]; log_debug("pllsrc name %s\n", name); clk.id = 0; ret = uclass_get_device_by_name(UCLASS_CLK, name, &fixed_clock_dev); if (ret) { log_err("Can't find clk %s (%d)", name, ret); return 0; } ret = clk_request(fixed_clock_dev, &clk); if (ret) { log_err("Can't request %s clk (%d)", name, ret); return 0; } divider = 0; if (pllsrc == HSI) divider = stm32_get_HSI_divider(regs); log_debug("divider %d rate %ld\n", divider, clk_get_rate(&clk)); return clk_get_rate(&clk) >> divider; }; enum pll1_output { PLL1_P_CK, PLL1_Q_CK, PLL1_R_CK, }; static u32 stm32_get_PLL1_rate(struct stm32_rcc_regs *regs, enum pll1_output output) { ulong pllsrc = 0; u32 divm1, divn1, divp1, divq1, divr1, fracn1; ulong vco, rate; /* get the PLLSRC */ switch (readl(®s->pllckselr) & RCC_PLLCKSELR_PLLSRC_MASK) { case RCC_PLLCKSELR_PLLSRC_HSI: pllsrc = stm32_get_rate(regs, HSI); break; case RCC_PLLCKSELR_PLLSRC_CSI: pllsrc = stm32_get_rate(regs, CSI); break; case RCC_PLLCKSELR_PLLSRC_HSE: pllsrc = stm32_get_rate(regs, HSE); break; case RCC_PLLCKSELR_PLLSRC_NO_CLK: /* shouldn't happen */ log_err("wrong value for RCC_PLLCKSELR register\n"); pllsrc = 0; break; } /* pllsrc = 0 ? no need to go ahead */ if (!pllsrc) return pllsrc; /* get divm1, divp1, divn1 and divr1 */ divm1 = readl(®s->pllckselr) & RCC_PLLCKSELR_DIVM1_MASK; divm1 = divm1 >> RCC_PLLCKSELR_DIVM1_SHIFT; divn1 = (readl(®s->pll1divr) & RCC_PLL1DIVR_DIVN1_MASK) + 1; divp1 = readl(®s->pll1divr) & RCC_PLL1DIVR_DIVP1_MASK; divp1 = (divp1 >> RCC_PLL1DIVR_DIVP1_SHIFT) + 1; divq1 = readl(®s->pll1divr) & RCC_PLL1DIVR_DIVQ1_MASK; divq1 = (divq1 >> RCC_PLL1DIVR_DIVQ1_SHIFT) + 1; divr1 = readl(®s->pll1divr) & RCC_PLL1DIVR_DIVR1_MASK; divr1 = (divr1 >> RCC_PLL1DIVR_DIVR1_SHIFT) + 1; fracn1 = readl(®s->pll1fracr) & RCC_PLL1DIVR_DIVR1_MASK; fracn1 = fracn1 & RCC_PLL1DIVR_DIVR1_SHIFT; vco = (pllsrc / divm1) * divn1; rate = (pllsrc * fracn1) / (divm1 * 8192); log_debug("divm1 = %d divn1 = %d divp1 = %d divq1 = %d divr1 = %d\n", divm1, divn1, divp1, divq1, divr1); log_debug("fracn1 = %d vco = %ld rate = %ld\n", fracn1, vco, rate); switch (output) { case PLL1_P_CK: return (vco + rate) / divp1; break; case PLL1_Q_CK: return (vco + rate) / divq1; break; case PLL1_R_CK: return (vco + rate) / divr1; break; } return -EINVAL; } static u32 stm32_get_apb_psc(struct stm32_rcc_regs *regs, enum apb apb) { u16 prescaler_table[8] = {2, 4, 8, 16, 64, 128, 256, 512}; u32 d2cfgr = readl(®s->d2cfgr); if (apb == APB1) { if (d2cfgr & RCC_D2CFGR_D2PPRE1_DIVIDED) /* get D2 domain APB1 prescaler */ return prescaler_table[ ((d2cfgr & RCC_D2CFGR_D2PPRE1_DIVIDER) >> RCC_D2CFGR_D2PPRE1_SHIFT)]; } else { /* APB2 */ if (d2cfgr & RCC_D2CFGR_D2PPRE2_DIVIDED) /* get D2 domain APB2 prescaler */ return prescaler_table[ ((d2cfgr & RCC_D2CFGR_D2PPRE2_DIVIDER) >> RCC_D2CFGR_D2PPRE2_SHIFT)]; } return 1; }; static u32 stm32_get_timer_rate(struct stm32_clk *priv, u32 sysclk, enum apb apb) { struct stm32_rcc_regs *regs = priv->rcc_base; u32 psc = stm32_get_apb_psc(regs, apb); if (readl(®s->cfgr) & RCC_CFGR_TIMPRE) /* * if APB prescaler is configured to a * division factor of 1, 2 or 4 */ switch (psc) { case 1: case 2: case 4: return sysclk; case 8: return sysclk / 2; case 16: return sysclk / 4; default: log_err("unexpected prescaler value (%d)\n", psc); return 0; } else switch (psc) { case 1: return sysclk; case 2: case 4: case 8: case 16: return sysclk / psc; default: log_err("unexpected prescaler value (%d)\n", psc); return 0; } }; static ulong stm32_clk_get_rate(struct clk *clk) { struct stm32_clk *priv = dev_get_priv(clk->dev); struct stm32_rcc_regs *regs = priv->rcc_base; ulong sysclk = 0; u32 gate_offset; u32 d1cfgr, d3cfgr; /* prescaler table lookups for clock computation */ u16 prescaler_table[8] = {2, 4, 8, 16, 64, 128, 256, 512}; u8 source, idx; /* * get system clock (sys_ck) source * can be HSI_CK, CSI_CK, HSE_CK or pll1_p_ck */ source = readl(®s->cfgr) & RCC_CFGR_SW_MASK; switch (source) { case RCC_CFGR_SW_PLL1: sysclk = stm32_get_PLL1_rate(regs, PLL1_P_CK); break; case RCC_CFGR_SW_HSE: sysclk = stm32_get_rate(regs, HSE); break; case RCC_CFGR_SW_CSI: sysclk = stm32_get_rate(regs, CSI); break; case RCC_CFGR_SW_HSI: sysclk = stm32_get_rate(regs, HSI); break; } /* sysclk = 0 ? no need to go ahead */ if (!sysclk) return sysclk; dev_dbg(clk->dev, "system clock: source = %d freq = %ld\n", source, sysclk); d1cfgr = readl(®s->d1cfgr); if (d1cfgr & RCC_D1CFGR_D1CPRE_DIVIDED) { /* get D1 domain Core prescaler */ idx = (d1cfgr & RCC_D1CFGR_D1CPRE_DIVIDER) >> RCC_D1CFGR_D1CPRE_SHIFT; sysclk = sysclk / prescaler_table[idx]; } if (d1cfgr & RCC_D1CFGR_HPRE_DIVIDED) { /* get D1 domain AHB prescaler */ idx = d1cfgr & RCC_D1CFGR_HPRE_DIVIDER; sysclk = sysclk / prescaler_table[idx]; } gate_offset = clk_map[clk->id].gate_offset; dev_dbg(clk->dev, "clk->id=%ld gate_offset=0x%x sysclk=%ld\n", clk->id, gate_offset, sysclk); switch (gate_offset) { case RCC_AHB3ENR: case RCC_AHB1ENR: case RCC_AHB2ENR: case RCC_AHB4ENR: return sysclk; break; case RCC_APB3ENR: if (d1cfgr & RCC_D1CFGR_D1PPRE_DIVIDED) { /* get D1 domain APB3 prescaler */ idx = (d1cfgr & RCC_D1CFGR_D1PPRE_DIVIDER) >> RCC_D1CFGR_D1PPRE_SHIFT; sysclk = sysclk / prescaler_table[idx]; } dev_dbg(clk->dev, "system clock: freq after APB3 prescaler = %ld\n", sysclk); return sysclk; break; case RCC_APB4ENR: d3cfgr = readl(®s->d3cfgr); if (d3cfgr & RCC_D3CFGR_D3PPRE_DIVIDED) { /* get D3 domain APB4 prescaler */ idx = (d3cfgr & RCC_D3CFGR_D3PPRE_DIVIDER) >> RCC_D3CFGR_D3PPRE_SHIFT; sysclk = sysclk / prescaler_table[idx]; } dev_dbg(clk->dev, "system clock: freq after APB4 prescaler = %ld\n", sysclk); return sysclk; break; case RCC_APB1LENR: case RCC_APB1HENR: /* special case for GPT timers */ switch (clk->id) { case TIM14_CK: case TIM13_CK: case TIM12_CK: case TIM7_CK: case TIM6_CK: case TIM5_CK: case TIM4_CK: case TIM3_CK: case TIM2_CK: return stm32_get_timer_rate(priv, sysclk, APB1); } dev_dbg(clk->dev, "system clock: freq after APB1 prescaler = %ld\n", sysclk); return (sysclk / stm32_get_apb_psc(regs, APB1)); break; case RCC_APB2ENR: /* special case for timers */ switch (clk->id) { case TIM17_CK: case TIM16_CK: case TIM15_CK: case TIM8_CK: case TIM1_CK: return stm32_get_timer_rate(priv, sysclk, APB2); } dev_dbg(clk->dev, "system clock: freq after APB2 prescaler = %ld\n", sysclk); return (sysclk / stm32_get_apb_psc(regs, APB2)); break; default: dev_err(clk->dev, "unexpected gate_offset value (0x%x)\n", gate_offset); return -EINVAL; break; } } static int stm32_clk_enable(struct clk *clk) { struct stm32_clk *priv = dev_get_priv(clk->dev); struct stm32_rcc_regs *regs = priv->rcc_base; u32 gate_offset; u32 gate_bit_index; unsigned long clk_id = clk->id; gate_offset = clk_map[clk_id].gate_offset; gate_bit_index = clk_map[clk_id].gate_bit_idx; dev_dbg(clk->dev, "clkid=%ld gate offset=0x%x bit_index=%d name=%s\n", clk->id, gate_offset, gate_bit_index, clk_map[clk_id].name); setbits_le32(®s->cr + (gate_offset / 4), BIT(gate_bit_index)); return 0; } static int stm32_clk_probe(struct udevice *dev) { struct stm32_clk *priv = dev_get_priv(dev); struct udevice *syscon; fdt_addr_t addr; int err; addr = dev_read_addr(dev); if (addr == FDT_ADDR_T_NONE) return -EINVAL; priv->rcc_base = (struct stm32_rcc_regs *)addr; /* get corresponding syscon phandle */ err = uclass_get_device_by_phandle(UCLASS_SYSCON, dev, "st,syscfg", &syscon); if (err) { dev_err(dev, "unable to find syscon device\n"); return err; } priv->pwr_regmap = syscon_get_regmap(syscon); if (!priv->pwr_regmap) { dev_err(dev, "unable to find regmap\n"); return -ENODEV; } configure_clocks(dev); return 0; } static int stm32_clk_of_xlate(struct clk *clk, struct ofnode_phandle_args *args) { if (args->args_count != 1) { dev_dbg(clk->dev, "Invalid args_count: %d\n", args->args_count); return -EINVAL; } if (args->args_count) { clk->id = args->args[0]; /* * this computation convert DT clock index which is used to * point into 2 separate clock arrays (peripheral and kernel * clocks bank) (see include/dt-bindings/clock/stm32h7-clks.h) * into index to point into only one array where peripheral * and kernel clocks are consecutive */ if (clk->id >= KERN_BANK) { clk->id -= KERN_BANK; clk->id += LAST_PERIF_BANK - PERIF_BANK + 1; } else { clk->id -= PERIF_BANK; } } else { clk->id = 0; } dev_dbg(clk->dev, "clk->id %ld\n", clk->id); return 0; } static struct clk_ops stm32_clk_ops = { .of_xlate = stm32_clk_of_xlate, .enable = stm32_clk_enable, .get_rate = stm32_clk_get_rate, }; U_BOOT_DRIVER(stm32h7_clk) = { .name = "stm32h7_rcc_clock", .id = UCLASS_CLK, .ops = &stm32_clk_ops, .probe = stm32_clk_probe, .priv_auto = sizeof(struct stm32_clk), .flags = DM_FLAG_PRE_RELOC, };