// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2019-20 Sean Anderson */ #define LOG_CATEGORY UCLASS_CLK #include #include #include #include #include #include #include #include #include #include #include #include DECLARE_GLOBAL_DATA_PTR; /** * struct k210_clk_priv - K210 clock driver private data * @base: The base address of the sysctl device * @in0: The "in0" external oscillator */ struct k210_clk_priv { void __iomem *base; struct clk in0; }; /* * All parameters for different sub-clocks are collected into parameter arrays. * These parameters are then initialized by the clock which uses them during * probe. To save space, ids are automatically generated for each sub-clock by * using an enum. Instead of storing a parameter struct for each clock, even for * those clocks which don't use a particular type of sub-clock, we can just * store the parameters for the clocks which need them. * * So why do it like this? Arranging all the sub-clocks together makes it very * easy to find bugs in the code. */ /** * enum k210_clk_div_type - The type of divider * @K210_DIV_ONE: freq = parent / (reg + 1) * @K210_DIV_EVEN: freq = parent / 2 / (reg + 1) * @K210_DIV_POWER: freq = parent / (2 << reg) * @K210_DIV_FIXED: freq = parent / factor */ enum k210_clk_div_type { K210_DIV_ONE, K210_DIV_EVEN, K210_DIV_POWER, K210_DIV_FIXED, }; /** * struct k210_div_params - Parameters for dividing clocks * @type: An &enum k210_clk_div_type specifying the dividing formula * @off: The offset of the divider from the sysctl base address * @shift: The offset of the LSB of the divider * @width: The number of bits in the divider * @div: The fixed divisor for this divider */ struct k210_div_params { u8 type; union { struct { u8 off; u8 shift; u8 width; }; u8 div; }; }; #define DIV_LIST \ DIV(K210_CLK_ACLK, K210_SYSCTL_SEL0, 1, 2, K210_DIV_POWER) \ DIV(K210_CLK_APB0, K210_SYSCTL_SEL0, 3, 3, K210_DIV_ONE) \ DIV(K210_CLK_APB1, K210_SYSCTL_SEL0, 6, 3, K210_DIV_ONE) \ DIV(K210_CLK_APB2, K210_SYSCTL_SEL0, 9, 3, K210_DIV_ONE) \ DIV(K210_CLK_SRAM0, K210_SYSCTL_THR0, 0, 4, K210_DIV_ONE) \ DIV(K210_CLK_SRAM1, K210_SYSCTL_THR0, 4, 4, K210_DIV_ONE) \ DIV(K210_CLK_AI, K210_SYSCTL_THR0, 8, 4, K210_DIV_ONE) \ DIV(K210_CLK_DVP, K210_SYSCTL_THR0, 12, 4, K210_DIV_ONE) \ DIV(K210_CLK_ROM, K210_SYSCTL_THR0, 16, 4, K210_DIV_ONE) \ DIV(K210_CLK_SPI0, K210_SYSCTL_THR1, 0, 8, K210_DIV_EVEN) \ DIV(K210_CLK_SPI1, K210_SYSCTL_THR1, 8, 8, K210_DIV_EVEN) \ DIV(K210_CLK_SPI2, K210_SYSCTL_THR1, 16, 8, K210_DIV_EVEN) \ DIV(K210_CLK_SPI3, K210_SYSCTL_THR1, 24, 8, K210_DIV_EVEN) \ DIV(K210_CLK_TIMER0, K210_SYSCTL_THR2, 0, 8, K210_DIV_EVEN) \ DIV(K210_CLK_TIMER1, K210_SYSCTL_THR2, 8, 8, K210_DIV_EVEN) \ DIV(K210_CLK_TIMER2, K210_SYSCTL_THR2, 16, 8, K210_DIV_EVEN) \ DIV(K210_CLK_I2S0, K210_SYSCTL_THR3, 0, 16, K210_DIV_EVEN) \ DIV(K210_CLK_I2S1, K210_SYSCTL_THR3, 16, 16, K210_DIV_EVEN) \ DIV(K210_CLK_I2S2, K210_SYSCTL_THR4, 0, 16, K210_DIV_EVEN) \ DIV(K210_CLK_I2S0_M, K210_SYSCTL_THR4, 16, 8, K210_DIV_EVEN) \ DIV(K210_CLK_I2S1_M, K210_SYSCTL_THR4, 24, 8, K210_DIV_EVEN) \ DIV(K210_CLK_I2S2_M, K210_SYSCTL_THR4, 0, 8, K210_DIV_EVEN) \ DIV(K210_CLK_I2C0, K210_SYSCTL_THR5, 8, 8, K210_DIV_EVEN) \ DIV(K210_CLK_I2C1, K210_SYSCTL_THR5, 16, 8, K210_DIV_EVEN) \ DIV(K210_CLK_I2C2, K210_SYSCTL_THR5, 24, 8, K210_DIV_EVEN) \ DIV(K210_CLK_WDT0, K210_SYSCTL_THR6, 0, 8, K210_DIV_EVEN) \ DIV(K210_CLK_WDT1, K210_SYSCTL_THR6, 8, 8, K210_DIV_EVEN) \ DIV_FIXED(K210_CLK_CLINT, 50) \ #define _DIVIFY(id) K210_CLK_DIV_##id #define DIVIFY(id) _DIVIFY(id) enum k210_div_id { #define DIV(id, ...) DIVIFY(id), #define DIV_FIXED DIV DIV_LIST #undef DIV #undef DIV_FIXED K210_CLK_DIV_NONE, }; static const struct k210_div_params k210_divs[] = { #define DIV(id, _off, _shift, _width, _type) \ [DIVIFY(id)] = { \ .type = (_type), \ .off = (_off), \ .shift = (_shift), \ .width = (_width), \ }, #define DIV_FIXED(id, _div) \ [DIVIFY(id)] = { \ .type = K210_DIV_FIXED, \ .div = (_div) \ }, DIV_LIST #undef DIV #undef DIV_FIXED }; #undef DIV #undef DIV_LIST /** * struct k210_gate_params - Parameters for gated clocks * @off: The offset of the gate from the sysctl base address * @bit_idx: The index of the bit within the register */ struct k210_gate_params { u8 off; u8 bit_idx; }; #define GATE_LIST \ GATE(K210_CLK_CPU, K210_SYSCTL_EN_CENT, 0) \ GATE(K210_CLK_SRAM0, K210_SYSCTL_EN_CENT, 1) \ GATE(K210_CLK_SRAM1, K210_SYSCTL_EN_CENT, 2) \ GATE(K210_CLK_APB0, K210_SYSCTL_EN_CENT, 3) \ GATE(K210_CLK_APB1, K210_SYSCTL_EN_CENT, 4) \ GATE(K210_CLK_APB2, K210_SYSCTL_EN_CENT, 5) \ GATE(K210_CLK_ROM, K210_SYSCTL_EN_PERI, 0) \ GATE(K210_CLK_DMA, K210_SYSCTL_EN_PERI, 1) \ GATE(K210_CLK_AI, K210_SYSCTL_EN_PERI, 2) \ GATE(K210_CLK_DVP, K210_SYSCTL_EN_PERI, 3) \ GATE(K210_CLK_FFT, K210_SYSCTL_EN_PERI, 4) \ GATE(K210_CLK_GPIO, K210_SYSCTL_EN_PERI, 5) \ GATE(K210_CLK_SPI0, K210_SYSCTL_EN_PERI, 6) \ GATE(K210_CLK_SPI1, K210_SYSCTL_EN_PERI, 7) \ GATE(K210_CLK_SPI2, K210_SYSCTL_EN_PERI, 8) \ GATE(K210_CLK_SPI3, K210_SYSCTL_EN_PERI, 9) \ GATE(K210_CLK_I2S0, K210_SYSCTL_EN_PERI, 10) \ GATE(K210_CLK_I2S1, K210_SYSCTL_EN_PERI, 11) \ GATE(K210_CLK_I2S2, K210_SYSCTL_EN_PERI, 12) \ GATE(K210_CLK_I2C0, K210_SYSCTL_EN_PERI, 13) \ GATE(K210_CLK_I2C1, K210_SYSCTL_EN_PERI, 14) \ GATE(K210_CLK_I2C2, K210_SYSCTL_EN_PERI, 15) \ GATE(K210_CLK_UART1, K210_SYSCTL_EN_PERI, 16) \ GATE(K210_CLK_UART2, K210_SYSCTL_EN_PERI, 17) \ GATE(K210_CLK_UART3, K210_SYSCTL_EN_PERI, 18) \ GATE(K210_CLK_AES, K210_SYSCTL_EN_PERI, 19) \ GATE(K210_CLK_FPIOA, K210_SYSCTL_EN_PERI, 20) \ GATE(K210_CLK_TIMER0, K210_SYSCTL_EN_PERI, 21) \ GATE(K210_CLK_TIMER1, K210_SYSCTL_EN_PERI, 22) \ GATE(K210_CLK_TIMER2, K210_SYSCTL_EN_PERI, 23) \ GATE(K210_CLK_WDT0, K210_SYSCTL_EN_PERI, 24) \ GATE(K210_CLK_WDT1, K210_SYSCTL_EN_PERI, 25) \ GATE(K210_CLK_SHA, K210_SYSCTL_EN_PERI, 26) \ GATE(K210_CLK_OTP, K210_SYSCTL_EN_PERI, 27) \ GATE(K210_CLK_RTC, K210_SYSCTL_EN_PERI, 29) #define _GATEIFY(id) K210_CLK_GATE_##id #define GATEIFY(id) _GATEIFY(id) enum k210_gate_id { #define GATE(id, ...) GATEIFY(id), GATE_LIST #undef GATE K210_CLK_GATE_NONE, }; static const struct k210_gate_params k210_gates[] = { #define GATE(id, _off, _idx) \ [GATEIFY(id)] = { \ .off = (_off), \ .bit_idx = (_idx), \ }, GATE_LIST #undef GATE }; #undef GATE_LIST /* The most parents is PLL2 */ #define K210_CLK_MAX_PARENTS 3 /** * struct k210_mux_params - Parameters for muxed clocks * @parents: A list of parent clock ids * @num_parents: The number of parent clocks * @off: The offset of the mux from the base sysctl address * @shift: The offset of the LSB of the mux selector * @width: The number of bits in the mux selector */ struct k210_mux_params { u8 parents[K210_CLK_MAX_PARENTS]; u8 num_parents; u8 off; u8 shift; u8 width; }; #define MUX(id, reg, shift, width) \ MUX_PARENTS(id, reg, shift, width, K210_CLK_IN0, K210_CLK_PLL0) #define MUX_LIST \ MUX_PARENTS(K210_CLK_PLL2, K210_SYSCTL_PLL2, 26, 2, \ K210_CLK_IN0, K210_CLK_PLL0, K210_CLK_PLL1) \ MUX(K210_CLK_ACLK, K210_SYSCTL_SEL0, 0, 1) \ MUX(K210_CLK_SPI3, K210_SYSCTL_SEL0, 12, 1) \ MUX(K210_CLK_TIMER0, K210_SYSCTL_SEL0, 13, 1) \ MUX(K210_CLK_TIMER1, K210_SYSCTL_SEL0, 14, 1) \ MUX(K210_CLK_TIMER2, K210_SYSCTL_SEL0, 15, 1) #define _MUXIFY(id) K210_CLK_MUX_##id #define MUXIFY(id) _MUXIFY(id) enum k210_mux_id { #define MUX_PARENTS(id, ...) MUXIFY(id), MUX_LIST #undef MUX_PARENTS K210_CLK_MUX_NONE, }; static const struct k210_mux_params k210_muxes[] = { #define MUX_PARENTS(id, _off, _shift, _width, ...) \ [MUXIFY(id)] = { \ .parents = { __VA_ARGS__ }, \ .num_parents = __count_args(__VA_ARGS__), \ .off = (_off), \ .shift = (_shift), \ .width = (_width), \ }, MUX_LIST #undef MUX_PARENTS }; #undef MUX #undef MUX_LIST /** * struct k210_pll_params - K210 PLL parameters * @off: The offset of the PLL from the base sysctl address * @shift: The offset of the LSB of the lock status * @width: The number of bits in the lock status */ struct k210_pll_params { u8 off; u8 shift; u8 width; }; static const struct k210_pll_params k210_plls[] = { #define PLL(_off, _shift, _width) { \ .off = (_off), \ .shift = (_shift), \ .width = (_width), \ } [0] = PLL(K210_SYSCTL_PLL0, 0, 2), [1] = PLL(K210_SYSCTL_PLL1, 8, 1), [2] = PLL(K210_SYSCTL_PLL2, 16, 1), #undef PLL }; /** * enum k210_clk_flags - The type of a K210 clock * @K210_CLKF_MUX: This clock has a mux and not a static parent * @K210_CLKF_PLL: This clock is a PLL */ enum k210_clk_flags { K210_CLKF_MUX = BIT(0), K210_CLKF_PLL = BIT(1), }; /** * struct k210_clk_params - The parameters defining a K210 clock * @name: The name of the clock * @flags: A set of &enum k210_clk_flags defining which fields are valid * @mux: An &enum k210_mux_id of this clock's mux * @parent: The clock id of this clock's parent * @pll: The id of the PLL (if this clock is a PLL) * @div: An &enum k210_div_id of this clock's divider * @gate: An &enum k210_gate_id of this clock's gate */ struct k210_clk_params { #if IS_ENABLED(CONFIG_CMD_CLK) const char *name; #endif u8 flags; union { u8 parent; u8 mux; }; union { u8 pll; struct { u8 div; u8 gate; }; }; }; static const struct k210_clk_params k210_clks[] = { #if IS_ENABLED(CONFIG_CMD_CLK) #define NAME(_name) .name = (_name), #else #define NAME(name) #endif #define CLK(id, _name, _parent, _div, _gate) \ [id] = { \ NAME(_name) \ .parent = (_parent), \ .div = (_div), \ .gate = (_gate), \ } #define CLK_MUX(id, _name, _mux, _div, _gate) \ [id] = { \ NAME(_name) \ .flags = K210_CLKF_MUX, \ .mux = (_mux), \ .div = (_div), \ .gate = (_gate), \ } #define CLK_PLL(id, _pll, _parent) \ [id] = { \ NAME("pll" #_pll) \ .flags = K210_CLKF_PLL, \ .parent = (_parent), \ .pll = (_pll), \ } #define CLK_FULL(id, name) \ CLK_MUX(id, name, MUXIFY(id), DIVIFY(id), GATEIFY(id)) #define CLK_NOMUX(id, name, parent) \ CLK(id, name, parent, DIVIFY(id), GATEIFY(id)) #define CLK_DIV(id, name, parent) \ CLK(id, name, parent, DIVIFY(id), K210_CLK_GATE_NONE) #define CLK_GATE(id, name, parent) \ CLK(id, name, parent, K210_CLK_DIV_NONE, GATEIFY(id)) CLK_PLL(K210_CLK_PLL0, 0, K210_CLK_IN0), CLK_PLL(K210_CLK_PLL1, 1, K210_CLK_IN0), [K210_CLK_PLL2] = { NAME("pll2") .flags = K210_CLKF_MUX | K210_CLKF_PLL, .mux = MUXIFY(K210_CLK_PLL2), .pll = 2, }, CLK_MUX(K210_CLK_ACLK, "aclk", MUXIFY(K210_CLK_ACLK), DIVIFY(K210_CLK_ACLK), K210_CLK_GATE_NONE), CLK_FULL(K210_CLK_SPI3, "spi3"), CLK_FULL(K210_CLK_TIMER0, "timer0"), CLK_FULL(K210_CLK_TIMER1, "timer1"), CLK_FULL(K210_CLK_TIMER2, "timer2"), CLK_NOMUX(K210_CLK_SRAM0, "sram0", K210_CLK_ACLK), CLK_NOMUX(K210_CLK_SRAM1, "sram1", K210_CLK_ACLK), CLK_NOMUX(K210_CLK_ROM, "rom", K210_CLK_ACLK), CLK_NOMUX(K210_CLK_DVP, "dvp", K210_CLK_ACLK), CLK_NOMUX(K210_CLK_APB0, "apb0", K210_CLK_ACLK), CLK_NOMUX(K210_CLK_APB1, "apb1", K210_CLK_ACLK), CLK_NOMUX(K210_CLK_APB2, "apb2", K210_CLK_ACLK), CLK_NOMUX(K210_CLK_AI, "ai", K210_CLK_PLL1), CLK_NOMUX(K210_CLK_I2S0, "i2s0", K210_CLK_PLL2), CLK_NOMUX(K210_CLK_I2S1, "i2s1", K210_CLK_PLL2), CLK_NOMUX(K210_CLK_I2S2, "i2s2", K210_CLK_PLL2), CLK_NOMUX(K210_CLK_WDT0, "wdt0", K210_CLK_IN0), CLK_NOMUX(K210_CLK_WDT1, "wdt1", K210_CLK_IN0), CLK_NOMUX(K210_CLK_SPI0, "spi0", K210_CLK_PLL0), CLK_NOMUX(K210_CLK_SPI1, "spi1", K210_CLK_PLL0), CLK_NOMUX(K210_CLK_SPI2, "spi2", K210_CLK_PLL0), CLK_NOMUX(K210_CLK_I2C0, "i2c0", K210_CLK_PLL0), CLK_NOMUX(K210_CLK_I2C1, "i2c1", K210_CLK_PLL0), CLK_NOMUX(K210_CLK_I2C2, "i2c2", K210_CLK_PLL0), CLK_DIV(K210_CLK_I2S0_M, "i2s0_m", K210_CLK_PLL2), CLK_DIV(K210_CLK_I2S1_M, "i2s1_m", K210_CLK_PLL2), CLK_DIV(K210_CLK_I2S2_M, "i2s2_m", K210_CLK_PLL2), CLK_DIV(K210_CLK_CLINT, "clint", K210_CLK_ACLK), CLK_GATE(K210_CLK_CPU, "cpu", K210_CLK_ACLK), CLK_GATE(K210_CLK_DMA, "dma", K210_CLK_ACLK), CLK_GATE(K210_CLK_FFT, "fft", K210_CLK_ACLK), CLK_GATE(K210_CLK_GPIO, "gpio", K210_CLK_APB0), CLK_GATE(K210_CLK_UART1, "uart1", K210_CLK_APB0), CLK_GATE(K210_CLK_UART2, "uart2", K210_CLK_APB0), CLK_GATE(K210_CLK_UART3, "uart3", K210_CLK_APB0), CLK_GATE(K210_CLK_FPIOA, "fpioa", K210_CLK_APB0), CLK_GATE(K210_CLK_SHA, "sha", K210_CLK_APB0), CLK_GATE(K210_CLK_AES, "aes", K210_CLK_APB1), CLK_GATE(K210_CLK_OTP, "otp", K210_CLK_APB1), CLK_GATE(K210_CLK_RTC, "rtc", K210_CLK_IN0), #undef NAME #undef CLK_PLL #undef CLK #undef CLK_FULL #undef CLK_NOMUX #undef CLK_DIV #undef CLK_GATE #undef CLK_LIST }; #define K210_PLL_CLKR GENMASK(3, 0) #define K210_PLL_CLKF GENMASK(9, 4) #define K210_PLL_CLKOD GENMASK(13, 10) /* Output Divider */ #define K210_PLL_BWADJ GENMASK(19, 14) /* BandWidth Adjust */ #define K210_PLL_RESET BIT(20) #define K210_PLL_PWRD BIT(21) /* PoWeReD */ #define K210_PLL_INTFB BIT(22) /* Internal FeedBack */ #define K210_PLL_BYPASS BIT(23) #define K210_PLL_TEST BIT(24) #define K210_PLL_EN BIT(25) #define K210_PLL_TEST_EN BIT(26) #define K210_PLL_LOCK 0 #define K210_PLL_CLEAR_SLIP 2 #define K210_PLL_TEST_OUT 3 #ifdef CONFIG_CLK_K210_SET_RATE static int k210_pll_enable(struct k210_clk_priv *priv, int id); static int k210_pll_disable(struct k210_clk_priv *priv, int id); static ulong k210_pll_get_rate(struct k210_clk_priv *priv, int id, ulong rate_in); /* * The PLL included with the Kendryte K210 appears to be a True Circuits, Inc. * General-Purpose PLL. The logical layout of the PLL with internal feedback is * approximately the following: * * +---------------+ * |reference clock| * +---------------+ * | * v * +--+ * |/r| * +--+ * | * v * +-------------+ * |divided clock| * +-------------+ * | * v * +--------------+ * |phase detector|<---+ * +--------------+ | * | | * v +--------------+ * +---+ |feedback clock| * |VCO| +--------------+ * +---+ ^ * | +--+ | * +--->|/f|---+ * | +--+ * v * +---+ * |/od| * +---+ * | * v * +------+ * |output| * +------+ * * The k210 PLLs have three factors: r, f, and od. Because of the feedback mode, * the effect of the division by f is to multiply the input frequency. The * equation for the output rate is * rate = (rate_in * f) / (r * od). * Moving knowns to one side of the equation, we get * rate / rate_in = f / (r * od) * Rearranging slightly, * abs_error = abs((rate / rate_in) - (f / (r * od))). * To get relative, error, we divide by the expected ratio * error = abs((rate / rate_in) - (f / (r * od))) / (rate / rate_in). * Simplifying, * error = abs(1 - f / (r * od)) / (rate / rate_in) * error = abs(1 - (f * rate_in) / (r * od * rate)) * Using the constants ratio = rate / rate_in and inv_ratio = rate_in / rate, * error = abs((f * inv_ratio) / (r * od) - 1) * This is the error used in evaluating parameters. * * r and od are four bits each, while f is six bits. Because r and od are * multiplied together, instead of the full 256 values possible if both bits * were used fully, there are only 97 distinct products. Combined with f, there * are 6208 theoretical settings for the PLL. However, most of these settings * can be ruled out immediately because they do not have the correct ratio. * * In addition to the constraint of approximating the desired ratio, parameters * must also keep internal pll frequencies within acceptable ranges. The divided * clock's minimum and maximum frequencies have a ratio of around 128. This * leaves fairly substantial room to work with, especially since the only * affected parameter is r. The VCO's minimum and maximum frequency have a ratio * of 5, which is considerably more restrictive. * * The r and od factors are stored in a table. This is to make it easy to find * the next-largest product. Some products have multiple factorizations, but * only when one factor has at least a 2.5x ratio to the factors of the other * factorization. This is because any smaller ratio would not make a difference * when ensuring the VCO's frequency is within spec. * * Throughout the calculation function, fixed point arithmetic is used. Because * the range of rate and rate_in may be up to 1.75 GHz, or around 2^30, 64-bit * 32.32 fixed-point numbers are used to represent ratios. In general, to * implement division, the numerator is first multiplied by 2^32. This gives a * result where the whole number part is in the upper 32 bits, and the fraction * is in the lower 32 bits. * * In general, rounding is done to the closest integer. This helps find the best * approximation for the ratio. Rounding in one direction (e.g down) could cause * the function to miss a better ratio with one of the parameters increased by * one. */ /* * The factors table was generated with the following python code: * * def p(x, y): * return (1.0*x/y > 2.5) or (1.0*y/x > 2.5) * * factors = {} * for i in range(1, 17): * for j in range(1, 17): * fs = factors.get(i*j) or [] * if fs == [] or all([ * (p(i, x) and p(i, y)) or (p(j, x) and p(j, y)) * for (x, y) in fs]): * fs.append((i, j)) * factors[i*j] = fs * * for k, l in sorted(factors.items()): * for v in l: * print("PACK(%s, %s)," % v) */ #define PACK(r, od) (((((r) - 1) & 0xF) << 4) | (((od) - 1) & 0xF)) #define UNPACK_R(val) ((((val) >> 4) & 0xF) + 1) #define UNPACK_OD(val) (((val) & 0xF) + 1) static const u8 factors[] = { PACK(1, 1), PACK(1, 2), PACK(1, 3), PACK(1, 4), PACK(1, 5), PACK(1, 6), PACK(1, 7), PACK(1, 8), PACK(1, 9), PACK(3, 3), PACK(1, 10), PACK(1, 11), PACK(1, 12), PACK(3, 4), PACK(1, 13), PACK(1, 14), PACK(1, 15), PACK(3, 5), PACK(1, 16), PACK(4, 4), PACK(2, 9), PACK(2, 10), PACK(3, 7), PACK(2, 11), PACK(2, 12), PACK(5, 5), PACK(2, 13), PACK(3, 9), PACK(2, 14), PACK(2, 15), PACK(2, 16), PACK(3, 11), PACK(5, 7), PACK(3, 12), PACK(3, 13), PACK(4, 10), PACK(3, 14), PACK(4, 11), PACK(3, 15), PACK(3, 16), PACK(7, 7), PACK(5, 10), PACK(4, 13), PACK(6, 9), PACK(5, 11), PACK(4, 14), PACK(4, 15), PACK(7, 9), PACK(4, 16), PACK(5, 13), PACK(6, 11), PACK(5, 14), PACK(6, 12), PACK(5, 15), PACK(7, 11), PACK(6, 13), PACK(5, 16), PACK(9, 9), PACK(6, 14), PACK(8, 11), PACK(6, 15), PACK(7, 13), PACK(6, 16), PACK(7, 14), PACK(9, 11), PACK(10, 10), PACK(8, 13), PACK(7, 15), PACK(9, 12), PACK(10, 11), PACK(7, 16), PACK(9, 13), PACK(8, 15), PACK(11, 11), PACK(9, 14), PACK(8, 16), PACK(10, 13), PACK(11, 12), PACK(9, 15), PACK(10, 14), PACK(11, 13), PACK(9, 16), PACK(10, 15), PACK(11, 14), PACK(12, 13), PACK(10, 16), PACK(11, 15), PACK(12, 14), PACK(13, 13), PACK(11, 16), PACK(12, 15), PACK(13, 14), PACK(12, 16), PACK(13, 15), PACK(14, 14), PACK(13, 16), PACK(14, 15), PACK(14, 16), PACK(15, 15), PACK(15, 16), PACK(16, 16), }; TEST_STATIC int k210_pll_calc_config(u32 rate, u32 rate_in, struct k210_pll_config *best) { int i; s64 error, best_error; u64 ratio, inv_ratio; /* fixed point 32.32 ratio of the rates */ u64 max_r; u64 r, f, od; /* * Can't go over 1.75 GHz or under 21.25 MHz due to limitations on the * VCO frequency. These are not the same limits as below because od can * reduce the output frequency by 16. */ if (rate > 1750000000 || rate < 21250000) return -EINVAL; /* Similar restrictions on the input rate */ if (rate_in > 1750000000 || rate_in < 13300000) return -EINVAL; ratio = DIV_ROUND_CLOSEST_ULL((u64)rate << 32, rate_in); inv_ratio = DIV_ROUND_CLOSEST_ULL((u64)rate_in << 32, rate); /* Can't increase by more than 64 or reduce by more than 256 */ if (rate > rate_in && ratio > (64ULL << 32)) return -EINVAL; else if (rate <= rate_in && inv_ratio > (256ULL << 32)) return -EINVAL; /* * The divided clock (rate_in / r) must stay between 1.75 GHz and 13.3 * MHz. There is no minimum, since the only way to get a higher input * clock than 26 MHz is to use a clock generated by a PLL. Because PLLs * cannot output frequencies greater than 1.75 GHz, the minimum would * never be greater than one. */ max_r = DIV_ROUND_DOWN_ULL(rate_in, 13300000); /* Variables get immediately incremented, so start at -1th iteration */ i = -1; f = 0; r = 0; od = 0; best_error = S64_MAX; error = best_error; /* do-while here so we always try at least one ratio */ do { /* * Whether we swapped r and od while enforcing frequency limits */ bool swapped = false; /* * Whether the intermediate frequencies are out-of-spec */ bool out_of_spec; u64 last_od = od; u64 last_r = r; /* * Try the next largest value for f (or r and od) and * recalculate the other parameters based on that */ if (rate > rate_in) { /* * Skip factors of the same product if we already tried * out that product */ do { i++; r = UNPACK_R(factors[i]); od = UNPACK_OD(factors[i]); } while (i + 1 < ARRAY_SIZE(factors) && r * od == last_r * last_od); /* Round close */ f = (r * od * ratio + BIT(31)) >> 32; if (f > 64) f = 64; } else { u64 tmp = ++f * inv_ratio; bool round_up = !!(tmp & BIT(31)); u32 goal = (tmp >> 32) + round_up; u32 err, last_err; /* Get the next r/od pair in factors */ while (r * od < goal && i + 1 < ARRAY_SIZE(factors)) { i++; r = UNPACK_R(factors[i]); od = UNPACK_OD(factors[i]); } /* * This is a case of double rounding. If we rounded up * above, we need to round down (in cases of ties) here. * This prevents off-by-one errors resulting from * choosing X+2 over X when X.Y rounds up to X+1 and * there is no r * od = X+1. For the converse, when X.Y * is rounded down to X, we should choose X+1 over X-1. */ err = abs(r * od - goal); last_err = abs(last_r * last_od - goal); if (last_err < err || (round_up && last_err == err)) { i--; r = last_r; od = last_od; } } /* * Enforce limits on internal clock frequencies. If we * aren't in spec, try swapping r and od. If everything is * in-spec, calculate the relative error. */ again: out_of_spec = false; if (r > max_r) { out_of_spec = true; } else { /* * There is no way to only divide once; we need * to examine the frequency with and without the * effect of od. */ u64 vco = DIV_ROUND_CLOSEST_ULL(rate_in * f, r); if (vco > 1750000000 || vco < 340000000) out_of_spec = true; } if (out_of_spec) { u64 new_r, new_od; if (!swapped) { u64 tmp = r; r = od; od = tmp; swapped = true; goto again; } /* * Try looking ahead to see if there are additional * factors for the same product. */ if (i + 1 < ARRAY_SIZE(factors)) { i++; new_r = UNPACK_R(factors[i]); new_od = UNPACK_OD(factors[i]); if (r * od == new_r * new_od) { r = new_r; od = new_od; swapped = false; goto again; } i--; } /* * Try looking back to see if there is a worse ratio * that we could try anyway */ while (i > 0) { i--; new_r = UNPACK_R(factors[i]); new_od = UNPACK_OD(factors[i]); /* * Don't loop over factors for the same product * to avoid getting stuck because of the above * clause */ if (r * od != new_r * new_od) { if (new_r * new_od > last_r * last_od) { r = new_r; od = new_od; swapped = false; goto again; } break; } } /* We ran out of things to try */ continue; } error = DIV_ROUND_CLOSEST_ULL(f * inv_ratio, r * od); /* The lower 16 bits are spurious */ error = abs64((error - BIT_ULL(32))) >> 16; if (error < best_error) { best->r = r; best->f = f; best->od = od; best_error = error; } } while (f < 64 && i + 1 < ARRAY_SIZE(factors) && error != 0); log_debug("best error %lld\n", best_error); if (best_error == S64_MAX) return -EINVAL; return 0; } static ulong k210_pll_set_rate(struct k210_clk_priv *priv, int id, ulong rate, ulong rate_in) { int err; const struct k210_pll_params *pll = &k210_plls[id]; struct k210_pll_config config = {}; u32 reg; ulong calc_rate; err = k210_pll_calc_config(rate, rate_in, &config); if (err) return err; log_debug("Got r=%u f=%u od=%u\n", config.r, config.f, config.od); /* Don't bother setting the rate if we're already at that rate */ calc_rate = DIV_ROUND_DOWN_ULL(((u64)rate_in) * config.f, config.r * config.od); if (calc_rate == k210_pll_get_rate(priv, id, rate)) return calc_rate; k210_pll_disable(priv, id); reg = readl(priv->base + pll->off); reg &= ~K210_PLL_CLKR & ~K210_PLL_CLKF & ~K210_PLL_CLKOD & ~K210_PLL_BWADJ; reg |= FIELD_PREP(K210_PLL_CLKR, config.r - 1) | FIELD_PREP(K210_PLL_CLKF, config.f - 1) | FIELD_PREP(K210_PLL_CLKOD, config.od - 1) | FIELD_PREP(K210_PLL_BWADJ, config.f - 1); writel(reg, priv->base + pll->off); k210_pll_enable(priv, id); serial_setbrg(); return k210_pll_get_rate(priv, id, rate); } #else static ulong k210_pll_set_rate(struct k210_clk_priv *priv, int id, ulong rate, ulong rate_in) { return -ENOSYS; } #endif /* CONFIG_CLK_K210_SET_RATE */ static ulong k210_pll_get_rate(struct k210_clk_priv *priv, int id, ulong rate_in) { u64 r, f, od; u32 reg = readl(priv->base + k210_plls[id].off); if (reg & K210_PLL_BYPASS) return rate_in; if (!(reg & K210_PLL_PWRD)) return 0; r = FIELD_GET(K210_PLL_CLKR, reg) + 1; f = FIELD_GET(K210_PLL_CLKF, reg) + 1; od = FIELD_GET(K210_PLL_CLKOD, reg) + 1; return DIV_ROUND_DOWN_ULL(((u64)rate_in) * f, r * od); } /* * Wait for the PLL to be locked. If the PLL is not locked, try clearing the * slip before retrying */ static void k210_pll_waitfor_lock(struct k210_clk_priv *priv, int id) { const struct k210_pll_params *pll = &k210_plls[id]; u32 mask = (BIT(pll->width) - 1) << pll->shift; while (true) { u32 reg = readl(priv->base + K210_SYSCTL_PLL_LOCK); if ((reg & mask) == mask) break; reg |= BIT(pll->shift + K210_PLL_CLEAR_SLIP); writel(reg, priv->base + K210_SYSCTL_PLL_LOCK); } } static bool k210_pll_enabled(u32 reg) { return (reg & K210_PLL_PWRD) && (reg & K210_PLL_EN) && !(reg & K210_PLL_RESET); } /* Adapted from sysctl_pll_enable */ static int k210_pll_enable(struct k210_clk_priv *priv, int id) { const struct k210_pll_params *pll = &k210_plls[id]; u32 reg = readl(priv->base + pll->off); if (k210_pll_enabled(reg)) return 0; reg |= K210_PLL_PWRD; writel(reg, priv->base + pll->off); /* Ensure reset is low before asserting it */ reg &= ~K210_PLL_RESET; writel(reg, priv->base + pll->off); reg |= K210_PLL_RESET; writel(reg, priv->base + pll->off); nop(); nop(); reg &= ~K210_PLL_RESET; writel(reg, priv->base + pll->off); k210_pll_waitfor_lock(priv, id); reg &= ~K210_PLL_BYPASS; reg |= K210_PLL_EN; writel(reg, priv->base + pll->off); return 0; } static int k210_pll_disable(struct k210_clk_priv *priv, int id) { const struct k210_pll_params *pll = &k210_plls[id]; u32 reg = readl(priv->base + pll->off); /* * Bypassing before powering off is important so child clocks don't stop * working. This is especially important for pll0, the indirect parent * of the cpu clock. */ reg |= K210_PLL_BYPASS; writel(reg, priv->base + pll->off); reg &= ~K210_PLL_PWRD; reg &= ~K210_PLL_EN; writel(reg, priv->base + pll->off); return 0; } static u32 k210_clk_readl(struct k210_clk_priv *priv, u8 off, u8 shift, u8 width) { u32 reg = readl(priv->base + off); return (reg >> shift) & (BIT(width) - 1); } static void k210_clk_writel(struct k210_clk_priv *priv, u8 off, u8 shift, u8 width, u32 val) { u32 reg = readl(priv->base + off); u32 mask = (BIT(width) - 1) << shift; reg &= ~mask; reg |= mask & (val << shift); writel(reg, priv->base + off); } static int k210_clk_get_parent(struct k210_clk_priv *priv, int id) { u32 sel; const struct k210_mux_params *mux; if (!(k210_clks[id].flags & K210_CLKF_MUX)) return k210_clks[id].parent; mux = &k210_muxes[k210_clks[id].mux]; sel = k210_clk_readl(priv, mux->off, mux->shift, mux->width); assert(sel < mux->num_parents); return mux->parents[sel]; } static ulong do_k210_clk_get_rate(struct k210_clk_priv *priv, int id) { int parent; u32 val; ulong parent_rate; const struct k210_div_params *div; if (id == K210_CLK_IN0) return clk_get_rate(&priv->in0); parent = k210_clk_get_parent(priv, id); parent_rate = do_k210_clk_get_rate(priv, parent); if (IS_ERR_VALUE(parent_rate)) return parent_rate; if (k210_clks[id].flags & K210_CLKF_PLL) return k210_pll_get_rate(priv, k210_clks[id].pll, parent_rate); if (k210_clks[id].div == K210_CLK_DIV_NONE) return parent_rate; div = &k210_divs[k210_clks[id].div]; if (div->type == K210_DIV_FIXED) return parent_rate / div->div; val = k210_clk_readl(priv, div->off, div->shift, div->width); switch (div->type) { case K210_DIV_ONE: return parent_rate / (val + 1); case K210_DIV_EVEN: return parent_rate / 2 / (val + 1); case K210_DIV_POWER: /* This is ACLK, which has no divider on IN0 */ if (parent == K210_CLK_IN0) return parent_rate; return parent_rate / (2 << val); default: assert(false); return -EINVAL; }; } static ulong k210_clk_get_rate(struct clk *clk) { return do_k210_clk_get_rate(dev_get_priv(clk->dev), clk->id); } static int do_k210_clk_set_parent(struct k210_clk_priv *priv, int id, int new) { int i; const struct k210_mux_params *mux; if (!(k210_clks[id].flags & K210_CLKF_MUX)) return -ENOSYS; mux = &k210_muxes[k210_clks[id].mux]; for (i = 0; i < mux->num_parents; i++) { if (mux->parents[i] == new) { k210_clk_writel(priv, mux->off, mux->shift, mux->width, i); return 0; } } return -EINVAL; } static int k210_clk_set_parent(struct clk *clk, struct clk *parent) { return do_k210_clk_set_parent(dev_get_priv(clk->dev), clk->id, parent->id); } static ulong k210_clk_set_rate(struct clk *clk, unsigned long rate) { int parent, ret, err; ulong rate_in, val; const struct k210_div_params *div; struct k210_clk_priv *priv = dev_get_priv(clk->dev); if (clk->id == K210_CLK_IN0) return clk_set_rate(&priv->in0, rate); parent = k210_clk_get_parent(priv, clk->id); rate_in = do_k210_clk_get_rate(priv, parent); if (IS_ERR_VALUE(rate_in)) return rate_in; log_debug("id=%ld rate=%lu rate_in=%lu\n", clk->id, rate, rate_in); if (clk->id == K210_CLK_PLL0) { /* Bypass ACLK so the CPU keeps going */ ret = do_k210_clk_set_parent(priv, K210_CLK_ACLK, K210_CLK_IN0); if (ret) return ret; } else if (clk->id == K210_CLK_PLL1 && gd->flags & GD_FLG_RELOC) { /* * We can't bypass the AI clock like we can ACLK, and after * relocation we are using the AI ram. */ return -EPERM; } if (k210_clks[clk->id].flags & K210_CLKF_PLL) { ret = k210_pll_set_rate(priv, k210_clks[clk->id].pll, rate, rate_in); if (!IS_ERR_VALUE(ret) && clk->id == K210_CLK_PLL0) { /* * This may have the side effect of reparenting ACLK, * but I don't really want to keep track of what the old * parent was. */ err = do_k210_clk_set_parent(priv, K210_CLK_ACLK, K210_CLK_PLL0); if (err) return err; } return ret; } if (k210_clks[clk->id].div == K210_CLK_DIV_NONE) return -ENOSYS; div = &k210_divs[k210_clks[clk->id].div]; switch (div->type) { case K210_DIV_ONE: val = DIV_ROUND_CLOSEST_ULL((u64)rate_in, rate); val = val ? val - 1 : 0; break; case K210_DIV_EVEN: val = DIV_ROUND_CLOSEST_ULL((u64)rate_in, 2 * rate); break; case K210_DIV_POWER: /* This is ACLK, which has no divider on IN0 */ if (parent == K210_CLK_IN0) return -ENOSYS; val = DIV_ROUND_CLOSEST_ULL((u64)rate_in, rate); val = __ffs(val); break; default: assert(false); return -EINVAL; }; val = val ? val - 1 : 0; k210_clk_writel(priv, div->off, div->shift, div->width, val); return do_k210_clk_get_rate(priv, clk->id); } static int k210_clk_endisable(struct k210_clk_priv *priv, int id, bool enable) { int parent = k210_clk_get_parent(priv, id); const struct k210_gate_params *gate; if (id == K210_CLK_IN0) { if (enable) return clk_enable(&priv->in0); else return clk_disable(&priv->in0); } /* Only recursively enable clocks since we don't track refcounts */ if (enable) { int ret = k210_clk_endisable(priv, parent, true); if (ret && ret != -ENOSYS) return ret; } if (k210_clks[id].flags & K210_CLKF_PLL) { if (enable) return k210_pll_enable(priv, k210_clks[id].pll); else return k210_pll_disable(priv, k210_clks[id].pll); } if (k210_clks[id].gate == K210_CLK_GATE_NONE) return -ENOSYS; gate = &k210_gates[k210_clks[id].gate]; k210_clk_writel(priv, gate->off, gate->bit_idx, 1, enable); return 0; } static int k210_clk_enable(struct clk *clk) { return k210_clk_endisable(dev_get_priv(clk->dev), clk->id, true); } static int k210_clk_disable(struct clk *clk) { return k210_clk_endisable(dev_get_priv(clk->dev), clk->id, false); } static int k210_clk_request(struct clk *clk) { if (clk->id >= ARRAY_SIZE(k210_clks)) return -EINVAL; return 0; } static const struct clk_ops k210_clk_ops = { .request = k210_clk_request, .set_rate = k210_clk_set_rate, .get_rate = k210_clk_get_rate, .set_parent = k210_clk_set_parent, .enable = k210_clk_enable, .disable = k210_clk_disable, }; static int k210_clk_probe(struct udevice *dev) { int ret; struct k210_clk_priv *priv = dev_get_priv(dev); priv->base = dev_read_addr_ptr(dev_get_parent(dev)); if (!priv->base) return -EINVAL; ret = clk_get_by_index(dev, 0, &priv->in0); if (ret) return ret; /* * Force setting defaults, even before relocation. This is so we can * set the clock rate for PLL1 before we relocate into aisram. */ if (!(gd->flags & GD_FLG_RELOC)) clk_set_defaults(dev, CLK_DEFAULTS_POST_FORCE); return 0; } static const struct udevice_id k210_clk_ids[] = { { .compatible = "canaan,k210-clk" }, { }, }; U_BOOT_DRIVER(k210_clk) = { .name = "k210_clk", .id = UCLASS_CLK, .of_match = k210_clk_ids, .ops = &k210_clk_ops, .probe = k210_clk_probe, .priv_auto = sizeof(struct k210_clk_priv), }; #if IS_ENABLED(CONFIG_CMD_CLK) static char show_enabled(struct k210_clk_priv *priv, int id) { bool enabled; if (k210_clks[id].flags & K210_CLKF_PLL) { const struct k210_pll_params *pll = &k210_plls[k210_clks[id].pll]; enabled = k210_pll_enabled(readl(priv->base + pll->off)); } else if (k210_clks[id].gate == K210_CLK_GATE_NONE) { return '-'; } else { const struct k210_gate_params *gate = &k210_gates[k210_clks[id].gate]; enabled = k210_clk_readl(priv, gate->off, gate->bit_idx, 1); } return enabled ? 'y' : 'n'; } static void show_clks(struct k210_clk_priv *priv, int id, int depth) { int i; for (i = 0; i < ARRAY_SIZE(k210_clks); i++) { if (k210_clk_get_parent(priv, i) != id) continue; printf(" %-9lu %-7c %*s%s\n", do_k210_clk_get_rate(priv, i), show_enabled(priv, i), depth * 4, "", k210_clks[i].name); show_clks(priv, i, depth + 1); } } int soc_clk_dump(void) { int ret; struct udevice *dev; struct k210_clk_priv *priv; ret = uclass_get_device_by_driver(UCLASS_CLK, DM_DRIVER_GET(k210_clk), &dev); if (ret) return ret; priv = dev_get_priv(dev); puts(" Rate Enabled Name\n"); puts("------------------------\n"); printf(" %-9lu %-7c %*s%s\n", clk_get_rate(&priv->in0), 'y', 0, "", priv->in0.dev->name); show_clks(priv, K210_CLK_IN0, 1); return 0; } #endif