// SPDX-License-Identifier: GPL-2.0 /* * (C) Copyright 2016 Google, Inc */ #include #include #include #include #include #include #include #include #include #include #include #include /* * MAC Clock Delay settings, taken from Aspeed SDK */ #define RGMII_TXCLK_ODLY 8 #define RMII_RXCLK_IDLY 2 /* * TGMII Clock Duty constants, taken from Aspeed SDK */ #define RGMII2_TXCK_DUTY 0x66 #define RGMII1_TXCK_DUTY 0x64 #define D2PLL_DEFAULT_RATE (250 * 1000 * 1000) /* * AXI/AHB clock selection, taken from Aspeed SDK */ #define SCU_HWSTRAP_AXIAHB_DIV_SHIFT 9 #define SCU_HWSTRAP_AXIAHB_DIV_MASK (0x7 << SCU_HWSTRAP_AXIAHB_DIV_SHIFT) DECLARE_GLOBAL_DATA_PTR; /* * Clock divider/multiplier configuration struct. * For H-PLL and M-PLL the formula is * (Output Frequency) = CLKIN * ((M + 1) / (N + 1)) / (P + 1) * M - Numerator * N - Denumerator * P - Post Divider * They have the same layout in their control register. * * D-PLL and D2-PLL have extra divider (OD + 1), which is not * yet needed and ignored by clock configurations. */ struct ast2500_div_config { unsigned int num; unsigned int denum; unsigned int post_div; }; /* * Get the rate of the M-PLL clock from input clock frequency and * the value of the M-PLL Parameter Register. */ static ulong ast2500_get_mpll_rate(ulong clkin, u32 mpll_reg) { const ulong num = (mpll_reg & SCU_MPLL_NUM_MASK) >> SCU_MPLL_NUM_SHIFT; const ulong denum = (mpll_reg & SCU_MPLL_DENUM_MASK) >> SCU_MPLL_DENUM_SHIFT; const ulong post_div = (mpll_reg & SCU_MPLL_POST_MASK) >> SCU_MPLL_POST_SHIFT; return (clkin * ((num + 1) / (denum + 1))) / (post_div + 1); } /* * Get the rate of the H-PLL clock from input clock frequency and * the value of the H-PLL Parameter Register. */ static ulong ast2500_get_hpll_rate(ulong clkin, u32 hpll_reg) { const ulong num = (hpll_reg & SCU_HPLL_NUM_MASK) >> SCU_HPLL_NUM_SHIFT; const ulong denum = (hpll_reg & SCU_HPLL_DENUM_MASK) >> SCU_HPLL_DENUM_SHIFT; const ulong post_div = (hpll_reg & SCU_HPLL_POST_MASK) >> SCU_HPLL_POST_SHIFT; return (clkin * ((num + 1) / (denum + 1))) / (post_div + 1); } static ulong ast2500_get_clkin(struct ast2500_scu *scu) { return readl(&scu->hwstrap) & SCU_HWSTRAP_CLKIN_25MHZ ? 25 * 1000 * 1000 : 24 * 1000 * 1000; } static u32 ast2500_get_hclk(ulong clkin, struct ast2500_scu *scu) { u32 hpll_reg = readl(&scu->h_pll_param); ulong axi_div = 2; u32 rate; ulong ahb_div = 1 + ((readl(&scu->hwstrap) & SCU_HWSTRAP_AXIAHB_DIV_MASK) >> SCU_HWSTRAP_AXIAHB_DIV_SHIFT); rate = ast2500_get_hpll_rate(clkin, hpll_reg); return (rate / axi_div / ahb_div); } /** * Get current rate or uart clock * * @scu SCU registers * @uart_index UART index, 1-5 * * Return: current setting for uart clock rate */ static ulong ast2500_get_uart_clk_rate(struct ast2500_scu *scu, int uart_index) { /* * ast2500 datasheet is very confusing when it comes to UART clocks, * especially when CLKIN = 25 MHz. The settings are in * different registers and it is unclear how they interact. * * This has only been tested with default settings and CLKIN = 24 MHz. */ ulong uart_clkin; if (readl(&scu->misc_ctrl2) & (1 << (uart_index - 1 + SCU_MISC2_UARTCLK_SHIFT))) uart_clkin = 192 * 1000 * 1000; else uart_clkin = 24 * 1000 * 1000; if (readl(&scu->misc_ctrl1) & SCU_MISC_UARTCLK_DIV13) uart_clkin /= 13; return uart_clkin; } static ulong ast2500_clk_get_rate(struct clk *clk) { struct ast2500_clk_priv *priv = dev_get_priv(clk->dev); ulong clkin = ast2500_get_clkin(priv->scu); ulong rate; switch (clk->id) { case ASPEED_CLK_HPLL: /* * This ignores dynamic/static slowdown of ARMCLK and may * be inaccurate. */ rate = ast2500_get_hpll_rate(clkin, readl(&priv->scu->h_pll_param)); break; case ASPEED_CLK_MPLL: rate = ast2500_get_mpll_rate(clkin, readl(&priv->scu->m_pll_param)); break; case ASPEED_CLK_APB: { ulong apb_div = 4 + 4 * ((readl(&priv->scu->clk_sel1) & SCU_PCLK_DIV_MASK) >> SCU_PCLK_DIV_SHIFT); rate = ast2500_get_hpll_rate(clkin, readl(&priv-> scu->h_pll_param)); rate = rate / apb_div; } break; case ASPEED_CLK_AHB: rate = ast2500_get_hclk(clkin, priv->scu); break; case ASPEED_CLK_SDIO: { ulong apb_div = 4 + 4 * ((readl(&priv->scu->clk_sel1) & SCU_SDCLK_DIV_MASK) >> SCU_SDCLK_DIV_SHIFT); rate = ast2500_get_hpll_rate(clkin, readl(&priv-> scu->h_pll_param)); rate = rate / apb_div; } break; case ASPEED_CLK_GATE_UART1CLK: rate = ast2500_get_uart_clk_rate(priv->scu, 1); break; case ASPEED_CLK_GATE_UART2CLK: rate = ast2500_get_uart_clk_rate(priv->scu, 2); break; case ASPEED_CLK_GATE_UART3CLK: rate = ast2500_get_uart_clk_rate(priv->scu, 3); break; case ASPEED_CLK_GATE_UART4CLK: rate = ast2500_get_uart_clk_rate(priv->scu, 4); break; case ASPEED_CLK_GATE_UART5CLK: rate = ast2500_get_uart_clk_rate(priv->scu, 5); break; default: debug("%s: unknown clk %ld\n", __func__, clk->id); return -ENOENT; } return rate; } struct ast2500_clock_config { ulong input_rate; ulong rate; struct ast2500_div_config cfg; }; static const struct ast2500_clock_config ast2500_clock_config_defaults[] = { { 24000000, 250000000, { .num = 124, .denum = 1, .post_div = 5 } }, }; static bool ast2500_get_clock_config_default(ulong input_rate, ulong requested_rate, struct ast2500_div_config *cfg) { int i; for (i = 0; i < ARRAY_SIZE(ast2500_clock_config_defaults); i++) { const struct ast2500_clock_config *default_cfg = &ast2500_clock_config_defaults[i]; if (default_cfg->input_rate == input_rate && default_cfg->rate == requested_rate) { *cfg = default_cfg->cfg; return true; } } return false; } /* * @input_rate - the rate of input clock in Hz * @requested_rate - desired output rate in Hz * @div - this is an IN/OUT parameter, at input all fields of the config * need to be set to their maximum allowed values. * The result (the best config we could find), would also be returned * in this structure. * * Return: The clock rate, when the resulting div_config is used. */ static ulong ast2500_calc_clock_config(ulong input_rate, ulong requested_rate, struct ast2500_div_config *cfg) { /* * The assumption is that kHz precision is good enough and * also enough to avoid overflow when multiplying. */ const ulong input_rate_khz = input_rate / 1000; const ulong rate_khz = requested_rate / 1000; const struct ast2500_div_config max_vals = *cfg; struct ast2500_div_config it = { 0, 0, 0 }; ulong delta = rate_khz; ulong new_rate_khz = 0; /* * Look for a well known frequency first. */ if (ast2500_get_clock_config_default(input_rate, requested_rate, cfg)) return requested_rate; for (; it.denum <= max_vals.denum; ++it.denum) { for (it.post_div = 0; it.post_div <= max_vals.post_div; ++it.post_div) { it.num = (rate_khz * (it.post_div + 1) / input_rate_khz) * (it.denum + 1); if (it.num > max_vals.num) continue; new_rate_khz = (input_rate_khz * ((it.num + 1) / (it.denum + 1))) / (it.post_div + 1); /* Keep the rate below requested one. */ if (new_rate_khz > rate_khz) continue; if (new_rate_khz - rate_khz < delta) { delta = new_rate_khz - rate_khz; *cfg = it; if (delta == 0) return new_rate_khz * 1000; } } } return new_rate_khz * 1000; } static ulong ast2500_configure_ddr(struct ast2500_scu *scu, ulong rate) { ulong clkin = ast2500_get_clkin(scu); u32 mpll_reg; struct ast2500_div_config div_cfg = { .num = (SCU_MPLL_NUM_MASK >> SCU_MPLL_NUM_SHIFT), .denum = (SCU_MPLL_DENUM_MASK >> SCU_MPLL_DENUM_SHIFT), .post_div = (SCU_MPLL_POST_MASK >> SCU_MPLL_POST_SHIFT), }; ast2500_calc_clock_config(clkin, rate, &div_cfg); mpll_reg = readl(&scu->m_pll_param); mpll_reg &= ~(SCU_MPLL_POST_MASK | SCU_MPLL_NUM_MASK | SCU_MPLL_DENUM_MASK); mpll_reg |= (div_cfg.post_div << SCU_MPLL_POST_SHIFT) | (div_cfg.num << SCU_MPLL_NUM_SHIFT) | (div_cfg.denum << SCU_MPLL_DENUM_SHIFT); ast_scu_unlock(scu); writel(mpll_reg, &scu->m_pll_param); ast_scu_lock(scu); return ast2500_get_mpll_rate(clkin, mpll_reg); } static ulong ast2500_configure_mac(struct ast2500_scu *scu, int index) { ulong clkin = ast2500_get_clkin(scu); ulong hpll_rate = ast2500_get_hpll_rate(clkin, readl(&scu->h_pll_param)); ulong required_rate; u32 hwstrap; u32 divisor; u32 reset_bit; u32 clkstop_bit; /* * According to data sheet, for 10/100 mode the MAC clock frequency * should be at least 25MHz and for 1000 mode at least 100MHz */ hwstrap = readl(&scu->hwstrap); if (hwstrap & (SCU_HWSTRAP_MAC1_RGMII | SCU_HWSTRAP_MAC2_RGMII)) required_rate = 100 * 1000 * 1000; else required_rate = 25 * 1000 * 1000; divisor = hpll_rate / required_rate; if (divisor < 4) { /* Clock can't run fast enough, but let's try anyway */ debug("MAC clock too slow\n"); divisor = 4; } else if (divisor > 16) { /* Can't slow down the clock enough, but let's try anyway */ debug("MAC clock too fast\n"); divisor = 16; } switch (index) { case 1: reset_bit = SCU_SYSRESET_MAC1; clkstop_bit = SCU_CLKSTOP_MAC1; break; case 2: reset_bit = SCU_SYSRESET_MAC2; clkstop_bit = SCU_CLKSTOP_MAC2; break; default: return -EINVAL; } ast_scu_unlock(scu); clrsetbits_le32(&scu->clk_sel1, SCU_MACCLK_MASK, ((divisor - 2) / 2) << SCU_MACCLK_SHIFT); /* * Disable MAC, start its clock and re-enable it. * The procedure and the delays (100us & 10ms) are * specified in the datasheet. */ setbits_le32(&scu->sysreset_ctrl1, reset_bit); udelay(100); clrbits_le32(&scu->clk_stop_ctrl1, clkstop_bit); mdelay(10); clrbits_le32(&scu->sysreset_ctrl1, reset_bit); writel((RGMII2_TXCK_DUTY << SCU_CLKDUTY_RGMII2TXCK_SHIFT) | (RGMII1_TXCK_DUTY << SCU_CLKDUTY_RGMII1TXCK_SHIFT), &scu->clk_duty_sel); ast_scu_lock(scu); return required_rate; } static ulong ast2500_configure_d2pll(struct ast2500_scu *scu, ulong rate) { /* * The values and the meaning of the next three * parameters are undocumented. Taken from Aspeed SDK. * * TODO(clg@kaod.org): the SIP and SIC values depend on the * Numerator value */ const u32 d2_pll_ext_param = 0x2c; const u32 d2_pll_sip = 0x11; const u32 d2_pll_sic = 0x18; u32 clk_delay_settings = (RMII_RXCLK_IDLY << SCU_MICDS_MAC1RMII_RDLY_SHIFT) | (RMII_RXCLK_IDLY << SCU_MICDS_MAC2RMII_RDLY_SHIFT) | (RGMII_TXCLK_ODLY << SCU_MICDS_MAC1RGMII_TXDLY_SHIFT) | (RGMII_TXCLK_ODLY << SCU_MICDS_MAC2RGMII_TXDLY_SHIFT); struct ast2500_div_config div_cfg = { .num = SCU_D2PLL_NUM_MASK >> SCU_D2PLL_NUM_SHIFT, .denum = SCU_D2PLL_DENUM_MASK >> SCU_D2PLL_DENUM_SHIFT, .post_div = SCU_D2PLL_POST_MASK >> SCU_D2PLL_POST_SHIFT, }; ulong clkin = ast2500_get_clkin(scu); ulong new_rate; ast_scu_unlock(scu); writel((d2_pll_ext_param << SCU_D2PLL_EXT1_PARAM_SHIFT) | SCU_D2PLL_EXT1_OFF | SCU_D2PLL_EXT1_RESET, &scu->d2_pll_ext_param[0]); /* * Select USB2.0 port1 PHY clock as a clock source for GCRT. * This would disconnect it from D2-PLL. */ clrsetbits_le32(&scu->misc_ctrl1, SCU_MISC_D2PLL_OFF, SCU_MISC_GCRT_USB20CLK); new_rate = ast2500_calc_clock_config(clkin, rate, &div_cfg); writel((d2_pll_sip << SCU_D2PLL_SIP_SHIFT) | (d2_pll_sic << SCU_D2PLL_SIC_SHIFT) | (div_cfg.num << SCU_D2PLL_NUM_SHIFT) | (div_cfg.denum << SCU_D2PLL_DENUM_SHIFT) | (div_cfg.post_div << SCU_D2PLL_POST_SHIFT), &scu->d2_pll_param); clrbits_le32(&scu->d2_pll_ext_param[0], SCU_D2PLL_EXT1_OFF | SCU_D2PLL_EXT1_RESET); clrsetbits_le32(&scu->misc_ctrl2, SCU_MISC2_RGMII_HPLL | SCU_MISC2_RMII_MPLL | SCU_MISC2_RGMII_CLKDIV_MASK | SCU_MISC2_RMII_CLKDIV_MASK, (4 << SCU_MISC2_RMII_CLKDIV_SHIFT)); writel(clk_delay_settings | SCU_MICDS_RGMIIPLL, &scu->mac_clk_delay); writel(clk_delay_settings, &scu->mac_clk_delay_100M); writel(clk_delay_settings, &scu->mac_clk_delay_10M); ast_scu_lock(scu); return new_rate; } #define SCU_CLKSTOP_SDIO 27 static ulong ast2500_enable_sdclk(struct ast2500_scu *scu) { u32 reset_bit; u32 clkstop_bit; reset_bit = BIT(ASPEED_RESET_SDIO); clkstop_bit = BIT(SCU_CLKSTOP_SDIO); setbits_le32(&scu->sysreset_ctrl1, reset_bit); udelay(100); //enable clk clrbits_le32(&scu->clk_stop_ctrl1, clkstop_bit); mdelay(10); clrbits_le32(&scu->sysreset_ctrl1, reset_bit); return 0; } static ulong ast2500_clk_set_rate(struct clk *clk, ulong rate) { struct ast2500_clk_priv *priv = dev_get_priv(clk->dev); ulong new_rate; switch (clk->id) { case ASPEED_CLK_MPLL: new_rate = ast2500_configure_ddr(priv->scu, rate); break; case ASPEED_CLK_D2PLL: new_rate = ast2500_configure_d2pll(priv->scu, rate); break; default: debug("%s: unknown clk %ld\n", __func__, clk->id); return -ENOENT; } return new_rate; } static int ast2500_clk_enable(struct clk *clk) { struct ast2500_clk_priv *priv = dev_get_priv(clk->dev); switch (clk->id) { case ASPEED_CLK_SDIO: if (readl(&priv->scu->clk_stop_ctrl1) & SCU_CLKSTOP_SDCLK) { ast_scu_unlock(priv->scu); setbits_le32(&priv->scu->sysreset_ctrl1, SCU_SYSRESET_SDIO); udelay(100); clrbits_le32(&priv->scu->clk_stop_ctrl1, SCU_CLKSTOP_SDCLK); mdelay(10); clrbits_le32(&priv->scu->sysreset_ctrl1, SCU_SYSRESET_SDIO); ast_scu_lock(priv->scu); } break; /* * For MAC clocks the clock rate is * configured based on whether RGMII or RMII mode has been selected * through hardware strapping. */ case ASPEED_CLK_GATE_MAC1CLK: ast2500_configure_mac(priv->scu, 1); break; case ASPEED_CLK_GATE_MAC2CLK: ast2500_configure_mac(priv->scu, 2); break; case ASPEED_CLK_D2PLL: ast2500_configure_d2pll(priv->scu, D2PLL_DEFAULT_RATE); break; case ASPEED_CLK_GATE_SDCLK: ast2500_enable_sdclk(priv->scu); break; default: debug("%s: unknown clk %ld\n", __func__, clk->id); return -ENOENT; } return 0; } struct clk_ops ast2500_clk_ops = { .get_rate = ast2500_clk_get_rate, .set_rate = ast2500_clk_set_rate, .enable = ast2500_clk_enable, }; static int ast2500_clk_of_to_plat(struct udevice *dev) { struct ast2500_clk_priv *priv = dev_get_priv(dev); priv->scu = devfdt_get_addr_ptr(dev); if (IS_ERR(priv->scu)) return PTR_ERR(priv->scu); return 0; } static int ast2500_clk_bind(struct udevice *dev) { int ret; /* The reset driver does not have a device node, so bind it here */ ret = device_bind_driver(gd->dm_root, "ast_sysreset", "reset", &dev); if (ret) debug("Warning: No reset driver: ret=%d\n", ret); return 0; } static const struct udevice_id ast2500_clk_ids[] = { { .compatible = "aspeed,ast2500-scu" }, { } }; U_BOOT_DRIVER(aspeed_ast2500_scu) = { .name = "aspeed_ast2500_scu", .id = UCLASS_CLK, .of_match = ast2500_clk_ids, .priv_auto = sizeof(struct ast2500_clk_priv), .ops = &ast2500_clk_ops, .bind = ast2500_clk_bind, .of_to_plat = ast2500_clk_of_to_plat, };