// SPDX-License-Identifier: GPL-2.0 /* * (C) Copyright 2015 Google, Inc * (C) Copyright 2016 Heiko Stuebner */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct rk3066_clk_plat { #if CONFIG_IS_ENABLED(OF_PLATDATA) struct dtd_rockchip_rk3066a_cru dtd; #endif }; struct pll_div { u32 nr; u32 nf; u32 no; }; enum { VCO_MAX_HZ = 1416U * 1000000, VCO_MIN_HZ = 300 * 1000000, OUTPUT_MAX_HZ = 1416U * 1000000, OUTPUT_MIN_HZ = 30 * 1000000, FREF_MAX_HZ = 1416U * 1000000, FREF_MIN_HZ = 30 * 1000, }; enum { /* PLL CON0 */ PLL_OD_MASK = GENMASK(3, 0), /* PLL CON1 */ PLL_NF_MASK = GENMASK(12, 0), /* PLL CON2 */ PLL_BWADJ_MASK = GENMASK(11, 0), /* PLL CON3 */ PLL_RESET_SHIFT = 5, /* GRF_SOC_STATUS0 */ SOCSTS_DPLL_LOCK = BIT(4), SOCSTS_APLL_LOCK = BIT(5), SOCSTS_CPLL_LOCK = BIT(6), SOCSTS_GPLL_LOCK = BIT(7), }; #define DIV_TO_RATE(input_rate, div) ((input_rate) / ((div) + 1)) #define PLL_DIVISORS(hz, _nr, _no) {\ .nr = _nr, .nf = (u32)((u64)hz * _nr * _no / OSC_HZ), .no = _no};\ _Static_assert(((u64)hz * _nr * _no / OSC_HZ) * OSC_HZ /\ (_nr * _no) == hz, #hz "Hz cannot be hit with PLL "\ "divisors on line " __stringify(__LINE__)) /* Keep divisors as low as possible to reduce jitter and power usage. */ static const struct pll_div gpll_init_cfg = PLL_DIVISORS(GPLL_HZ, 2, 2); static const struct pll_div cpll_init_cfg = PLL_DIVISORS(CPLL_HZ, 1, 2); static int rk3066_clk_set_pll(struct rk3066_cru *cru, enum rk_clk_id clk_id, const struct pll_div *div) { int pll_id = rk_pll_id(clk_id); struct rk3066_pll *pll = &cru->pll[pll_id]; /* All PLLs have the same VCO and output frequency range restrictions. */ uint vco_hz = OSC_HZ / 1000 * div->nf / div->nr * 1000; uint output_hz = vco_hz / div->no; debug("%s: PLL at %x: nf=%d, nr=%d, no=%d, vco=%u Hz, output=%u Hz\n", __func__, (uint)pll, div->nf, div->nr, div->no, vco_hz, output_hz); assert(vco_hz >= VCO_MIN_HZ && vco_hz <= VCO_MAX_HZ && output_hz >= OUTPUT_MIN_HZ && output_hz <= OUTPUT_MAX_HZ && (div->no == 1 || !(div->no % 2))); /* Enter reset. */ rk_setreg(&pll->con3, BIT(PLL_RESET_SHIFT)); rk_clrsetreg(&pll->con0, CLKR_MASK | PLL_OD_MASK, ((div->nr - 1) << CLKR_SHIFT) | (div->no - 1)); rk_clrsetreg(&pll->con1, CLKF_MASK, div->nf - 1); rk_clrsetreg(&pll->con2, PLL_BWADJ_MASK, (div->nf >> 1) - 1); /* Exit reset. */ rk_clrreg(&pll->con3, BIT(PLL_RESET_SHIFT)); return 0; } static int rk3066_clk_configure_ddr(struct rk3066_cru *cru, struct rk3066_grf *grf, unsigned int hz) { static const struct pll_div dpll_cfg[] = { {.nf = 25, .nr = 2, .no = 1}, {.nf = 400, .nr = 9, .no = 2}, {.nf = 500, .nr = 9, .no = 2}, {.nf = 100, .nr = 3, .no = 1}, }; int cfg; switch (hz) { case 300000000: cfg = 0; break; case 533000000: /* actually 533.3P MHz */ cfg = 1; break; case 666000000: /* actually 666.6P MHz */ cfg = 2; break; case 800000000: cfg = 3; break; default: debug("%s: unsupported SDRAM frequency", __func__); return -EINVAL; } /* Enter PLL slow mode. */ rk_clrsetreg(&cru->cru_mode_con, DPLL_MODE_MASK, PLL_MODE_SLOW << DPLL_MODE_SHIFT); rk3066_clk_set_pll(cru, CLK_DDR, &dpll_cfg[cfg]); /* Wait for PLL lock. */ while (!(readl(&grf->soc_status0) & SOCSTS_DPLL_LOCK)) udelay(1); /* Enter PLL normal mode. */ rk_clrsetreg(&cru->cru_mode_con, DPLL_MODE_MASK, PLL_MODE_NORMAL << DPLL_MODE_SHIFT); return 0; } static int rk3066_clk_configure_cpu(struct rk3066_cru *cru, struct rk3066_grf *grf, unsigned int hz) { static const struct pll_div apll_cfg[] = { {.nf = 50, .nr = 1, .no = 2}, {.nf = 59, .nr = 1, .no = 1}, }; int div_core_peri, div_cpu_aclk, cfg; /* * We support two possible frequencies, the safe 600MHz * which will work with default pmic settings and will * be set to get away from the 24MHz default and * the maximum of 1.416Ghz, which boards can set if they * were able to get pmic support for it. */ switch (hz) { case APLL_SAFE_HZ: cfg = 0; div_core_peri = 1; div_cpu_aclk = 3; break; case APLL_HZ: cfg = 1; div_core_peri = 2; div_cpu_aclk = 3; break; default: debug("unsupported ARMCLK frequency"); return -EINVAL; } /* Enter PLL slow mode. */ rk_clrsetreg(&cru->cru_mode_con, APLL_MODE_MASK, PLL_MODE_SLOW << APLL_MODE_SHIFT); rk3066_clk_set_pll(cru, CLK_ARM, &apll_cfg[cfg]); /* Wait for PLL lock. */ while (!(readl(&grf->soc_status0) & SOCSTS_APLL_LOCK)) udelay(1); /* Set divider for peripherals attached to the CPU core. */ rk_clrsetreg(&cru->cru_clksel_con[0], CORE_PERI_DIV_MASK, div_core_peri << CORE_PERI_DIV_SHIFT); /* Set up dependent divisor for cpu_aclk. */ rk_clrsetreg(&cru->cru_clksel_con[1], CPU_ACLK_DIV_MASK, div_cpu_aclk << CPU_ACLK_DIV_SHIFT); /* Enter PLL normal mode. */ rk_clrsetreg(&cru->cru_mode_con, APLL_MODE_MASK, PLL_MODE_NORMAL << APLL_MODE_SHIFT); return hz; } static uint32_t rk3066_clk_pll_get_rate(struct rk3066_cru *cru, enum rk_clk_id clk_id) { u32 nr, no, nf; u32 con; int pll_id = rk_pll_id(clk_id); struct rk3066_pll *pll = &cru->pll[pll_id]; static u8 clk_shift[CLK_COUNT] = { 0xff, APLL_MODE_SHIFT, DPLL_MODE_SHIFT, CPLL_MODE_SHIFT, GPLL_MODE_SHIFT }; uint shift; con = readl(&cru->cru_mode_con); shift = clk_shift[clk_id]; switch (FIELD_GET(APLL_MODE_MASK, con >> shift)) { case PLL_MODE_SLOW: return OSC_HZ; case PLL_MODE_NORMAL: /* normal mode */ con = readl(&pll->con0); no = bitfield_extract_by_mask(con, CLKOD_MASK) + 1; nr = bitfield_extract_by_mask(con, CLKR_MASK) + 1; con = readl(&pll->con1); nf = bitfield_extract_by_mask(con, CLKF_MASK) + 1; return (OSC_HZ * nf) / (nr * no); case PLL_MODE_DEEP: default: return 32768; } } static ulong rk3066_clk_mmc_get_clk(struct rk3066_cru *cru, uint gclk_rate, int periph) { uint div; u32 con; switch (periph) { case HCLK_EMMC: case SCLK_EMMC: con = readl(&cru->cru_clksel_con[12]); div = bitfield_extract_by_mask(con, EMMC_DIV_MASK); break; case HCLK_SDMMC: case SCLK_SDMMC: con = readl(&cru->cru_clksel_con[11]); div = bitfield_extract_by_mask(con, MMC0_DIV_MASK); break; case HCLK_SDIO: case SCLK_SDIO: con = readl(&cru->cru_clksel_con[12]); div = bitfield_extract_by_mask(con, SDIO_DIV_MASK); break; default: return -EINVAL; } return DIV_TO_RATE(gclk_rate, div) / 2; } static ulong rk3066_clk_mmc_set_clk(struct rk3066_cru *cru, uint gclk_rate, int periph, uint freq) { int src_clk_div; debug("%s: gclk_rate=%u\n", __func__, gclk_rate); /* MMC clock by default divides by 2 internally, so need to provide double in CRU. */ src_clk_div = DIV_ROUND_UP(gclk_rate / 2, freq) - 1; assert(src_clk_div <= 0x3f); switch (periph) { case HCLK_EMMC: case SCLK_EMMC: rk_clrsetreg(&cru->cru_clksel_con[12], EMMC_DIV_MASK, src_clk_div << EMMC_DIV_SHIFT); break; case HCLK_SDMMC: case SCLK_SDMMC: rk_clrsetreg(&cru->cru_clksel_con[11], MMC0_DIV_MASK, src_clk_div << MMC0_DIV_SHIFT); break; case HCLK_SDIO: case SCLK_SDIO: rk_clrsetreg(&cru->cru_clksel_con[12], SDIO_DIV_MASK, src_clk_div << SDIO_DIV_SHIFT); break; default: return -EINVAL; } return rk3066_clk_mmc_get_clk(cru, gclk_rate, periph); } static ulong rk3066_clk_spi_get_clk(struct rk3066_cru *cru, uint gclk_rate, int periph) { uint div; u32 con; switch (periph) { case SCLK_SPI0: con = readl(&cru->cru_clksel_con[25]); div = bitfield_extract_by_mask(con, SPI0_DIV_MASK); break; case SCLK_SPI1: con = readl(&cru->cru_clksel_con[25]); div = bitfield_extract_by_mask(con, SPI1_DIV_MASK); break; default: return -EINVAL; } return DIV_TO_RATE(gclk_rate, div); } static ulong rk3066_clk_spi_set_clk(struct rk3066_cru *cru, uint gclk_rate, int periph, uint freq) { int src_clk_div = DIV_ROUND_UP(gclk_rate, freq) - 1; assert(src_clk_div < 128); switch (periph) { case SCLK_SPI0: assert(src_clk_div <= SPI0_DIV_MASK >> SPI0_DIV_SHIFT); rk_clrsetreg(&cru->cru_clksel_con[25], SPI0_DIV_MASK, src_clk_div << SPI0_DIV_SHIFT); break; case SCLK_SPI1: assert(src_clk_div <= SPI1_DIV_MASK >> SPI1_DIV_SHIFT); rk_clrsetreg(&cru->cru_clksel_con[25], SPI1_DIV_MASK, src_clk_div << SPI1_DIV_SHIFT); break; default: return -EINVAL; } return rk3066_clk_spi_get_clk(cru, gclk_rate, periph); } static ulong rk3066_clk_saradc_get_clk(struct rk3066_cru *cru, int periph) { u32 div, con; switch (periph) { case SCLK_SARADC: con = readl(&cru->cru_clksel_con[24]); div = bitfield_extract_by_mask(con, SARADC_DIV_MASK); break; case SCLK_TSADC: con = readl(&cru->cru_clksel_con[34]); div = bitfield_extract_by_mask(con, TSADC_DIV_MASK); break; default: return -EINVAL; } return DIV_TO_RATE(PERI_PCLK_HZ, div); } static ulong rk3066_clk_saradc_set_clk(struct rk3066_cru *cru, uint hz, int periph) { int src_clk_div; src_clk_div = DIV_ROUND_UP(PERI_PCLK_HZ, hz) - 1; assert(src_clk_div < 128); switch (periph) { case SCLK_SARADC: rk_clrsetreg(&cru->cru_clksel_con[24], SARADC_DIV_MASK, src_clk_div << SARADC_DIV_SHIFT); break; case SCLK_TSADC: rk_clrsetreg(&cru->cru_clksel_con[34], SARADC_DIV_MASK, src_clk_div << SARADC_DIV_SHIFT); break; default: return -EINVAL; } return rk3066_clk_saradc_get_clk(cru, periph); } static void rk3066_clk_init(struct rk3066_cru *cru, struct rk3066_grf *grf) { u32 aclk_div, hclk_div, pclk_div, h2p_div; /* Enter PLL slow mode. */ rk_clrsetreg(&cru->cru_mode_con, GPLL_MODE_MASK | CPLL_MODE_MASK, PLL_MODE_SLOW << GPLL_MODE_SHIFT | PLL_MODE_SLOW << CPLL_MODE_SHIFT); /* Init PLL. */ rk3066_clk_set_pll(cru, CLK_GENERAL, &gpll_init_cfg); rk3066_clk_set_pll(cru, CLK_CODEC, &cpll_init_cfg); /* Wait for PLL lock. */ while ((readl(&grf->soc_status0) & (SOCSTS_CPLL_LOCK | SOCSTS_GPLL_LOCK)) != (SOCSTS_CPLL_LOCK | SOCSTS_GPLL_LOCK)) udelay(1); /* * Select CPU clock PLL source and * reparent aclk_cpu_pre from APPL to GPLL. * Set up dependent divisors for PCLK/HCLK and ACLK clocks. */ aclk_div = DIV_ROUND_UP(GPLL_HZ, CPU_ACLK_HZ) - 1; assert((aclk_div + 1) * CPU_ACLK_HZ == GPLL_HZ && aclk_div <= 0x1f); rk_clrsetreg(&cru->cru_clksel_con[0], CPU_ACLK_PLL_MASK | A9_CORE_DIV_MASK, CPU_ACLK_PLL_SELECT_GPLL << CPU_ACLK_PLL_SHIFT | aclk_div << A9_CORE_DIV_SHIFT); hclk_div = ilog2(CPU_ACLK_HZ / CPU_HCLK_HZ); assert((1 << hclk_div) * CPU_HCLK_HZ == CPU_ACLK_HZ && hclk_div < 0x3); pclk_div = ilog2(CPU_ACLK_HZ / CPU_PCLK_HZ); assert((1 << pclk_div) * CPU_PCLK_HZ == CPU_ACLK_HZ && pclk_div < 0x4); h2p_div = ilog2(CPU_HCLK_HZ / CPU_H2P_HZ); assert((1 << h2p_div) * CPU_H2P_HZ == CPU_HCLK_HZ && pclk_div < 0x3); rk_clrsetreg(&cru->cru_clksel_con[1], AHB2APB_DIV_MASK | CPU_PCLK_DIV_MASK | CPU_HCLK_DIV_MASK, h2p_div << AHB2APB_DIV_SHIFT | pclk_div << CPU_PCLK_DIV_SHIFT | hclk_div << CPU_HCLK_DIV_SHIFT); /* * Select PERI clock PLL source and * set up dependent divisors for PCLK/HCLK and ACLK clocks. */ aclk_div = GPLL_HZ / PERI_ACLK_HZ - 1; assert((aclk_div + 1) * PERI_ACLK_HZ == GPLL_HZ && aclk_div < 0x1f); hclk_div = ilog2(PERI_ACLK_HZ / PERI_HCLK_HZ); assert((1 << hclk_div) * PERI_HCLK_HZ == PERI_ACLK_HZ && (hclk_div < 0x4)); pclk_div = ilog2(PERI_ACLK_HZ / PERI_PCLK_HZ); assert((1 << pclk_div) * PERI_PCLK_HZ == PERI_ACLK_HZ && (pclk_div < 0x4)); rk_clrsetreg(&cru->cru_clksel_con[10], PERI_PCLK_DIV_MASK | PERI_HCLK_DIV_MASK | PERI_ACLK_DIV_MASK, PERI_SEL_GPLL << PERI_SEL_PLL_SHIFT | pclk_div << PERI_PCLK_DIV_SHIFT | hclk_div << PERI_HCLK_DIV_SHIFT | aclk_div << PERI_ACLK_DIV_SHIFT); /* Enter PLL normal mode. */ rk_clrsetreg(&cru->cru_mode_con, GPLL_MODE_MASK | CPLL_MODE_MASK, PLL_MODE_NORMAL << GPLL_MODE_SHIFT | PLL_MODE_NORMAL << CPLL_MODE_SHIFT); rk3066_clk_mmc_set_clk(cru, PERI_HCLK_HZ, HCLK_SDMMC, 16000000); } static ulong rk3066_clk_get_rate(struct clk *clk) { struct rk3066_clk_priv *priv = dev_get_priv(clk->dev); ulong new_rate, gclk_rate; gclk_rate = rk3066_clk_pll_get_rate(priv->cru, CLK_GENERAL); switch (clk->id) { case 1 ... 4: new_rate = rk3066_clk_pll_get_rate(priv->cru, clk->id); break; case HCLK_EMMC: case HCLK_SDMMC: case HCLK_SDIO: case SCLK_EMMC: case SCLK_SDMMC: case SCLK_SDIO: new_rate = rk3066_clk_mmc_get_clk(priv->cru, PERI_HCLK_HZ, clk->id); break; case SCLK_SPI0: case SCLK_SPI1: new_rate = rk3066_clk_spi_get_clk(priv->cru, PERI_PCLK_HZ, clk->id); break; case PCLK_I2C0: case PCLK_I2C1: case PCLK_I2C2: case PCLK_I2C3: case PCLK_I2C4: return gclk_rate; case SCLK_SARADC: case SCLK_TSADC: new_rate = rk3066_clk_saradc_get_clk(priv->cru, clk->id); break; case SCLK_TIMER0: case SCLK_TIMER1: case SCLK_TIMER2: case SCLK_UART0: case SCLK_UART1: case SCLK_UART2: case SCLK_UART3: return OSC_HZ; default: return -ENOENT; } return new_rate; } static ulong rk3066_clk_set_rate(struct clk *clk, ulong rate) { struct rk3066_clk_priv *priv = dev_get_priv(clk->dev); struct rk3066_cru *cru = priv->cru; ulong new_rate; switch (clk->id) { case PLL_APLL: new_rate = rk3066_clk_configure_cpu(priv->cru, priv->grf, rate); break; case CLK_DDR: new_rate = rk3066_clk_configure_ddr(priv->cru, priv->grf, rate); break; case HCLK_EMMC: case HCLK_SDMMC: case HCLK_SDIO: case SCLK_EMMC: case SCLK_SDMMC: case SCLK_SDIO: new_rate = rk3066_clk_mmc_set_clk(cru, PERI_HCLK_HZ, clk->id, rate); break; case SCLK_SPI0: case SCLK_SPI1: new_rate = rk3066_clk_spi_set_clk(cru, PERI_PCLK_HZ, clk->id, rate); break; case SCLK_SARADC: case SCLK_TSADC: new_rate = rk3066_clk_saradc_set_clk(cru, rate, clk->id); break; case PLL_CPLL: case PLL_GPLL: case ACLK_CPU: case HCLK_CPU: case PCLK_CPU: case ACLK_PERI: case HCLK_PERI: case PCLK_PERI: return 0; default: return -ENOENT; } return new_rate; } static int rk3066_clk_enable(struct clk *clk) { struct rk3066_clk_priv *priv = dev_get_priv(clk->dev); switch (clk->id) { case HCLK_NANDC0: rk_clrreg(&priv->cru->cru_clkgate_con[5], BIT(9)); break; case HCLK_SDMMC: rk_clrreg(&priv->cru->cru_clkgate_con[5], BIT(10)); break; case HCLK_SDIO: rk_clrreg(&priv->cru->cru_clkgate_con[5], BIT(11)); break; } return 0; } static int rk3066_clk_disable(struct clk *clk) { struct rk3066_clk_priv *priv = dev_get_priv(clk->dev); switch (clk->id) { case HCLK_NANDC0: rk_setreg(&priv->cru->cru_clkgate_con[5], BIT(9)); break; case HCLK_SDMMC: rk_setreg(&priv->cru->cru_clkgate_con[5], BIT(10)); break; case HCLK_SDIO: rk_setreg(&priv->cru->cru_clkgate_con[5], BIT(11)); break; } return 0; } static struct clk_ops rk3066_clk_ops = { .disable = rk3066_clk_disable, .enable = rk3066_clk_enable, .get_rate = rk3066_clk_get_rate, .set_rate = rk3066_clk_set_rate, }; static int rk3066_clk_of_to_plat(struct udevice *dev) { if (CONFIG_IS_ENABLED(OF_REAL)) { struct rk3066_clk_priv *priv = dev_get_priv(dev); priv->cru = dev_read_addr_ptr(dev); } return 0; } static int rk3066_clk_probe(struct udevice *dev) { struct rk3066_clk_priv *priv = dev_get_priv(dev); priv->grf = syscon_get_first_range(ROCKCHIP_SYSCON_GRF); if (IS_ERR(priv->grf)) return PTR_ERR(priv->grf); #if CONFIG_IS_ENABLED(OF_PLATDATA) struct rk3066_clk_plat *plat = dev_get_plat(dev); priv->cru = map_sysmem(plat->dtd.reg[0], plat->dtd.reg[1]); #endif if (IS_ENABLED(CONFIG_TPL_BUILD)) { rk3066_clk_init(priv->cru, priv->grf); /* Init CPU frequency. */ rk3066_clk_configure_cpu(priv->cru, priv->grf, APLL_SAFE_HZ); } return 0; } static int rk3066_clk_bind(struct udevice *dev) { struct udevice *sys_child; struct sysreset_reg *priv; int reg_offset, ret; /* The reset driver does not have a device node, so bind it here. */ ret = device_bind(dev, DM_DRIVER_GET(sysreset_rockchip), "sysreset", NULL, ofnode_null(), &sys_child); if (ret) { dev_dbg(dev, "Warning: No sysreset driver: ret=%d\n", ret); } else { priv = malloc(sizeof(struct sysreset_reg)); priv->glb_srst_fst_value = offsetof(struct rk3066_cru, cru_glb_srst_fst_value); priv->glb_srst_snd_value = offsetof(struct rk3066_cru, cru_glb_srst_snd_value); dev_set_priv(sys_child, priv); } if (CONFIG_IS_ENABLED(RESET_ROCKCHIP)) { reg_offset = offsetof(struct rk3066_cru, cru_softrst_con[0]); ret = rockchip_reset_bind(dev, reg_offset, 9); if (ret) dev_dbg(dev, "Warning: software reset driver bind failed\n"); } return 0; } static const struct udevice_id rk3066_clk_ids[] = { { .compatible = "rockchip,rk3066a-cru" }, { } }; U_BOOT_DRIVER(rockchip_rk3066a_cru) = { .name = "rockchip_rk3066a_cru", .id = UCLASS_CLK, .ops = &rk3066_clk_ops, .probe = rk3066_clk_probe, .bind = rk3066_clk_bind, .of_match = rk3066_clk_ids, .of_to_plat = rk3066_clk_of_to_plat, .priv_auto = sizeof(struct rk3066_clk_priv), .plat_auto = sizeof(struct rk3066_clk_plat), };