// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2013 Gateworks Corporation * * Author: Tim Harvey */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "common.h" DECLARE_GLOBAL_DATA_PTR; /* configure eth0 PHY board-specific LED behavior */ int board_phy_config(struct phy_device *phydev) { unsigned short val; ofnode node; switch (phydev->phy_id) { case 0x1410dd1: puts("MV88E1510"); /* * Page 3, Register 16: LED[2:0] Function Control Register * LED[0] (SPD:Amber) R16_3.3:0 to 0111: on-GbE link * LED[1] (LNK:Green) R16_3.7:4 to 0001: on-link, blink-activity */ phy_write(phydev, MDIO_DEVAD_NONE, 22, 3); val = phy_read(phydev, MDIO_DEVAD_NONE, 16); val &= 0xff00; val |= 0x0017; phy_write(phydev, MDIO_DEVAD_NONE, 16, val); phy_write(phydev, MDIO_DEVAD_NONE, 22, 0); break; case 0x2000a231: puts("TIDP83867 "); /* LED configuration */ val = 0; val |= 0x5 << 4; /* LED1(Amber;Speed) : 1000BT link */ val |= 0xb << 8; /* LED2(Green;Link/Act): blink for TX/RX act */ phy_write(phydev, MDIO_DEVAD_NONE, 24, val); /* configure register 0x170 for ref CLKOUT */ phy_write(phydev, MDIO_DEVAD_NONE, 13, 0x001f); phy_write(phydev, MDIO_DEVAD_NONE, 14, 0x0170); phy_write(phydev, MDIO_DEVAD_NONE, 13, 0x401f); val = phy_read(phydev, MDIO_DEVAD_NONE, 14); val &= ~0x1f00; val |= 0x0b00; /* chD tx clock*/ phy_write(phydev, MDIO_DEVAD_NONE, 14, val); break; case 0xd565a401: puts("GPY111 "); node = phy_get_ofnode(phydev); if (ofnode_valid(node)) { u32 rx_delay, tx_delay; rx_delay = ofnode_read_u32_default(node, "rx-internal-delay-ps", 2000); tx_delay = ofnode_read_u32_default(node, "tx-internal-delay-ps", 2000); val = phy_read(phydev, MDIO_DEVAD_NONE, 0x17); val &= ~((0x7 << 12) | (0x7 << 8)); val |= (rx_delay / 500) << 12; val |= (tx_delay / 500) << 8; phy_write(phydev, MDIO_DEVAD_NONE, 0x17, val); } break; } /* Fixed PHY: for GW5904/GW5909 this is Marvell 88E6176 GbE Switch */ if (phydev->phy_id == PHY_FIXED_ID && (board_type == GW5904 || board_type == GW5909)) { struct mii_dev *bus = miiphy_get_dev_by_name("mdio"); puts("MV88E61XX "); /* GPIO[0] output CLK125 for RGMII_REFCLK */ bus->write(bus, 0x1c, 0, 0x1a, (1 << 15) | (0x62 << 8) | 0xfe); bus->write(bus, 0x1c, 0, 0x1a, (1 << 15) | (0x68 << 8) | 7); /* Port 0-3 LED configuration: Table 80/82 */ /* LED configuration: 7:4-green (8=Activity) 3:0 amber (8=Link) */ bus->write(bus, 0x10, 0, 0x16, 0x8088); bus->write(bus, 0x11, 0, 0x16, 0x8088); bus->write(bus, 0x12, 0, 0x16, 0x8088); bus->write(bus, 0x13, 0, 0x16, 0x8088); } if (phydev->drv->config) phydev->drv->config(phydev); return 0; } #if defined(CONFIG_VIDEO_IPUV3) static void enable_hdmi(struct display_info_t const *dev) { imx_enable_hdmi_phy(); } static int detect_lvds(struct display_info_t const *dev) { /* only the following boards support LVDS connectors */ switch (board_type) { case GW52xx: case GW53xx: case GW54xx: case GW560x: case GW5905: case GW5909: break; default: return 0; } return (i2c_get_dev(dev->bus, dev->addr) ? 1 : 0); } static void enable_lvds(struct display_info_t const *dev) { struct iomuxc *iomux = (struct iomuxc *)IOMUXC_BASE_ADDR; /* set CH0 data width to 24bit (IOMUXC_GPR2:5 0=18bit, 1=24bit) */ u32 reg = readl(&iomux->gpr[2]); reg |= IOMUXC_GPR2_DATA_WIDTH_CH0_24BIT; writel(reg, &iomux->gpr[2]); /* Configure GPIO */ switch (board_type) { case GW52xx: case GW53xx: case GW54xx: if (!strncmp(dev->mode.name, "Hannstar", 8)) { SETUP_IOMUX_PAD(PAD_SD2_CLK__GPIO1_IO10 | DIO_PAD_CFG); gpio_request(IMX_GPIO_NR(1, 10), "cabc"); gpio_direction_output(IMX_GPIO_NR(1, 10), 0); } else if (!strncmp(dev->mode.name, "DLC", 3)) { SETUP_IOMUX_PAD(PAD_SD2_CLK__GPIO1_IO10 | DIO_PAD_CFG); gpio_request(IMX_GPIO_NR(1, 10), "touch_rst#"); gpio_direction_output(IMX_GPIO_NR(1, 10), 1); } break; default: break; } /* Configure backlight */ gpio_request(IMX_GPIO_NR(1, 18), "bklt_en"); SETUP_IOMUX_PAD(PAD_SD1_CMD__GPIO1_IO18 | DIO_PAD_CFG); gpio_direction_output(IMX_GPIO_NR(1, 18), 1); } struct display_info_t const displays[] = {{ /* HDMI Output */ .bus = -1, .addr = 0, .pixfmt = IPU_PIX_FMT_RGB24, .detect = detect_hdmi, .enable = enable_hdmi, .mode = { .name = "HDMI", .refresh = 60, .xres = 1024, .yres = 768, .pixclock = 15385, .left_margin = 220, .right_margin = 40, .upper_margin = 21, .lower_margin = 7, .hsync_len = 60, .vsync_len = 10, .sync = FB_SYNC_EXT, .vmode = FB_VMODE_NONINTERLACED } }, { /* Freescale MXC-LVDS1: HannStar HSD100PXN1-A00 w/ egalx_ts cont */ .bus = 2, .addr = 0x4, .pixfmt = IPU_PIX_FMT_LVDS666, .detect = detect_lvds, .enable = enable_lvds, .mode = { .name = "Hannstar-XGA", .refresh = 60, .xres = 1024, .yres = 768, .pixclock = 15385, .left_margin = 220, .right_margin = 40, .upper_margin = 21, .lower_margin = 7, .hsync_len = 60, .vsync_len = 10, .sync = FB_SYNC_EXT, .vmode = FB_VMODE_NONINTERLACED } }, { /* DLC700JMG-T-4 */ .bus = 2, .addr = 0x38, .detect = detect_lvds, .enable = enable_lvds, .pixfmt = IPU_PIX_FMT_LVDS666, .mode = { .name = "DLC700JMGT4", .refresh = 60, .xres = 1024, /* 1024x600active pixels */ .yres = 600, .pixclock = 15385, /* 64MHz */ .left_margin = 220, .right_margin = 40, .upper_margin = 21, .lower_margin = 7, .hsync_len = 60, .vsync_len = 10, .sync = FB_SYNC_EXT, .vmode = FB_VMODE_NONINTERLACED } }, { /* DLC0700XDP21LF-C-1 */ .bus = 2, .addr = 0x38, .detect = detect_lvds, .enable = enable_lvds, .pixfmt = IPU_PIX_FMT_LVDS666, .mode = { .name = "DLC0700XDP21LF", .refresh = 60, .xres = 1024, /* 1024x600active pixels */ .yres = 600, .pixclock = 15385, /* 64MHz */ .left_margin = 220, .right_margin = 40, .upper_margin = 21, .lower_margin = 7, .hsync_len = 60, .vsync_len = 10, .sync = FB_SYNC_EXT, .vmode = FB_VMODE_NONINTERLACED } }, { /* DLC800FIG-T-3 */ .bus = 2, .addr = 0x14, .detect = detect_lvds, .enable = enable_lvds, .pixfmt = IPU_PIX_FMT_LVDS666, .mode = { .name = "DLC800FIGT3", .refresh = 60, .xres = 1024, /* 1024x768 active pixels */ .yres = 768, .pixclock = 15385, /* 64MHz */ .left_margin = 220, .right_margin = 40, .upper_margin = 21, .lower_margin = 7, .hsync_len = 60, .vsync_len = 10, .sync = FB_SYNC_EXT, .vmode = FB_VMODE_NONINTERLACED } }, { .bus = 2, .addr = 0x5d, .detect = detect_lvds, .enable = enable_lvds, .pixfmt = IPU_PIX_FMT_LVDS666, .mode = { .name = "Z101WX01", .refresh = 60, .xres = 1280, .yres = 800, .pixclock = 15385, /* 64MHz */ .left_margin = 220, .right_margin = 40, .upper_margin = 21, .lower_margin = 7, .hsync_len = 60, .vsync_len = 10, .sync = FB_SYNC_EXT, .vmode = FB_VMODE_NONINTERLACED } }, }; size_t display_count = ARRAY_SIZE(displays); static void setup_display(void) { struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR; struct iomuxc *iomux = (struct iomuxc *)IOMUXC_BASE_ADDR; int reg; enable_ipu_clock(); imx_setup_hdmi(); /* Turn on LDB0,IPU,IPU DI0 clocks */ reg = __raw_readl(&mxc_ccm->CCGR3); reg |= MXC_CCM_CCGR3_LDB_DI0_MASK; writel(reg, &mxc_ccm->CCGR3); /* set LDB0, LDB1 clk select to 011/011 */ reg = readl(&mxc_ccm->cs2cdr); reg &= ~(MXC_CCM_CS2CDR_LDB_DI0_CLK_SEL_MASK |MXC_CCM_CS2CDR_LDB_DI1_CLK_SEL_MASK); reg |= (3<cs2cdr); reg = readl(&mxc_ccm->cscmr2); reg |= MXC_CCM_CSCMR2_LDB_DI0_IPU_DIV; writel(reg, &mxc_ccm->cscmr2); reg = readl(&mxc_ccm->chsccdr); reg |= (CHSCCDR_CLK_SEL_LDB_DI0 <chsccdr); reg = IOMUXC_GPR2_BGREF_RRMODE_EXTERNAL_RES |IOMUXC_GPR2_DI1_VS_POLARITY_ACTIVE_HIGH |IOMUXC_GPR2_DI0_VS_POLARITY_ACTIVE_LOW |IOMUXC_GPR2_BIT_MAPPING_CH1_SPWG |IOMUXC_GPR2_DATA_WIDTH_CH1_18BIT |IOMUXC_GPR2_BIT_MAPPING_CH0_SPWG |IOMUXC_GPR2_DATA_WIDTH_CH0_18BIT |IOMUXC_GPR2_LVDS_CH1_MODE_DISABLED |IOMUXC_GPR2_LVDS_CH0_MODE_ENABLED_DI0; writel(reg, &iomux->gpr[2]); reg = readl(&iomux->gpr[3]); reg = (reg & ~IOMUXC_GPR3_LVDS0_MUX_CTL_MASK) | (IOMUXC_GPR3_MUX_SRC_IPU1_DI0 <gpr[3]); } #endif /* CONFIG_VIDEO_IPUV3 */ /* * Most Ventana boards have a PLX PEX860x PCIe switch onboard and use its * GPIO's as PERST# signals for its downstream ports - configure the GPIO's * properly and assert reset for 100ms. */ #define MAX_PCI_DEVS 32 struct pci_dev { pci_dev_t devfn; struct udevice *dev; unsigned short vendor; unsigned short device; unsigned short class; unsigned short busno; /* subbordinate busno */ struct pci_dev *ppar; }; struct pci_dev pci_devs[MAX_PCI_DEVS]; int pci_devno; int pci_bridgeno; void board_pci_fixup_dev(struct udevice *bus, struct udevice *udev) { struct pci_child_plat *pdata = dev_get_parent_plat(udev); struct pci_dev *pdev = &pci_devs[pci_devno++]; unsigned short vendor = pdata->vendor; unsigned short device = pdata->device; unsigned int class = pdata->class; pci_dev_t dev = dm_pci_get_bdf(udev); int i; debug("%s: %02d:%02d.%02d: %04x:%04x\n", __func__, PCI_BUS(dev), PCI_DEV(dev), PCI_FUNC(dev), vendor, device); /* store array of devs for later use in device-tree fixup */ pdev->dev = udev; pdev->devfn = dev; pdev->vendor = vendor; pdev->device = device; pdev->class = class; pdev->ppar = NULL; if (class == PCI_CLASS_BRIDGE_PCI) pdev->busno = ++pci_bridgeno; else pdev->busno = 0; /* fixup RC - it should be 00:00.0 not 00:01.0 */ if (PCI_BUS(dev) == 0) pdev->devfn = 0; /* find dev's parent */ for (i = 0; i < pci_devno; i++) { if (pci_devs[i].busno == PCI_BUS(pdev->devfn)) { pdev->ppar = &pci_devs[i]; break; } } /* assert downstream PERST# */ if (vendor == PCI_VENDOR_ID_PLX && (device & 0xfff0) == 0x8600 && PCI_DEV(dev) == 0 && PCI_FUNC(dev) == 0) { ulong val; debug("configuring PLX 860X downstream PERST#\n"); pci_bus_read_config(bus, dev, 0x62c, &val, PCI_SIZE_32); val |= 0xaaa8; /* GPIO1-7 outputs */ pci_bus_write_config(bus, dev, 0x62c, val, PCI_SIZE_32); pci_bus_read_config(bus, dev, 0x644, &val, PCI_SIZE_32); val |= 0xfe; /* GPIO1-7 output high */ pci_bus_write_config(bus, dev, 0x644, val, PCI_SIZE_32); mdelay(100); } } #ifdef CONFIG_SERIAL_TAG /* * called when setting up ATAGS before booting kernel * populate serialnum from the following (in order of priority): * serial# env var * eeprom */ void get_board_serial(struct tag_serialnr *serialnr) { char *serial = env_get("serial#"); if (serial) { serialnr->high = 0; serialnr->low = dectoul(serial, NULL); } else if (ventana_info.model[0]) { serialnr->high = 0; serialnr->low = ventana_info.serial; } else { serialnr->high = 0; serialnr->low = 0; } } #endif /* * Board Support */ int board_early_init_f(void) { #if defined(CONFIG_VIDEO_IPUV3) setup_display(); #endif return 0; } int dram_init(void) { gd->ram_size = imx_ddr_size(); return 0; } int board_init(void) { struct iomuxc *const iomuxc_regs = (struct iomuxc *)IOMUXC_BASE_ADDR; clrsetbits_le32(&iomuxc_regs->gpr[1], IOMUXC_GPR1_OTG_ID_MASK, IOMUXC_GPR1_OTG_ID_GPIO1); /* address of linux boot parameters */ gd->bd->bi_boot_params = PHYS_SDRAM + 0x100; /* read Gateworks EEPROM into global struct (used later) */ board_type = read_eeprom(&ventana_info); setup_iomux_gpio(board_type); /* show GSC details */ run_command("gsc", 0); return 0; } int board_fit_config_name_match(const char *name) { static char init; const char *dtb; char buf[32]; int i = 0; do { dtb = gsc_get_dtb_name(i++, buf, sizeof(buf)); if (dtb && !strcmp(dtb, name)) { if (!init++) printf("DTB: %s\n", name); return 0; } } while (dtb); return -1; } #if defined(CONFIG_DISPLAY_BOARDINFO_LATE) /* * called during late init (after relocation and after board_init()) * by virtue of CONFIG_DISPLAY_BOARDINFO_LATE as we needed i2c initialized and * EEPROM read. */ int checkboard(void) { struct ventana_board_info *info = &ventana_info; const char *p; int quiet; /* Quiet or minimal output mode */ quiet = 0; p = env_get("quiet"); if (p) quiet = simple_strtol(p, NULL, 10); else env_set("quiet", "0"); puts("\nGateworks Corporation Copyright 2014\n"); if (info->model[0]) { printf("Model: %s\n", info->model); printf("MFGDate: %02x-%02x-%02x%02x\n", info->mfgdate[0], info->mfgdate[1], info->mfgdate[2], info->mfgdate[3]); printf("Serial:%d\n", info->serial); } else { puts("Invalid EEPROM - board will not function fully\n"); } if (quiet) return 0; return 0; } #endif #ifdef CONFIG_CMD_BMODE /* * BOOT_CFG1, BOOT_CFG2, BOOT_CFG3, BOOT_CFG4 * see Table 8-11 and Table 5-9 * BOOT_CFG1[7] = 1 (boot from NAND) * BOOT_CFG1[5] = 0 - raw NAND * BOOT_CFG1[4] = 0 - default pad settings * BOOT_CFG1[3:2] = 00 - devices = 1 * BOOT_CFG1[1:0] = 00 - Row Address Cycles = 3 * BOOT_CFG2[4:3] = 00 - Boot Search Count = 2 * BOOT_CFG2[2:1] = 01 - Pages In Block = 64 * BOOT_CFG2[0] = 0 - Reset time 12ms */ static const struct boot_mode board_boot_modes[] = { /* NAND: 64pages per block, 3 row addr cycles, 2 copies of FCB/DBBT */ { "nand", MAKE_CFGVAL(0x80, 0x02, 0x00, 0x00) }, { "emmc2", MAKE_CFGVAL(0x60, 0x48, 0x00, 0x00) }, /* GW5600 */ { "emmc3", MAKE_CFGVAL(0x60, 0x50, 0x00, 0x00) }, /* GW5903/4/5 */ { NULL, 0 }, }; #endif /* setup GPIO pinmux and default configuration per baseboard and env */ void setup_board_gpio(int board, struct ventana_board_info *info) { const char *s; char arg[10]; size_t len; int i; int quiet = simple_strtol(env_get("quiet"), NULL, 10); if (board >= GW_UNKNOWN) return; /* RS232_EN# */ if (gpio_cfg[board].rs232_en) { gpio_direction_output(gpio_cfg[board].rs232_en, (hwconfig("rs232")) ? 0 : 1); } /* MSATA Enable */ if (gpio_cfg[board].msata_en && is_cpu_type(MXC_CPU_MX6Q)) { gpio_direction_output(GP_MSATA_SEL, (hwconfig("msata")) ? 1 : 0); } /* USBOTG Select (PCISKT or FrontPanel) */ if (gpio_cfg[board].usb_sel) { gpio_direction_output(gpio_cfg[board].usb_sel, (hwconfig("usb_pcisel")) ? 1 : 0); } /* * Configure DIO pinmux/padctl registers * see IMX6DQRM/IMX6SDLRM IOMUXC_SW_PAD_CTL_PAD_* register definitions */ for (i = 0; i < gpio_cfg[board].dio_num; i++) { struct dio_cfg *cfg = &gpio_cfg[board].dio_cfg[i]; iomux_v3_cfg_t ctrl = DIO_PAD_CFG; unsigned int cputype = is_cpu_type(MXC_CPU_MX6Q) ? 0 : 1; if (!cfg->gpio_padmux[0] && !cfg->gpio_padmux[1]) continue; sprintf(arg, "dio%d", i); if (!hwconfig(arg)) continue; s = hwconfig_subarg(arg, "padctrl", &len); if (s) { ctrl = MUX_PAD_CTRL(hextoul(s, NULL) & 0x1ffff) | MUX_MODE_SION; } if (hwconfig_subarg_cmp(arg, "mode", "gpio")) { if (!quiet) { printf("DIO%d: GPIO%d_IO%02d (gpio-%d)\n", i, (cfg->gpio_param / 32) + 1, cfg->gpio_param % 32, cfg->gpio_param); } imx_iomux_v3_setup_pad(cfg->gpio_padmux[cputype] | ctrl); gpio_requestf(cfg->gpio_param, "dio%d", i); gpio_direction_input(cfg->gpio_param); } else if (hwconfig_subarg_cmp(arg, "mode", "pwm")) { if (!cfg->pwm_param) { printf("DIO%d: Error: pwm config invalid\n", i); continue; } if (!quiet) printf("DIO%d: pwm%d\n", i, cfg->pwm_param); imx_iomux_v3_setup_pad(cfg->pwm_padmux[cputype] | MUX_PAD_CTRL(ctrl)); } } if (!quiet) { if (gpio_cfg[board].msata_en && is_cpu_type(MXC_CPU_MX6Q)) { printf("MSATA: %s\n", (hwconfig("msata") ? "enabled" : "disabled")); } if (gpio_cfg[board].rs232_en) { printf("RS232: %s\n", (hwconfig("rs232")) ? "enabled" : "disabled"); } } } /* late init */ int misc_init_r(void) { struct ventana_board_info *info = &ventana_info; char buf[256]; int i; /* set env vars based on EEPROM data */ if (ventana_info.model[0]) { char str[16], fdt[36]; char *p; const char *cputype = ""; /* * FDT name will be prefixed with CPU type. Three versions * will be created each increasingly generic and bootloader * env scripts will try loading each from most specific to * least. */ if (is_cpu_type(MXC_CPU_MX6Q) || is_cpu_type(MXC_CPU_MX6D)) cputype = "imx6q"; else if (is_cpu_type(MXC_CPU_MX6DL) || is_cpu_type(MXC_CPU_MX6SOLO)) cputype = "imx6dl"; env_set("soctype", cputype); if (8 << (ventana_info.nand_flash_size-1) >= 2048) env_set("flash_layout", "large"); else env_set("flash_layout", "normal"); memset(str, 0, sizeof(str)); for (i = 0; i < (sizeof(str)-1) && info->model[i]; i++) str[i] = tolower(info->model[i]); env_set("model", str); if (!env_get("fdt_file")) { sprintf(fdt, "%s-%s.dtb", cputype, str); env_set("fdt_file", fdt); } p = strchr(str, '-'); if (p) { *p++ = 0; env_set("model_base", str); sprintf(fdt, "%s-%s.dtb", cputype, str); env_set("fdt_file1", fdt); if (board_type != GW551x && board_type != GW552x && board_type != GW553x && board_type != GW560x) str[4] = 'x'; str[5] = 'x'; str[6] = 0; sprintf(fdt, "%s-%s.dtb", cputype, str); env_set("fdt_file2", fdt); } /* initialize env from EEPROM */ if (test_bit(EECONFIG_ETH0, info->config) && !env_get("ethaddr")) { eth_env_set_enetaddr("ethaddr", info->mac0); } if (test_bit(EECONFIG_ETH1, info->config) && !env_get("eth1addr")) { eth_env_set_enetaddr("eth1addr", info->mac1); } /* board serial-number */ sprintf(str, "%6d", info->serial); env_set("serial#", str); /* memory MB */ sprintf(str, "%d", (int) (gd->ram_size >> 20)); env_set("mem_mb", str); } /* Set a non-initialized hwconfig based on board configuration */ if (!strcmp(env_get("hwconfig"), "_UNKNOWN_")) { buf[0] = 0; if (gpio_cfg[board_type].rs232_en) strcat(buf, "rs232;"); for (i = 0; i < gpio_cfg[board_type].dio_num; i++) { char buf1[32]; sprintf(buf1, "dio%d:mode=gpio;", i); if (strlen(buf) + strlen(buf1) < sizeof(buf)) strcat(buf, buf1); } env_set("hwconfig", buf); } /* setup baseboard specific GPIO based on board and env */ setup_board_gpio(board_type, info); #ifdef CONFIG_CMD_BMODE add_board_boot_modes(board_boot_modes); #endif /* disable boot watchdog */ gsc_boot_wd_disable(); return 0; } #ifdef CONFIG_OF_BOARD_SETUP static int ft_sethdmiinfmt(void *blob, char *mode) { int off; if (!mode) return -EINVAL; off = fdt_node_offset_by_compatible(blob, -1, "nxp,tda1997x"); if (off < 0) return off; if (0 == strcasecmp(mode, "yuv422bt656")) { u8 cfg[] = { 0x00, 0x00, 0x00, 0x82, 0x81, 0x00, 0x00, 0x00, 0x00 }; mode = "422_ccir"; fdt_setprop(blob, off, "vidout_fmt", mode, strlen(mode) + 1); fdt_setprop_u32(blob, off, "vidout_trc", 1); fdt_setprop_u32(blob, off, "vidout_blc", 1); fdt_setprop(blob, off, "vidout_portcfg", cfg, sizeof(cfg)); printf(" set HDMI input mode to %s\n", mode); } else if (0 == strcasecmp(mode, "yuv422smp")) { u8 cfg[] = { 0x00, 0x00, 0x00, 0x88, 0x87, 0x00, 0x82, 0x81, 0x00 }; mode = "422_smp"; fdt_setprop(blob, off, "vidout_fmt", mode, strlen(mode) + 1); fdt_setprop_u32(blob, off, "vidout_trc", 0); fdt_setprop_u32(blob, off, "vidout_blc", 0); fdt_setprop(blob, off, "vidout_portcfg", cfg, sizeof(cfg)); printf(" set HDMI input mode to %s\n", mode); } else { return -EINVAL; } return 0; } #if defined(CONFIG_CMD_PCI) #define PCI_ID(x) ( \ (PCI_BUS(x->devfn)<<16)| \ (PCI_DEV(x->devfn)<<11)| \ (PCI_FUNC(x->devfn)<<8) \ ) int fdt_add_pci_node(void *blob, int par, struct pci_dev *dev) { uint32_t reg[5]; char node[32]; int np; sprintf(node, "pcie@%d,%d,%d", PCI_BUS(dev->devfn), PCI_DEV(dev->devfn), PCI_FUNC(dev->devfn)); np = fdt_subnode_offset(blob, par, node); if (np >= 0) return np; np = fdt_add_subnode(blob, par, node); if (np < 0) { printf(" %s failed: no space\n", __func__); return np; } memset(reg, 0, sizeof(reg)); reg[0] = cpu_to_fdt32(PCI_ID(dev)); fdt_setprop(blob, np, "reg", reg, sizeof(reg)); return np; } /* build a path of nested PCI devs for all bridges passed through */ int fdt_add_pci_path(void *blob, struct pci_dev *dev) { struct pci_dev *bridges[MAX_PCI_DEVS]; int k, np; /* build list of parents */ np = fdt_node_offset_by_compatible(blob, -1, "fsl,imx6q-pcie"); if (np < 0) return np; k = 0; while (dev) { bridges[k++] = dev; dev = dev->ppar; }; /* now add them the to DT in reverse order */ while (k--) { np = fdt_add_pci_node(blob, np, bridges[k]); if (np < 0) break; } return np; } /* * The GW16082 has a hardware errata errata such that it's * INTA/B/C/D are mis-mapped to its four slots (slot12-15). Because * of this normal PCI interrupt swizzling will not work so we will * provide an irq-map via device-tree. */ int fdt_fixup_gw16082(void *blob, int np, struct pci_dev *dev) { int len; int host; uint32_t imap_new[8*4*4]; const uint32_t *imap; uint32_t irq[4]; uint32_t reg[4]; int i; /* build irq-map based on host controllers map */ host = fdt_node_offset_by_compatible(blob, -1, "fsl,imx6q-pcie"); if (host < 0) { printf(" %s failed: missing host\n", __func__); return host; } /* use interrupt data from root complex's node */ imap = fdt_getprop(blob, host, "interrupt-map", &len); if (!imap || len != 128) { printf(" %s failed: invalid interrupt-map\n", __func__); return -FDT_ERR_NOTFOUND; } /* obtain irq's of host controller in pin order */ for (i = 0; i < 4; i++) irq[(fdt32_to_cpu(imap[(i*8)+3])-1)%4] = imap[(i*8)+6]; /* * determine number of swizzles necessary: * For each bridge we pass through we need to swizzle * the number of the slot we are on. */ struct pci_dev *d; int b; b = 0; d = dev->ppar; while(d && d->ppar) { b += PCI_DEV(d->devfn); d = d->ppar; } /* create new irq mappings for slots12-15 * * J3 AD28 12 INTD INTA * J4 AD29 13 INTC INTD * J5 AD30 14 INTB INTC * J2 AD31 15 INTA INTB */ for (i = 0; i < 4; i++) { /* addr matches bus:dev:func */ u32 addr = dev->busno << 16 | (12+i) << 11; /* default cells from root complex */ memcpy(&imap_new[i*32], imap, 128); /* first cell is PCI device address (BDF) */ imap_new[(i*32)+(0*8)+0] = cpu_to_fdt32(addr); imap_new[(i*32)+(1*8)+0] = cpu_to_fdt32(addr); imap_new[(i*32)+(2*8)+0] = cpu_to_fdt32(addr); imap_new[(i*32)+(3*8)+0] = cpu_to_fdt32(addr); /* third cell is pin */ imap_new[(i*32)+(0*8)+3] = cpu_to_fdt32(1); imap_new[(i*32)+(1*8)+3] = cpu_to_fdt32(2); imap_new[(i*32)+(2*8)+3] = cpu_to_fdt32(3); imap_new[(i*32)+(3*8)+3] = cpu_to_fdt32(4); /* sixth cell is relative interrupt */ imap_new[(i*32)+(0*8)+6] = irq[(15-(12+i)+b+0)%4]; imap_new[(i*32)+(1*8)+6] = irq[(15-(12+i)+b+1)%4]; imap_new[(i*32)+(2*8)+6] = irq[(15-(12+i)+b+2)%4]; imap_new[(i*32)+(3*8)+6] = irq[(15-(12+i)+b+3)%4]; } fdt_setprop(blob, np, "interrupt-map", imap_new, sizeof(imap_new)); reg[0] = cpu_to_fdt32(0xfff00); reg[1] = 0; reg[2] = 0; reg[3] = cpu_to_fdt32(0x7); fdt_setprop(blob, np, "interrupt-map-mask", reg, sizeof(reg)); fdt_setprop_cell(blob, np, "#interrupt-cells", 1); fdt_setprop_string(blob, np, "device_type", "pci"); fdt_setprop_cell(blob, np, "#address-cells", 3); fdt_setprop_cell(blob, np, "#size-cells", 2); printf(" Added custom interrupt-map for GW16082\n"); return 0; } /* The sky2 GigE MAC obtains it's MAC addr from device-tree by default */ int fdt_fixup_sky2(void *blob, int np, struct pci_dev *dev) { char *tmp, *end; char mac[16]; unsigned char mac_addr[6]; int j; sprintf(mac, "eth1addr"); tmp = env_get(mac); if (tmp) { for (j = 0; j < 6; j++) { mac_addr[j] = tmp ? hextoul(tmp, &end) : 0; if (tmp) tmp = (*end) ? end+1 : end; } fdt_setprop(blob, np, "local-mac-address", mac_addr, sizeof(mac_addr)); printf(" Added mac addr for eth1\n"); return 0; } return -1; } /* * PCI DT nodes must be nested therefore if we need to apply a DT fixup * we will walk the PCI bus and add bridge nodes up to the device receiving * the fixup. */ void ft_board_pci_fixup(void *blob, struct bd_info *bd) { int i, np; struct pci_dev *dev; for (i = 0; i < pci_devno; i++) { dev = &pci_devs[i]; /* * The GW16082 consists of a TI XIO2001 PCIe-to-PCI bridge and * an EEPROM at i2c1-0x50. */ if ((dev->vendor == PCI_VENDOR_ID_TI) && (dev->device == 0x8240) && i2c_get_dev(1, 0x50)) { np = fdt_add_pci_path(blob, dev); if (np > 0) fdt_fixup_gw16082(blob, np, dev); } /* ethernet1 mac address */ else if ((dev->vendor == PCI_VENDOR_ID_MARVELL) && (dev->device == 0x4380)) { np = fdt_add_pci_path(blob, dev); if (np > 0) fdt_fixup_sky2(blob, np, dev); } } } #endif /* if defined(CONFIG_CMD_PCI) */ #define WDOG1_ADDR 0x20bc000 #define WDOG2_ADDR 0x20c0000 #define GPIO3_ADDR 0x20a4000 #define USDHC3_ADDR 0x2198000 static void ft_board_wdog_fixup(void *blob, phys_addr_t addr) { int off = fdt_node_offset_by_compat_reg(blob, "fsl,imx6q-wdt", addr); if (off) { fdt_delprop(blob, off, "ext-reset-output"); fdt_delprop(blob, off, "fsl,ext-reset-output"); } } void ft_early_fixup(void *blob, int board_type) { struct ventana_board_info *info = &ventana_info; char rev = 0; int i; /* determine board revision */ for (i = sizeof(ventana_info.model) - 1; i > 0; i--) { if (ventana_info.model[i] >= 'A') { rev = ventana_info.model[i]; break; } } /* * Board model specific fixups */ switch (board_type) { case GW51xx: /* * disable wdog node for GW51xx-A/B to work around * errata causing wdog timer to be unreliable. */ if (rev >= 'A' && rev < 'C') { i = fdt_node_offset_by_compat_reg(blob, "fsl,imx6q-wdt", WDOG1_ADDR); if (i) fdt_status_disabled(blob, i); } /* GW51xx-E adds WDOG1_B external reset */ if (rev < 'E') ft_board_wdog_fixup(blob, WDOG1_ADDR); break; case GW52xx: /* GW522x Uses GPIO3_IO23 instead of GPIO1_IO29 */ if (info->model[4] == '2') { u32 handle = 0; u32 *range = NULL; i = fdt_node_offset_by_compatible(blob, -1, "fsl,imx6q-pcie"); if (i) range = (u32 *)fdt_getprop(blob, i, "reset-gpio", NULL); if (range) { i = fdt_node_offset_by_compat_reg(blob, "fsl,imx6q-gpio", GPIO3_ADDR); if (i) handle = fdt_get_phandle(blob, i); if (handle) { range[0] = cpu_to_fdt32(handle); range[1] = cpu_to_fdt32(23); } } /* these have broken usd_vsel */ if (strstr((const char *)info->model, "SP318-B") || strstr((const char *)info->model, "SP331-B")) gpio_cfg[board_type].usd_vsel = 0; /* GW522x-B adds WDOG1_B external reset */ if (rev < 'B') ft_board_wdog_fixup(blob, WDOG1_ADDR); } /* GW520x-E adds WDOG1_B external reset */ else if (info->model[4] == '0' && rev < 'E') ft_board_wdog_fixup(blob, WDOG1_ADDR); break; case GW53xx: /* GW53xx-E adds WDOG1_B external reset */ if (rev < 'E') ft_board_wdog_fixup(blob, WDOG1_ADDR); /* GW53xx-G has an adv7280 instead of an adv7180 */ else if (rev > 'F') { i = fdt_node_offset_by_compatible(blob, -1, "adi,adv7180"); if (i) { fdt_setprop_string(blob, i, "compatible", "adi,adv7280"); fdt_setprop_empty(blob, i, "adv,force-bt656-4"); } } break; case GW54xx: /* * disable serial2 node for GW54xx for compatibility with older * 3.10.x kernel that improperly had this node enabled in the DT */ fdt_set_status_by_alias(blob, "serial2", FDT_STATUS_DISABLED); /* GW54xx-E adds WDOG2_B external reset */ if (rev < 'E') ft_board_wdog_fixup(blob, WDOG2_ADDR); /* GW54xx-G has an adv7280 instead of an adv7180 */ else if (rev > 'F') { i = fdt_node_offset_by_compatible(blob, -1, "adi,adv7180"); if (i) { fdt_setprop_string(blob, i, "compatible", "adi,adv7280"); fdt_setprop_empty(blob, i, "adv,force-bt656-4"); } } break; case GW551x: /* GW551x-C adds WDOG1_B external reset */ if (rev < 'C') ft_board_wdog_fixup(blob, WDOG1_ADDR); break; case GW5901: case GW5902: /* GW5901/GW5901 revB adds WDOG1_B as an external reset */ if (rev < 'B') ft_board_wdog_fixup(blob, WDOG1_ADDR); break; } /* remove no-1-8-v if UHS-I support is present */ if (gpio_cfg[board_type].usd_vsel) { debug("Enabling UHS-I support\n"); i = fdt_node_offset_by_compat_reg(blob, "fsl,imx6q-usdhc", USDHC3_ADDR); if (i) fdt_delprop(blob, i, "no-1-8-v"); } } /* * called prior to booting kernel or by 'fdt boardsetup' command * * unless 'fdt_noauto' env var is set we will update the following in the DTB: * - mtd partitions based on mtdparts/mtdids env * - system-serial (board serial num from EEPROM) * - board (full model from EEPROM) * - peripherals removed from DTB if not loaded on board (per EEPROM config) */ #define PWM0_ADDR 0x2080000 int ft_board_setup(void *blob, struct bd_info *bd) { struct ventana_board_info *info = &ventana_info; struct ventana_eeprom_config *cfg; static const struct node_info nand_nodes[] = { { "sst,w25q256", MTD_DEV_TYPE_NOR, }, /* SPI flash */ { "fsl,imx6q-gpmi-nand", MTD_DEV_TYPE_NAND, }, /* NAND flash */ }; const char *model = env_get("model"); const char *display = env_get("display"); int i; char rev = 0; /* determine board revision */ for (i = sizeof(ventana_info.model) - 1; i > 0; i--) { if (ventana_info.model[i] >= 'A') { rev = ventana_info.model[i]; break; } } if (env_get("fdt_noauto")) { puts(" Skiping ft_board_setup (fdt_noauto defined)\n"); return 0; } /* Update MTD partition nodes using info from mtdparts env var */ puts(" Updating MTD partitions...\n"); fdt_fixup_mtdparts(blob, nand_nodes, ARRAY_SIZE(nand_nodes)); /* Update display timings from display env var */ if (display) { if (fdt_fixup_display(blob, fdt_get_alias(blob, "lvds0"), display) >= 0) printf(" Set display timings for %s...\n", display); } printf(" Adjusting FDT per EEPROM for %s...\n", model); /* board serial number */ fdt_setprop(blob, 0, "system-serial", env_get("serial#"), strlen(env_get("serial#")) + 1); /* board (model contains model from device-tree) */ fdt_setprop(blob, 0, "board", info->model, strlen((const char *)info->model) + 1); /* set desired digital video capture format */ ft_sethdmiinfmt(blob, env_get("hdmiinfmt")); /* early board/revision ft fixups */ ft_early_fixup(blob, board_type); /* Configure DIO */ for (i = 0; i < gpio_cfg[board_type].dio_num; i++) { struct dio_cfg *cfg = &gpio_cfg[board_type].dio_cfg[i]; char arg[10]; sprintf(arg, "dio%d", i); if (!hwconfig(arg)) continue; if (hwconfig_subarg_cmp(arg, "mode", "pwm") && cfg->pwm_param) { phys_addr_t addr; int off; printf(" Enabling pwm%d for DIO%d\n", cfg->pwm_param, i); addr = PWM0_ADDR + (0x4000 * (cfg->pwm_param - 1)); off = fdt_node_offset_by_compat_reg(blob, "fsl,imx6q-pwm", addr); if (off) fdt_status_okay(blob, off); } } #if defined(CONFIG_CMD_PCI) if (!env_get("nopcifixup")) ft_board_pci_fixup(blob, bd); #endif /* * remove reset gpio control as we configure the PHY registers * for internal delay, LED config, and clock config in the bootloader */ i = fdt_node_offset_by_compatible(blob, -1, "fsl,imx6q-fec"); if (i) fdt_delprop(blob, i, "phy-reset-gpios"); /* * Peripheral Config: * remove nodes by alias path if EEPROM config tells us the * peripheral is not loaded on the board. */ if (env_get("fdt_noconfig")) { puts(" Skiping periperhal config (fdt_noconfig defined)\n"); return 0; } cfg = econfig; while (cfg->name) { if (!test_bit(cfg->bit, info->config)) { fdt_del_node_and_alias(blob, cfg->dtalias ? cfg->dtalias : cfg->name); } cfg++; } return 0; } #endif /* CONFIG_OF_BOARD_SETUP */ int board_mmc_get_env_dev(int devno) { return devno; }