/* SPDX-License-Identifier: GPL-2.0+ */ /* * (C) Copyright 2002 * Daniel Engström, Omicron Ceti AB, daniel@omicron.se. */ #ifndef _U_BOOT_I386_H_ #define _U_BOOT_I386_H_ 1 struct global_data; extern char gdt_rom[]; /* cpu/.../cpu.c */ int arch_cpu_init(void); /** * x86_cpu_init_f() - Set up basic features of the x86 CPU * * 0 on success, -ve on error */ int x86_cpu_init_f(void); /** * x86_cpu_reinit_f() - Set up the CPU a second time * * Once cpu_init_f() has been called (e.g. in SPL) we should not call it * again (e.g. in U-Boot proper) since it sets up the state from scratch. * Call this function in later phases of U-Boot instead. It reads the CPU * identify so that CPU functions can be used correctly, but does not change * anything. * * Return: 0 (indicating success, to mimic cpu_init_f()) */ int x86_cpu_reinit_f(void); /** * x86_cpu_init_tpl() - Do the minimum possible CPU init * * This just sets up the CPU features and figured out the identity * * Return: 0 (indicating success, to mimic cpu_init_f()) */ int x86_cpu_init_tpl(void); /** * cpu_reinit_fpu() - Reinit the FPU if something is wrong with it * * The FSP-M code can leave registers in use in the FPU. This functions reinits * it so that the FPU can be used safely */ void cpu_reinit_fpu(void); int cpu_init_f(void); void setup_gdt(struct global_data *id, u64 *gdt_addr); /* * Setup FSP execution environment GDT to use the one we used in * arch/x86/cpu/start16.S and reload the segment registers. */ void setup_fsp_gdt(void); int init_cache(void); int cleanup_before_linux(void); /* cpu/.../timer.c */ void timer_isr(void *); typedef void (timer_fnc_t) (void); int register_timer_isr (timer_fnc_t *isr_func); unsigned long get_tbclk_mhz(void); void timer_set_base(uint64_t base); int i8254_init(void); /* cpu/.../interrupts.c */ int cpu_init_interrupts(void); int cleanup_before_linux(void); int x86_cleanup_before_linux(void); void x86_enable_caches(void); void x86_disable_caches(void); int x86_init_cache(void); phys_addr_t board_get_usable_ram_top(phys_size_t total_size); int default_print_cpuinfo(void); /* Set up a UART which can be used with printch(), printhex8(), etc. */ int setup_internal_uart(int enable); void isa_unmap_rom(u32 addr); u32 isa_map_rom(u32 bus_addr, int size); /* arch/x86/lib/... */ int video_bios_init(void); /* arch/x86/lib/fsp1,2/... */ /** * fsp_save_s3_stack() - save stack address to CMOS for next S3 boot * * At the end of pre-relocation phase, save the new stack address * to CMOS and use it as the stack on next S3 boot for fsp_init() * continuation function. * * @return: 0 if OK, -ve on error */ int fsp_save_s3_stack(void); /** * board_init_f_r_trampoline() - jump to relocated address with new stack * * @sp: New stack pointer to use */ void __noreturn board_init_f_r_trampoline(ulong sp); /** * board_init_f_r() - jump to relocated U-Boot * * This is used to jump from pre-relocation to post-relocation U-Boot. It * enables the cache and jump to the new location. */ void __noreturn board_init_f_r(void); /* * board_init_f_r_trampoline64() - jump to relocated address with new stack * * This is the 64-bit version * * @new_gd: New global_data pointer to use * @sp: New stack pointer to pass on to board_init_r() */ void __noreturn board_init_f_r_trampoline64(struct global_data *new_gd, ulong sp); int arch_misc_init(void); /* Read the time stamp counter */ static inline notrace uint64_t rdtsc(void) { uint32_t high, low; __asm__ __volatile__("rdtsc" : "=a" (low), "=d" (high)); return (((uint64_t)high) << 32) | low; } /* board/... */ void timer_set_tsc_base(uint64_t new_base); uint64_t timer_get_tsc(void); void quick_ram_check(void); #define PCI_VGA_RAM_IMAGE_START 0xc0000 #endif /* _U_BOOT_I386_H_ */