// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2020 Microchip Technology Inc. and its subsidiaries * * Author: Claudiu Beznea * * Based on sam9x60.c on Linux. */ #include #include #include #include #include #include "pmc.h" /** * Clock identifiers to be used in conjunction with macros like * AT91_TO_CLK_ID() * * @ID_MD_SLCK: TD slow clock identifier * @ID_TD_SLCK: MD slow clock identifier * @ID_MAIN_XTAL: Main Xtal clock identifier * @ID_MAIN_RC: Main RC clock identifier * @ID_MAIN_RC_OSC: Main RC Oscillator clock identifier * @ID_MAIN_OSC: Main Oscillator clock identifier * @ID_MAINCK: MAINCK clock identifier * @ID_PLL_U_FRAC: UPLL fractional clock identifier * @ID_PLL_U_DIV: UPLL divider clock identifier * @ID_PLL_A_FRAC: APLL fractional clock identifier * @ID_PLL_A_DIV: APLL divider clock identifier * @ID_MCK_DIV: MCK DIV clock identifier * @ID_UTMI: UTMI clock identifier * @ID_PROG0: Programmable 0 clock identifier * @ID_PROG1: Programmable 1 clock identifier * @ID_PCK0: PCK0 system clock identifier * @ID_PCK1: PCK1 system clock identifier * @ID_DDR: DDR system clock identifier * @ID_QSPI: QSPI system clock identifier * * @ID_MCK_PRES: MCK PRES clock identifier * * Note: if changing the values of this enums please sync them with * device tree */ enum pmc_clk_ids { ID_MD_SLCK = 0, ID_TD_SLCK = 1, ID_MAIN_XTAL = 2, ID_MAIN_RC = 3, ID_MAIN_RC_OSC = 4, ID_MAIN_OSC = 5, ID_MAINCK = 6, ID_PLL_U_FRAC = 7, ID_PLL_U_DIV = 8, ID_PLL_A_FRAC = 9, ID_PLL_A_DIV = 10, ID_MCK_DIV = 11, ID_UTMI = 12, ID_PROG0 = 13, ID_PROG1 = 14, ID_PCK0 = 15, ID_PCK1 = 16, ID_DDR = 17, ID_QSPI = 18, ID_MCK_PRES = 19, ID_USBCK = 20, ID_UHPCK = 21, ID_MAX, }; /** * PLL type identifiers * @PLL_TYPE_FRAC: fractional PLL identifier * @PLL_TYPE_DIV: divider PLL identifier */ enum pll_type { PLL_TYPE_FRAC, PLL_TYPE_DIV, }; /* Clock names used as parents for multiple clocks. */ static const char *clk_names[] = { [ID_MAIN_RC_OSC] = "main_rc_osc", [ID_MAIN_OSC] = "main_osc", [ID_MAINCK] = "mainck", [ID_PLL_U_DIV] = "upll_divpmcck", [ID_PLL_A_DIV] = "plla_divpmcck", [ID_MCK_PRES] = "mck_pres", [ID_MCK_DIV] = "mck_div", [ID_USBCK] = "usbck", }; /* Fractional PLL output range. */ static const struct clk_range plla_outputs[] = { { .min = 2343750, .max = 1200000000 }, }; static const struct clk_range upll_outputs[] = { { .min = 300000000, .max = 500000000 }, }; /* PLL characteristics. */ static const struct clk_pll_characteristics apll_characteristics = { .input = { .min = 12000000, .max = 48000000 }, .num_output = ARRAY_SIZE(plla_outputs), .output = plla_outputs, }; static const struct clk_pll_characteristics upll_characteristics = { .input = { .min = 12000000, .max = 48000000 }, .num_output = ARRAY_SIZE(upll_outputs), .output = upll_outputs, .upll = true, }; /* Layout for fractional PLLs. */ static const struct clk_pll_layout pll_layout_frac = { .mul_mask = GENMASK(31, 24), .frac_mask = GENMASK(21, 0), .mul_shift = 24, .frac_shift = 0, }; /* Layout for DIV PLLs. */ static const struct clk_pll_layout pll_layout_div = { .div_mask = GENMASK(7, 0), .endiv_mask = BIT(29), .div_shift = 0, .endiv_shift = 29, }; /* MCK characteristics. */ static const struct clk_master_characteristics mck_characteristics = { .output = { .min = 140000000, .max = 200000000 }, .divisors = { 1, 2, 4, 3 }, .have_div3_pres = 1, }; /* MCK layout. */ static const struct clk_master_layout mck_layout = { .mask = 0x373, .pres_shift = 4, .offset = 0x28, }; /* Programmable clock layout. */ static const struct clk_programmable_layout programmable_layout = { .pres_mask = 0xff, .pres_shift = 8, .css_mask = 0x1f, .have_slck_mck = 0, .is_pres_direct = 1, }; /* Peripheral clock layout. */ static const struct clk_pcr_layout pcr_layout = { .offset = 0x88, .cmd = BIT(31), .gckcss_mask = GENMASK(12, 8), .pid_mask = GENMASK(6, 0), }; /* USB clock layout */ static const struct clk_usbck_layout usbck_layout = { .offset = 0x38, .usbs_mask = GENMASK(1, 0), .usbdiv_mask = GENMASK(11, 8), }; /** * PLL clocks description * @n: clock name * @p: clock parent * @l: clock layout * @t: clock type * @f: true if clock is fixed and not changeable by driver * @id: clock id corresponding to PLL driver * @cid: clock id corresponding to clock subsystem */ static const struct { const char *n; const char *p; const struct clk_pll_layout *l; const struct clk_pll_characteristics *c; u8 t; u8 f; u8 id; u8 cid; } sam9x60_plls[] = { { .n = "plla_fracck", .p = "mainck", .l = &pll_layout_frac, .c = &apll_characteristics, .t = PLL_TYPE_FRAC, .f = 1, .id = 0, .cid = ID_PLL_A_FRAC, }, { .n = "plla_divpmcck", .p = "plla_fracck", .l = &pll_layout_div, .c = &apll_characteristics, .t = PLL_TYPE_DIV, .f = 1, .id = 0, .cid = ID_PLL_A_DIV, }, { .n = "upll_fracck", .p = "main_osc", .l = &pll_layout_frac, .c = &upll_characteristics, .t = PLL_TYPE_FRAC, .f = 1, .id = 1, .cid = ID_PLL_U_FRAC, }, { .n = "upll_divpmcck", .p = "upll_fracck", .l = &pll_layout_div, .c = &upll_characteristics, .t = PLL_TYPE_DIV, .f = 1, .id = 1, .cid = ID_PLL_U_DIV, }, }; /** * Programmable clock description * @n: clock name * @cid: clock id corresponding to clock subsystem */ static const struct { const char *n; u8 cid; } sam9x60_prog[] = { { .n = "prog0", .cid = ID_PROG0, }, { .n = "prog1", .cid = ID_PROG1, }, }; /* Mux table for programmable clocks. */ static u32 sam9x60_prog_mux_table[] = { 0, 1, 2, 3, 4, 5, }; /** * System clock description * @n: clock name * @p: parent clock name * @id: clock id corresponding to system clock driver * @cid: clock id corresponding to clock subsystem */ static const struct { const char *n; const char *p; u8 id; u8 cid; } sam9x60_systemck[] = { { .n = "ddrck", .p = "mck_div", .id = 2, .cid = ID_DDR, }, { .n = "uhpck", .p = "usbck", .id = 6, .cid = ID_UHPCK }, { .n = "pck0", .p = "prog0", .id = 8, .cid = ID_PCK0, }, { .n = "pck1", .p = "prog1", .id = 9, .cid = ID_PCK1, }, { .n = "qspick", .p = "mck_div", .id = 19, .cid = ID_QSPI, }, }; /** * Peripheral clock description * @n: clock name * @id: clock id */ static const struct { const char *n; u8 id; } sam9x60_periphck[] = { { .n = "pioA_clk", .id = 2, }, { .n = "pioB_clk", .id = 3, }, { .n = "pioC_clk", .id = 4, }, { .n = "flex0_clk", .id = 5, }, { .n = "flex1_clk", .id = 6, }, { .n = "flex2_clk", .id = 7, }, { .n = "flex3_clk", .id = 8, }, { .n = "flex6_clk", .id = 9, }, { .n = "flex7_clk", .id = 10, }, { .n = "flex8_clk", .id = 11, }, { .n = "sdmmc0_clk", .id = 12, }, { .n = "flex4_clk", .id = 13, }, { .n = "flex5_clk", .id = 14, }, { .n = "flex9_clk", .id = 15, }, { .n = "flex10_clk", .id = 16, }, { .n = "tcb0_clk", .id = 17, }, { .n = "pwm_clk", .id = 18, }, { .n = "adc_clk", .id = 19, }, { .n = "dma0_clk", .id = 20, }, { .n = "matrix_clk", .id = 21, }, { .n = "uhphs_clk", .id = 22, }, { .n = "udphs_clk", .id = 23, }, { .n = "macb0_clk", .id = 24, }, { .n = "lcd_clk", .id = 25, }, { .n = "sdmmc1_clk", .id = 26, }, { .n = "macb1_clk", .id = 27, }, { .n = "ssc_clk", .id = 28, }, { .n = "can0_clk", .id = 29, }, { .n = "can1_clk", .id = 30, }, { .n = "flex11_clk", .id = 32, }, { .n = "flex12_clk", .id = 33, }, { .n = "i2s_clk", .id = 34, }, { .n = "qspi_clk", .id = 35, }, { .n = "gfx2d_clk", .id = 36, }, { .n = "pit64b_clk", .id = 37, }, { .n = "trng_clk", .id = 38, }, { .n = "aes_clk", .id = 39, }, { .n = "tdes_clk", .id = 40, }, { .n = "sha_clk", .id = 41, }, { .n = "classd_clk", .id = 42, }, { .n = "isi_clk", .id = 43, }, { .n = "pioD_clk", .id = 44, }, { .n = "tcb1_clk", .id = 45, }, { .n = "dbgu_clk", .id = 47, }, { .n = "mpddr_clk", .id = 49, }, }; /** * Generic clock description * @n: clock name * @ep: extra parents parents names * @ep_mux_table: extra parents mux table * @ep_clk_mux_table: extra parents clock mux table (for CCF) * @r: clock output range * @ep_count: extra parents count * @id: clock id */ static const struct { const char *n; struct clk_range r; u8 id; } sam9x60_gck[] = { { .n = "flex0_gclk", .id = 5, }, { .n = "flex1_gclk", .id = 6, }, { .n = "flex2_gclk", .id = 7, }, { .n = "flex3_gclk", .id = 8, }, { .n = "flex6_gclk", .id = 9, }, { .n = "flex7_gclk", .id = 10, }, { .n = "flex8_gclk", .id = 11, }, { .n = "sdmmc0_gclk", .id = 12, .r = { .min = 0, .max = 105000000 }, }, { .n = "flex4_gclk", .id = 13, }, { .n = "flex5_gclk", .id = 14, }, { .n = "flex9_gclk", .id = 15, }, { .n = "flex10_gclk", .id = 16, }, { .n = "tcb0_gclk", .id = 17, }, { .n = "adc_gclk", .id = 19, }, { .n = "lcd_gclk", .id = 25, .r = { .min = 0, .max = 140000000 }, }, { .n = "sdmmc1_gclk", .id = 26, .r = { .min = 0, .max = 105000000 }, }, { .n = "flex11_gclk", .id = 32, }, { .n = "flex12_gclk", .id = 33, }, { .n = "i2s_gclk", .id = 34, .r = { .min = 0, .max = 105000000 }, }, { .n = "pit64b_gclk", .id = 37, }, { .n = "classd_gclk", .id = 42, .r = { .min = 0, .max = 100000000 }, }, { .n = "tcb1_gclk", .id = 45, }, { .n = "dbgu_gclk", .id = 47, }, }; /** * Clock setup description * @cid: clock id corresponding to clock subsystem * @pid: parent clock id corresponding to clock subsystem * @rate: clock rate * @prate: parent rate */ static const struct pmc_clk_setup sam9x60_clk_setup[] = { { .cid = AT91_TO_CLK_ID(PMC_TYPE_CORE, ID_PLL_U_FRAC), .rate = 960000000, }, { .cid = AT91_TO_CLK_ID(PMC_TYPE_CORE, ID_PLL_U_DIV), .rate = 480000000, }, { .cid = AT91_TO_CLK_ID(PMC_TYPE_CORE, ID_USBCK), .pid = AT91_TO_CLK_ID(PMC_TYPE_CORE, ID_PLL_U_DIV), .rate = 48000000, }, }; #define prepare_mux_table(_allocs, _index, _dst, _src, _num, _label) \ do { \ int _i; \ (_dst) = kzalloc(sizeof(*(_dst)) * (_num), GFP_KERNEL); \ if (!(_dst)) { \ ret = -ENOMEM; \ goto _label; \ } \ (_allocs)[(_index)++] = (_dst); \ for (_i = 0; _i < (_num); _i++) \ (_dst)[_i] = (_src)[_i]; \ } while (0) static int sam9x60_clk_probe(struct udevice *dev) { void __iomem *base = (void *)devfdt_get_addr_ptr(dev); unsigned int *clkmuxallocs[64], *muxallocs[64]; const char *p[10]; unsigned int cm[10], m[10], *tmpclkmux, *tmpmux; struct clk clk, *c; int ret, muxallocindex = 0, clkmuxallocindex = 0, i; static const struct clk_range r = { 0, 0 }; if (!base) return -EINVAL; memset(muxallocs, 0, sizeof(muxallocs)); memset(clkmuxallocs, 0, sizeof(clkmuxallocs)); ret = clk_get_by_index(dev, 0, &clk); if (ret) return ret; ret = clk_get_by_id(clk.id, &c); if (ret) return ret; clk_names[ID_TD_SLCK] = kmemdup(clk_hw_get_name(c), strlen(clk_hw_get_name(c)) + 1, GFP_KERNEL); if (!clk_names[ID_TD_SLCK]) return -ENOMEM; ret = clk_get_by_index(dev, 1, &clk); if (ret) return ret; ret = clk_get_by_id(clk.id, &c); if (ret) return ret; clk_names[ID_MD_SLCK] = kmemdup(clk_hw_get_name(c), strlen(clk_hw_get_name(c)) + 1, GFP_KERNEL); if (!clk_names[ID_MD_SLCK]) return -ENOMEM; ret = clk_get_by_index(dev, 2, &clk); if (ret) return ret; clk_names[ID_MAIN_XTAL] = kmemdup(clk_hw_get_name(&clk), strlen(clk_hw_get_name(&clk)) + 1, GFP_KERNEL); if (!clk_names[ID_MAIN_XTAL]) return -ENOMEM; ret = clk_get_by_index(dev, 3, &clk); if (ret) goto fail; clk_names[ID_MAIN_RC] = kmemdup(clk_hw_get_name(&clk), strlen(clk_hw_get_name(&clk)) + 1, GFP_KERNEL); if (ret) goto fail; /* Register main rc oscillator. */ c = at91_clk_main_rc(base, clk_names[ID_MAIN_RC_OSC], clk_names[ID_MAIN_RC]); if (IS_ERR(c)) { ret = PTR_ERR(c); goto fail; } clk_dm(AT91_TO_CLK_ID(PMC_TYPE_CORE, ID_MAIN_RC_OSC), c); /* Register main oscillator. */ c = at91_clk_main_osc(base, clk_names[ID_MAIN_OSC], clk_names[ID_MAIN_XTAL], false); if (IS_ERR(c)) { ret = PTR_ERR(c); goto fail; } clk_dm(AT91_TO_CLK_ID(PMC_TYPE_CORE, ID_MAIN_OSC), c); /* Register mainck. */ p[0] = clk_names[ID_MAIN_RC_OSC]; p[1] = clk_names[ID_MAIN_OSC]; cm[0] = AT91_TO_CLK_ID(PMC_TYPE_CORE, ID_MAIN_RC_OSC); cm[1] = AT91_TO_CLK_ID(PMC_TYPE_CORE, ID_MAIN_OSC); prepare_mux_table(clkmuxallocs, clkmuxallocindex, tmpclkmux, cm, 2, fail); c = at91_clk_sam9x5_main(base, clk_names[ID_MAINCK], p, 2, tmpclkmux, PMC_TYPE_CORE); if (IS_ERR(c)) { ret = PTR_ERR(c); goto fail; } clk_dm(AT91_TO_CLK_ID(PMC_TYPE_CORE, ID_MAINCK), c); /* Register PLL fracs clocks. */ for (i = 0; i < ARRAY_SIZE(sam9x60_plls); i++) { if (sam9x60_plls[i].t != PLL_TYPE_FRAC) continue; c = sam9x60_clk_register_frac_pll(base, sam9x60_plls[i].n, sam9x60_plls[i].p, sam9x60_plls[i].id, sam9x60_plls[i].c, sam9x60_plls[i].l, sam9x60_plls[i].f); if (IS_ERR(c)) { ret = PTR_ERR(c); goto fail; } clk_dm(AT91_TO_CLK_ID(PMC_TYPE_CORE, sam9x60_plls[i].cid), c); } /* Register PLL div clocks. */ for (i = 0; i < ARRAY_SIZE(sam9x60_plls); i++) { if (sam9x60_plls[i].t != PLL_TYPE_DIV) continue; c = sam9x60_clk_register_div_pll(base, sam9x60_plls[i].n, sam9x60_plls[i].p, sam9x60_plls[i].id, sam9x60_plls[i].c, sam9x60_plls[i].l, sam9x60_plls[i].f); if (IS_ERR(c)) { ret = PTR_ERR(c); goto fail; } clk_dm(AT91_TO_CLK_ID(PMC_TYPE_CORE, sam9x60_plls[i].cid), c); } /* Register MCK pres clock. */ p[0] = clk_names[ID_MD_SLCK]; p[1] = clk_names[ID_MAINCK]; p[2] = clk_names[ID_PLL_A_DIV]; p[3] = clk_names[ID_PLL_U_DIV]; cm[0] = AT91_TO_CLK_ID(PMC_TYPE_CORE, ID_MD_SLCK); cm[1] = AT91_TO_CLK_ID(PMC_TYPE_CORE, ID_MAINCK); cm[2] = AT91_TO_CLK_ID(PMC_TYPE_CORE, ID_PLL_A_DIV); cm[3] = AT91_TO_CLK_ID(PMC_TYPE_CORE, ID_PLL_U_DIV); prepare_mux_table(clkmuxallocs, clkmuxallocindex, tmpclkmux, cm, 4, fail); c = at91_clk_register_master_pres(base, clk_names[ID_MCK_PRES], p, 4, &mck_layout, &mck_characteristics, tmpclkmux); if (IS_ERR(c)) { ret = PTR_ERR(c); goto fail; } clk_dm(AT91_TO_CLK_ID(PMC_TYPE_CORE, ID_MCK_PRES), c); /* Register MCK div clock. */ c = at91_clk_register_master_div(base, clk_names[ID_MCK_DIV], clk_names[ID_MCK_PRES], &mck_layout, &mck_characteristics); if (IS_ERR(c)) { ret = PTR_ERR(c); goto fail; } clk_dm(AT91_TO_CLK_ID(PMC_TYPE_CORE, ID_MCK_DIV), c); /* Register usbck. */ p[0] = clk_names[ID_PLL_A_DIV]; p[1] = clk_names[ID_PLL_U_DIV]; p[2] = clk_names[ID_MAIN_XTAL]; m[0] = 0; m[1] = 1; m[2] = 2; cm[0] = AT91_TO_CLK_ID(PMC_TYPE_CORE, ID_PLL_A_DIV); cm[1] = AT91_TO_CLK_ID(PMC_TYPE_CORE, ID_PLL_U_DIV); cm[2] = AT91_TO_CLK_ID(PMC_TYPE_CORE, ID_MAIN_XTAL); prepare_mux_table(clkmuxallocs, clkmuxallocindex, tmpclkmux, cm, 3, fail); prepare_mux_table(muxallocs, muxallocindex, tmpmux, m, 3, fail); c = sam9x60_clk_register_usb(base, clk_names[ID_USBCK], p, 3, &usbck_layout, tmpclkmux, tmpmux, ID_USBCK); if (IS_ERR(c)) { ret = PTR_ERR(c); goto fail; } clk_dm(AT91_TO_CLK_ID(PMC_TYPE_CORE, ID_USBCK), c); /* Register programmable clocks. */ p[0] = clk_names[ID_MD_SLCK]; p[1] = clk_names[ID_TD_SLCK]; p[2] = clk_names[ID_MAINCK]; p[3] = clk_names[ID_MCK_DIV]; p[4] = clk_names[ID_PLL_A_DIV]; p[5] = clk_names[ID_PLL_U_DIV]; cm[0] = AT91_TO_CLK_ID(PMC_TYPE_CORE, ID_MD_SLCK); cm[1] = AT91_TO_CLK_ID(PMC_TYPE_CORE, ID_TD_SLCK); cm[2] = AT91_TO_CLK_ID(PMC_TYPE_CORE, ID_MAINCK); cm[3] = AT91_TO_CLK_ID(PMC_TYPE_CORE, ID_MCK_DIV); cm[4] = AT91_TO_CLK_ID(PMC_TYPE_CORE, ID_PLL_A_DIV); cm[5] = AT91_TO_CLK_ID(PMC_TYPE_CORE, ID_PLL_U_DIV); for (i = 0; i < ARRAY_SIZE(sam9x60_prog); i++) { prepare_mux_table(clkmuxallocs, clkmuxallocindex, tmpclkmux, cm, 6, fail); c = at91_clk_register_programmable(base, sam9x60_prog[i].n, p, 10, i, &programmable_layout, tmpclkmux, sam9x60_prog_mux_table); if (IS_ERR(c)) { ret = PTR_ERR(c); goto fail; } clk_dm(AT91_TO_CLK_ID(PMC_TYPE_CORE, sam9x60_prog[i].cid), c); } /* System clocks. */ for (i = 0; i < ARRAY_SIZE(sam9x60_systemck); i++) { c = at91_clk_register_system(base, sam9x60_systemck[i].n, sam9x60_systemck[i].p, sam9x60_systemck[i].id); if (IS_ERR(c)) { ret = PTR_ERR(c); goto fail; } clk_dm(AT91_TO_CLK_ID(PMC_TYPE_SYSTEM, sam9x60_systemck[i].cid), c); } /* Peripheral clocks. */ for (i = 0; i < ARRAY_SIZE(sam9x60_periphck); i++) { c = at91_clk_register_sam9x5_peripheral(base, &pcr_layout, sam9x60_periphck[i].n, clk_names[ID_MCK_DIV], sam9x60_periphck[i].id, &r); if (IS_ERR(c)) { ret = PTR_ERR(c); goto fail; } clk_dm(AT91_TO_CLK_ID(PMC_TYPE_PERIPHERAL, sam9x60_periphck[i].id), c); } /* Generic clocks. */ p[0] = clk_names[ID_MD_SLCK]; p[1] = clk_names[ID_TD_SLCK]; p[2] = clk_names[ID_MAINCK]; p[3] = clk_names[ID_MCK_DIV]; p[4] = clk_names[ID_PLL_A_DIV]; p[5] = clk_names[ID_PLL_U_DIV]; m[0] = 0; m[1] = 1; m[2] = 2; m[3] = 3; m[4] = 4; m[5] = 5; cm[0] = AT91_TO_CLK_ID(PMC_TYPE_CORE, ID_MD_SLCK); cm[1] = AT91_TO_CLK_ID(PMC_TYPE_CORE, ID_TD_SLCK); cm[2] = AT91_TO_CLK_ID(PMC_TYPE_CORE, ID_MAINCK); cm[3] = AT91_TO_CLK_ID(PMC_TYPE_CORE, ID_MCK_DIV); cm[4] = AT91_TO_CLK_ID(PMC_TYPE_CORE, ID_PLL_A_DIV); cm[5] = AT91_TO_CLK_ID(PMC_TYPE_CORE, ID_PLL_U_DIV); for (i = 0; i < ARRAY_SIZE(sam9x60_gck); i++) { prepare_mux_table(clkmuxallocs, clkmuxallocindex, tmpclkmux, cm, 6, fail); prepare_mux_table(muxallocs, muxallocindex, tmpmux, m, 6, fail); c = at91_clk_register_generic(base, &pcr_layout, sam9x60_gck[i].n, p, tmpclkmux, tmpmux, 6, sam9x60_gck[i].id, &sam9x60_gck[i].r); if (IS_ERR(c)) { ret = PTR_ERR(c); goto fail; } clk_dm(AT91_TO_CLK_ID(PMC_TYPE_GCK, sam9x60_gck[i].id), c); } /* Setup clocks. */ ret = at91_clk_setup(sam9x60_clk_setup, ARRAY_SIZE(sam9x60_clk_setup)); if (ret) goto fail; return 0; fail: for (i = 0; i < ARRAY_SIZE(muxallocs); i++) kfree(muxallocs[i]); for (i = 0; i < ARRAY_SIZE(clkmuxallocs); i++) kfree(clkmuxallocs[i]); return ret; } static const struct udevice_id sam9x60_clk_ids[] = { { .compatible = "microchip,sam9x60-pmc" }, { /* Sentinel. */ }, }; U_BOOT_DRIVER(at91_sam9x60_pmc) = { .name = "at91-sam9x60-pmc", .id = UCLASS_CLK, .of_match = sam9x60_clk_ids, .ops = &at91_clk_ops, .probe = sam9x60_clk_probe, .flags = DM_FLAG_PRE_RELOC, };