/* * GE B105v2, B125v2, B155v2 * * Copyright 2018-2020 GE Inc. * Copyright 2018-2020 Collabora Ltd. * * SPDX-License-Identifier: GPL-2.0+ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "../common/vpd_reader.h" DECLARE_GLOBAL_DATA_PTR; #ifndef CONFIG_SPL_BUILD #define B1X5V2_GE_VPD_OFFSET 0x0100000 #define B1X5V2_GE_VPD_SIZE 1022 #define VPD_TYPE_INVALID 0x00 #define VPD_BLOCK_NETWORK 0x20 #define VPD_BLOCK_HWID 0x44 #define VPD_MAC_ADDRESS_LENGTH 6 #define VPD_FLAG_VALID_MAC BIT(1) #define AR8035_PHY_ID 0x004dd072 #define AR8035_PHY_DEBUG_ADDR_REG 0x1d #define AR8035_PHY_DEBUG_DATA_REG 0x1e #define AR8035_HIB_CTRL_REG 0xb #define AR8035_HIBERNATE_EN (1 << 15) static struct vpd_cache { bool is_read; u8 product_id; unsigned char mac[VPD_MAC_ADDRESS_LENGTH]; u32 flags; } vpd; enum product_type { PRODUCT_TYPE_B105V2 = 6, PRODUCT_TYPE_B105PV2 = 7, PRODUCT_TYPE_B125V2 = 8, PRODUCT_TYPE_B125PV2 = 9, PRODUCT_TYPE_B155V2 = 10, PRODUCT_TYPE_INVALID = 0, }; int dram_init(void) { gd->ram_size = imx_ddr_size(); return 0; } int power_init_board(void) { /* all required PMIC configuration happens via DT */ return 0; } static int disable_phy_hibernation(struct phy_device *phydev) { unsigned short val; if (phydev->drv->uid == AR8035_PHY_ID) { /* Disable hibernation, other configuration has been done by PHY driver */ phy_write(phydev, MDIO_DEVAD_NONE, AR8035_PHY_DEBUG_ADDR_REG, AR8035_HIB_CTRL_REG); val = phy_read(phydev, MDIO_DEVAD_NONE, AR8035_PHY_DEBUG_DATA_REG); val &= ~AR8035_HIBERNATE_EN; phy_write(phydev, MDIO_DEVAD_NONE, AR8035_PHY_DEBUG_DATA_REG, val); } else { printf("Unknown PHY: %08x\n", phydev->drv->uid); } return 0; } int board_phy_config(struct phy_device *phydev) { if (phydev->drv->config) phydev->drv->config(phydev); disable_phy_hibernation(phydev); return 0; } static int auo_g101evn01_detect(const struct display_info_t *info) { char *dev = env_get("devicetype"); return !strcmp(dev, "B105v2") || !strcmp(dev, "B105Pv2"); } static int auo_g121ean01_detect(const struct display_info_t *info) { char *dev = env_get("devicetype"); return !strcmp(dev, "B125v2") || !strcmp(dev, "B125Pv2");; } static int auo_g156xtn01_detect(const struct display_info_t *info) { char *dev = env_get("devicetype"); return !strcmp(dev, "B155v2"); } static void b1x5v2_backlight_enable(int percent) { struct udevice *panel; int ret; ret = uclass_get_device(UCLASS_PANEL, 0, &panel); if (ret) { printf("Could not find panel: %d\n", ret); return; } panel_set_backlight(panel, percent); panel_enable_backlight(panel); } static void lcd_enable(const struct display_info_t *info) { printf("Enable backlight...\n"); b1x5v2_backlight_enable(100); } struct display_info_t const displays[] = { { .di = 0, .bus = -1, .addr = -1, .pixfmt = IPU_PIX_FMT_RGB24, .detect = auo_g156xtn01_detect, .enable = lcd_enable, .mode = { .name = "AUO G156XTN01", .refresh = 60, .xres = 1368, /* because of i.MX6 limitation, actually 1366 */ .yres = 768, .pixclock = 13158, /* 76 MHz in ps */ .left_margin = 33, .right_margin = 67, .upper_margin = 4, .lower_margin = 4, .hsync_len = 94, .vsync_len = 30, .sync = FB_SYNC_EXT, .vmode = FB_VMODE_NONINTERLACED } }, { .di = 0, .bus = -1, .addr = -1, .pixfmt = IPU_PIX_FMT_RGB24, .detect = auo_g121ean01_detect, .enable = lcd_enable, .mode = { .name = "AUO G121EAN01.4", .refresh = 60, .xres = 1280, .yres = 800, .pixclock = 14992, /* 66.7 MHz in ps */ .left_margin = 8, .right_margin = 58, .upper_margin = 6, .lower_margin = 4, .hsync_len = 70, .vsync_len = 10, .sync = FB_SYNC_EXT, .vmode = FB_VMODE_NONINTERLACED } }, { .di = 0, .bus = -1, .addr = -1, .pixfmt = IPU_PIX_FMT_RGB24, .detect = auo_g101evn01_detect, .enable = lcd_enable, .mode = { .name = "AUO G101EVN01.3", .refresh = 60, .xres = 1280, .yres = 800, .pixclock = 14992, /* 66.7 MHz in ps */ .left_margin = 8, .right_margin = 58, .upper_margin = 6, .lower_margin = 4, .hsync_len = 70, .vsync_len = 10, .sync = FB_SYNC_EXT, .vmode = FB_VMODE_NONINTERLACED } } }; size_t display_count = ARRAY_SIZE(displays); static void enable_videopll(void) { struct mxc_ccm_reg *ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR; s32 timeout = 100000; setbits_le32(&ccm->analog_pll_video, BM_ANADIG_PLL_VIDEO_POWERDOWN); /* PLL_VIDEO 455MHz (24MHz * (37+11/12) / 2) * | * PLL5 * | * CS2CDR[LDB_DI0_CLK_SEL] * | * +----> LDB_DI0_SERIAL_CLK_ROOT * | * +--> CSCMR2[LDB_DI0_IPU_DIV] --> LDB_DI0_IPU 455 / 7 = 65 MHz */ clrsetbits_le32(&ccm->analog_pll_video, BM_ANADIG_PLL_VIDEO_DIV_SELECT | BM_ANADIG_PLL_VIDEO_POST_DIV_SELECT, BF_ANADIG_PLL_VIDEO_DIV_SELECT(37) | BF_ANADIG_PLL_VIDEO_POST_DIV_SELECT(1)); writel(BF_ANADIG_PLL_VIDEO_NUM_A(11), &ccm->analog_pll_video_num); writel(BF_ANADIG_PLL_VIDEO_DENOM_B(12), &ccm->analog_pll_video_denom); clrbits_le32(&ccm->analog_pll_video, BM_ANADIG_PLL_VIDEO_POWERDOWN); while (timeout--) if (readl(&ccm->analog_pll_video) & BM_ANADIG_PLL_VIDEO_LOCK) break; if (timeout < 0) printf("Warning: video pll lock timeout!\n"); clrsetbits_le32(&ccm->analog_pll_video, BM_ANADIG_PLL_VIDEO_BYPASS, BM_ANADIG_PLL_VIDEO_ENABLE); } static void setup_display(void) { struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR; struct iomuxc *iomux = (struct iomuxc *)IOMUXC_BASE_ADDR; enable_videopll(); /* When a reset/reboot is performed the display power needs to be turned * off for atleast 500ms. The boot time is ~300ms, we need to wait for * an additional 200ms here. Unfortunately we use external PMIC for * doing the reset, so can not differentiate between POR vs soft reset */ mdelay(200); /* CCM_CSCMR2 -> ldb_di0_ipu_div [IMX6SDLRM page 839] */ /* divide IPU clock by 7 */ setbits_le32(&mxc_ccm->cscmr2, MXC_CCM_CSCMR2_LDB_DI0_IPU_DIV); /* CCM_CHSCCDR -> ipu1_di0_clk_sel [IMX6SDLRM page 849] */ /* Set LDB_DI0 as clock source for IPU_DI0 */ clrsetbits_le32(&mxc_ccm->chsccdr, MXC_CCM_CHSCCDR_IPU1_DI0_CLK_SEL_MASK, (CHSCCDR_CLK_SEL_LDB_DI0 << MXC_CCM_CHSCCDR_IPU1_DI0_CLK_SEL_OFFSET)); /* Turn on IPU LDB DI0 clocks */ setbits_le32(&mxc_ccm->CCGR3, MXC_CCM_CCGR3_LDB_DI0_MASK); enable_ipu_clock(); /* IOMUXC_GPR2 [IMX6SDLRM page 2049] */ /* Set LDB Channel 0 in SPWG 24 Bit mode */ writel(IOMUXC_GPR2_DI0_VS_POLARITY_ACTIVE_HIGH | IOMUXC_GPR2_BIT_MAPPING_CH0_SPWG | IOMUXC_GPR2_DATA_WIDTH_CH0_24BIT | IOMUXC_GPR2_LVDS_CH0_MODE_ENABLED_DI0, &iomux->gpr[2]); /* IOMUXC_GPR3 [IMX6SDLRM page 2051] */ /* LVDS0 is connected to IPU DI0 */ clrsetbits_le32(&iomux->gpr[3], IOMUXC_GPR3_LVDS0_MUX_CTL_MASK, (IOMUXC_GPR3_MUX_SRC_IPU1_DI0 << IOMUXC_GPR3_LVDS0_MUX_CTL_OFFSET)); } /* * Do not overwrite the console * Use always serial for U-Boot console */ int overwrite_console(void) { return 1; } int board_early_init_f(void) { select_ldb_di_clock_source(MXC_PLL5_CLK); return 0; } static int eeti_touch_get_model(struct udevice *dev, char *result) { u8 query[68] = {0x67, 0x00, 0x42, 0x00, 0x03, 0x01, 'E', 0x00, 0x00, 0x00}; struct i2c_msg qmsg = { .addr = 0x2a, .flags = 0, .len = sizeof(query), .buf = query, }; u8 reply[66] = {0}; struct i2c_msg rmsg = { .addr = 0x2a, .flags = I2C_M_RD, .len = sizeof(reply), .buf = reply, }; int err; err = dm_i2c_xfer(dev, &qmsg, 1); if (err) return err; /* * device sends IRQ when its ok to read. To keep the code * simple we just wait an arbitrary, long enough time period. */ mdelay(10); err = dm_i2c_xfer(dev, &rmsg, 1); if (err) return err; if (reply[0] != 0x42 || reply[1] != 0x00 || reply[2] != 0x03 || reply[4] != 'E') return -EPROTO; memcpy(result, reply+5, 10); return 0; } static bool b1x5v2_board_is_p_model(void) { struct udevice *bus = NULL; struct udevice *dev = NULL; int err; err = uclass_get_device_by_name(UCLASS_I2C, "i2c@21a0000", &bus); if (err || !bus) { printf("Could not get I2C bus: %d\n", err); return true; } /* The P models do not have this port expander */ err = dm_i2c_probe(bus, 0x21, 0, &dev); if (err || !dev) { return true; } return false; } static enum product_type b1x5v2_board_type(void) { struct udevice *bus = NULL; struct udevice *dev = NULL; char model[11] = {0}; int err; int retry; err = uclass_get_device_by_name(UCLASS_I2C, "i2c@21a8000", &bus); if (err) { printf("Could not get I2C bus: %d\n", err); return PRODUCT_TYPE_INVALID; } err = dm_i2c_probe(bus, 0x41, 0, &dev); if (!err && dev) { /* Ilitek Touchscreen */ if (b1x5v2_board_is_p_model()) { return PRODUCT_TYPE_B105PV2; } else { return PRODUCT_TYPE_B105V2; } } err = dm_i2c_probe(bus, 0x2a, 0, &dev); if (err || !dev) { printf("Could not find touchscreen: %d\n", err); return PRODUCT_TYPE_INVALID; } for (retry = 0; retry < 3; ++retry) { err = eeti_touch_get_model(dev, model); if (!err) break; printf("Retry %d read EETI touchscreen model: %d\n", retry + 1, err); } if (err) { printf("Could not read EETI touchscreen model: %d\n", err); return PRODUCT_TYPE_INVALID; } if (!strcmp(model, "Orion_1320")) { /* EETI EXC80H60 */ if (b1x5v2_board_is_p_model()) { return PRODUCT_TYPE_B125PV2; } else { return PRODUCT_TYPE_B125V2; } } else if (!strcmp(model, "Orion_1343")) { /* EETI EXC80H84 */ return PRODUCT_TYPE_B155V2; } printf("Unknown EETI touchscreen model: %s\n", model); return PRODUCT_TYPE_INVALID; } static void set_env_per_board_type(enum product_type type) { switch (type) { case PRODUCT_TYPE_B105V2: env_set("resolution", "1280x800"); env_set("devicetype", "B105v2"); env_set("fdtfile", "imx6dl-b105v2.dtb"); break; case PRODUCT_TYPE_B105PV2: env_set("resolution", "1280x800"); env_set("devicetype", "B105Pv2"); env_set("fdtfile", "imx6dl-b105pv2.dtb"); break; case PRODUCT_TYPE_B125V2: env_set("resolution", "1280x800"); env_set("devicetype", "B125v2"); env_set("fdtfile", "imx6dl-b125v2.dtb"); break; case PRODUCT_TYPE_B125PV2: env_set("resolution", "1280x800"); env_set("devicetype", "B125Pv2"); env_set("fdtfile", "imx6dl-b125pv2.dtb"); break; case PRODUCT_TYPE_B155V2: env_set("resolution", "1366x768"); env_set("devicetype", "B155v2"); env_set("fdtfile", "imx6dl-b155v2.dtb"); break; default: break; } } static int b1x5v2_board_type_autodetect(void) { enum product_type product = b1x5v2_board_type(); if (product != PRODUCT_TYPE_INVALID) { set_env_per_board_type(product); return 0; } return -1; } /* * Extracts MAC and product information from the VPD. */ static int vpd_callback(struct vpd_cache *vpd, u8 id, u8 version, u8 type, size_t size, u8 const *data) { if (type == VPD_TYPE_INVALID) return 0; if (id == VPD_BLOCK_HWID && version == 1 && size >= 1) { vpd->product_id = data[0]; } else if (id == VPD_BLOCK_NETWORK && version == 1) { if (size >= VPD_MAC_ADDRESS_LENGTH) { memcpy(vpd->mac, data, VPD_MAC_ADDRESS_LENGTH); vpd->flags |= VPD_FLAG_VALID_MAC; } } return 0; } static int read_spi_vpd(struct vpd_cache *cache, int (*process_block)(struct vpd_cache *, u8 id, u8 version, u8 type, size_t size, u8 const *data)) { static const int size = B1X5V2_GE_VPD_SIZE; struct udevice *dev; int ret; u8 *data; ret = uclass_get_device_by_name(UCLASS_SPI_FLASH, "m25p80@0", &dev); if (ret) return ret; data = malloc(size); if (!data) return -ENOMEM; ret = spi_flash_read_dm(dev, B1X5V2_GE_VPD_OFFSET, size, data); if (ret) { free(data); return ret; } ret = vpd_reader(size, data, cache, process_block); free(data); return ret; } int board_init(void) { if (!read_spi_vpd(&vpd, vpd_callback)) { vpd.is_read = true; } /* address of boot parameters */ gd->bd->bi_boot_params = PHYS_SDRAM + 0x100; setup_display(); return 0; } static void init_bootcause(void) { const char *cause; /* We care about WDOG only, treating everything else as * a power-on-reset. */ if (get_imx_reset_cause() & 0x0010) cause = "WDOG"; else cause = "POR"; env_set("bootcause", cause); } int misc_init_r(void) { init_bootcause(); return 0; } #define M41T62_REG_FLAGS 0xf #define M41T62_FLAGS_OF (1 << 2) static void check_time(void) { struct udevice *rtc = NULL; struct rtc_time tm; u8 val; int ret; ret = uclass_get_device_by_name(UCLASS_RTC, "m41t62@68", &rtc); if (ret) { printf("Could not get RTC: %d\n", ret); env_set("rtc_status", "FAIL"); return; } ret = dm_i2c_read(rtc, M41T62_REG_FLAGS, &val, sizeof(val)); if (ret) { printf("Could not read RTC register: %d\n", ret); env_set("rtc_status", "FAIL"); return; } ret = dm_rtc_reset(rtc); if (ret) { printf("Could not reset RTC: %d\n", ret); env_set("rtc_status", "FAIL"); return; } if (val & M41T62_FLAGS_OF) { env_set("rtc_status", "STOP"); return; } ret = dm_rtc_get(rtc, &tm); if (ret) { printf("Could not read RTC: %d\n", ret); env_set("rtc_status", "FAIL"); return; } if (tm.tm_year > 2037) { tm.tm_sec = 0; tm.tm_min = 0; tm.tm_hour = 0; tm.tm_mday = 1; tm.tm_wday = 2; tm.tm_mon = 1; tm.tm_year = 2036; ret = dm_rtc_set(rtc, &tm); if (ret) { printf("Could not update RTC: %d\n", ret); env_set("rtc_status", "FAIL"); return; } printf("RTC behind 2037, capped to 2036 for userspace handling\n"); env_set("rtc_status", "2038"); return; } env_set("rtc_status", "OK"); } static void process_vpd(struct vpd_cache *vpd) { if (!vpd->is_read) { printf("VPD wasn't read\n"); return; } if (vpd->flags & VPD_FLAG_VALID_MAC) { eth_env_set_enetaddr_by_index("eth", 0, vpd->mac); env_set("ethact", "eth0"); } } int board_late_init(void) { process_vpd(&vpd); if (vpd.product_id >= PRODUCT_TYPE_B105V2 && vpd.product_id <= PRODUCT_TYPE_B155V2) { set_env_per_board_type((enum product_type)vpd.product_id); } else { b1x5v2_board_type_autodetect(); } printf("Board: GE %s\n", env_get("devicetype")); check_time(); return 0; } #ifdef CONFIG_OF_BOARD_SETUP int ft_board_setup(void *blob, struct bd_info *bd) { char *rtc_status = env_get("rtc_status"); fdt_setprop(blob, 0, "ge,boot-ver", version_string, strlen(version_string) + 1); fdt_setprop(blob, 0, "ge,rtc-status", rtc_status, strlen(rtc_status) + 1); return 0; } #endif static int do_b1x5v2_autodetect(struct cmd_tbl *cmdtp, int flag, int argc, char * const argv[]) { int err; err = b1x5v2_board_type_autodetect(); if (!err) printf("Identified %s\n", env_get("devicetype")); return 0; } U_BOOT_CMD( autodetect_devtype, 1, 1, do_b1x5v2_autodetect, "autodetect b1x5v2 device type", "" ); #endif // CONFIG_SPL_BUILD