// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (c) 2011 The Chromium OS Authors. */ #define _GNU_SOURCE #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Environment variable for time offset */ #define ENV_TIME_OFFSET "UBOOT_SB_TIME_OFFSET" /* Operating System Interface */ struct os_mem_hdr { size_t length; /* number of bytes in the block */ }; ssize_t os_read(int fd, void *buf, size_t count) { return read(fd, buf, count); } ssize_t os_write(int fd, const void *buf, size_t count) { return write(fd, buf, count); } int os_printf(const char *fmt, ...) { va_list args; int i; va_start(args, fmt); i = vfprintf(stdout, fmt, args); va_end(args); return i; } off_t os_lseek(int fd, off_t offset, int whence) { if (whence == OS_SEEK_SET) whence = SEEK_SET; else if (whence == OS_SEEK_CUR) whence = SEEK_CUR; else if (whence == OS_SEEK_END) whence = SEEK_END; else os_exit(1); return lseek(fd, offset, whence); } int os_open(const char *pathname, int os_flags) { int flags; switch (os_flags & OS_O_MASK) { case OS_O_RDONLY: default: flags = O_RDONLY; break; case OS_O_WRONLY: flags = O_WRONLY; break; case OS_O_RDWR: flags = O_RDWR; break; } if (os_flags & OS_O_CREAT) flags |= O_CREAT; if (os_flags & OS_O_TRUNC) flags |= O_TRUNC; /* * During a cold reset execv() is used to relaunch the U-Boot binary. * We must ensure that all files are closed in this case. */ flags |= O_CLOEXEC; return open(pathname, flags, 0777); } int os_close(int fd) { /* Do not close the console input */ if (fd) return close(fd); return -1; } int os_unlink(const char *pathname) { return unlink(pathname); } void os_exit(int exit_code) { exit(exit_code); } unsigned int os_alarm(unsigned int seconds) { return alarm(seconds); } void os_set_alarm_handler(void (*handler)(int)) { if (!handler) handler = SIG_DFL; signal(SIGALRM, handler); } void os_raise_sigalrm(void) { raise(SIGALRM); } int os_write_file(const char *fname, const void *buf, int size) { int fd; fd = os_open(fname, OS_O_WRONLY | OS_O_CREAT | OS_O_TRUNC); if (fd < 0) { printf("Cannot open file '%s'\n", fname); return -EIO; } if (os_write(fd, buf, size) != size) { printf("Cannot write to file '%s'\n", fname); os_close(fd); return -EIO; } os_close(fd); return 0; } off_t os_filesize(int fd) { off_t size; size = os_lseek(fd, 0, OS_SEEK_END); if (size < 0) return -errno; if (os_lseek(fd, 0, OS_SEEK_SET) < 0) return -errno; return size; } int os_read_file(const char *fname, void **bufp, int *sizep) { off_t size; int ret = -EIO; int fd; fd = os_open(fname, OS_O_RDONLY); if (fd < 0) { printf("Cannot open file '%s'\n", fname); goto err; } size = os_filesize(fd); if (size < 0) { printf("Cannot get file size of '%s'\n", fname); goto err; } *bufp = os_malloc(size); if (!*bufp) { printf("Not enough memory to read file '%s'\n", fname); ret = -ENOMEM; goto err; } if (os_read(fd, *bufp, size) != size) { printf("Cannot read from file '%s'\n", fname); goto err; } os_close(fd); *sizep = size; return 0; err: os_close(fd); return ret; } int os_map_file(const char *pathname, int os_flags, void **bufp, int *sizep) { void *ptr; off_t size; int ifd; ifd = os_open(pathname, os_flags); if (ifd < 0) { printf("Cannot open file '%s'\n", pathname); return -EIO; } size = os_filesize(ifd); if (size < 0) { printf("Cannot get file size of '%s'\n", pathname); return -EIO; } if ((unsigned long long)size > (unsigned long long)SIZE_MAX) { printf("File '%s' too large to map\n", pathname); return -EIO; } ptr = mmap(0, size, PROT_READ | PROT_WRITE, MAP_SHARED, ifd, 0); if (ptr == MAP_FAILED) { printf("Can't map file '%s': %s\n", pathname, strerror(errno)); return -EPERM; } *bufp = ptr; *sizep = size; return 0; } int os_unmap(void *buf, int size) { if (munmap(buf, size)) { printf("Can't unmap %p %x\n", buf, size); return -EIO; } return 0; } int os_persistent_file(char *buf, int maxsize, const char *fname) { const char *dirname = getenv("U_BOOT_PERSISTENT_DATA_DIR"); char *ptr; int len; len = strlen(fname) + (dirname ? strlen(dirname) + 1 : 0) + 1; if (len > maxsize) return -ENOSPC; ptr = buf; if (dirname) { strcpy(ptr, dirname); ptr += strlen(dirname); *ptr++ = '/'; } strcpy(ptr, fname); if (access(buf, F_OK) == -1) return -ENOENT; return 0; } /* Restore tty state when we exit */ static struct termios orig_term; static bool term_setup; static bool term_nonblock; void os_fd_restore(void) { if (term_setup) { int flags; tcsetattr(0, TCSANOW, &orig_term); if (term_nonblock) { flags = fcntl(0, F_GETFL, 0); fcntl(0, F_SETFL, flags & ~O_NONBLOCK); } term_setup = false; } } static void os_sigint_handler(int sig) { os_fd_restore(); signal(SIGINT, SIG_DFL); raise(SIGINT); } static void os_signal_handler(int sig, siginfo_t *info, void *con) { ucontext_t __maybe_unused *context = con; unsigned long pc; #if defined(__x86_64__) pc = context->uc_mcontext.gregs[REG_RIP]; #elif defined(__aarch64__) pc = context->uc_mcontext.pc; #elif defined(__riscv) pc = context->uc_mcontext.__gregs[REG_PC]; #else const char msg[] = "\nUnsupported architecture, cannot read program counter\n"; os_write(1, msg, sizeof(msg)); pc = 0; #endif os_signal_action(sig, pc); } int os_setup_signal_handlers(void) { struct sigaction act; act.sa_sigaction = os_signal_handler; sigemptyset(&act.sa_mask); act.sa_flags = SA_SIGINFO; if (sigaction(SIGILL, &act, NULL) || sigaction(SIGBUS, &act, NULL) || sigaction(SIGSEGV, &act, NULL)) return -1; return 0; } /* Put tty into raw mode so and work */ void os_tty_raw(int fd, bool allow_sigs) { struct termios term; int flags; if (term_setup) return; /* If not a tty, don't complain */ if (tcgetattr(fd, &orig_term)) return; term = orig_term; term.c_iflag = IGNBRK | IGNPAR; term.c_oflag = OPOST | ONLCR; term.c_cflag = CS8 | CREAD | CLOCAL; term.c_lflag = allow_sigs ? ISIG : 0; if (tcsetattr(fd, TCSANOW, &term)) return; flags = fcntl(fd, F_GETFL, 0); if (!(flags & O_NONBLOCK)) { if (fcntl(fd, F_SETFL, flags | O_NONBLOCK)) return; term_nonblock = true; } term_setup = true; atexit(os_fd_restore); signal(SIGINT, os_sigint_handler); } /* * Provide our own malloc so we don't use space in the sandbox ram_buf for * allocations that are internal to sandbox, or need to be done before U-Boot's * malloc() is ready. */ void *os_malloc(size_t length) { int page_size = getpagesize(); struct os_mem_hdr *hdr; if (!length) return NULL; /* * Use an address that is hopefully available to us so that pointers * to this memory are fairly obvious. If we end up with a different * address, that's fine too. */ hdr = mmap((void *)0x10000000, length + page_size, PROT_READ | PROT_WRITE | PROT_EXEC, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); if (hdr == MAP_FAILED) return NULL; hdr->length = length; return (void *)hdr + page_size; } void os_free(void *ptr) { int page_size = getpagesize(); struct os_mem_hdr *hdr; if (ptr) { hdr = ptr - page_size; munmap(hdr, hdr->length + page_size); } } /* These macros are from kernel.h but not accessible in this file */ #define ALIGN(x, a) __ALIGN_MASK((x), (typeof(x))(a) - 1) #define __ALIGN_MASK(x, mask) (((x) + (mask)) & ~(mask)) /* * Provide our own malloc so we don't use space in the sandbox ram_buf for * allocations that are internal to sandbox, or need to be done before U-Boot's * malloc() is ready. */ void *os_realloc(void *ptr, size_t length) { int page_size = getpagesize(); struct os_mem_hdr *hdr; void *new_ptr; /* Reallocating a NULL pointer is just an alloc */ if (!ptr) return os_malloc(length); /* Changing a length to 0 is just a free */ if (length) { os_free(ptr); return NULL; } /* * If the new size is the same number of pages as the old, nothing to * do. There isn't much point in shrinking things */ hdr = ptr - page_size; if (ALIGN(length, page_size) <= ALIGN(hdr->length, page_size)) return ptr; /* We have to grow it, so allocate something new */ new_ptr = os_malloc(length); memcpy(new_ptr, ptr, hdr->length); os_free(ptr); return new_ptr; } void os_usleep(unsigned long usec) { usleep(usec); } uint64_t __attribute__((no_instrument_function)) os_get_nsec(void) { #if defined(CLOCK_MONOTONIC) && defined(_POSIX_MONOTONIC_CLOCK) struct timespec tp; if (EINVAL == clock_gettime(CLOCK_MONOTONIC, &tp)) { struct timeval tv; gettimeofday(&tv, NULL); tp.tv_sec = tv.tv_sec; tp.tv_nsec = tv.tv_usec * 1000; } return tp.tv_sec * 1000000000ULL + tp.tv_nsec; #else struct timeval tv; gettimeofday(&tv, NULL); return tv.tv_sec * 1000000000ULL + tv.tv_usec * 1000; #endif } static char *short_opts; static struct option *long_opts; int os_parse_args(struct sandbox_state *state, int argc, char *argv[]) { struct sandbox_cmdline_option **sb_opt = __u_boot_sandbox_option_start(); size_t num_options = __u_boot_sandbox_option_count(); size_t i; int hidden_short_opt; size_t si; int c; if (short_opts || long_opts) return 1; state->argc = argc; state->argv = argv; /* dynamically construct the arguments to the system getopt_long */ short_opts = os_malloc(sizeof(*short_opts) * num_options * 2 + 1); long_opts = os_malloc(sizeof(*long_opts) * (num_options + 1)); if (!short_opts || !long_opts) return 1; /* * getopt_long requires "val" to be unique (since that is what the * func returns), so generate unique values automatically for flags * that don't have a short option. pick 0x100 as that is above the * single byte range (where ASCII/ISO-XXXX-X charsets live). */ hidden_short_opt = 0x100; si = 0; for (i = 0; i < num_options; ++i) { long_opts[i].name = sb_opt[i]->flag; long_opts[i].has_arg = sb_opt[i]->has_arg ? required_argument : no_argument; long_opts[i].flag = NULL; if (sb_opt[i]->flag_short) { short_opts[si++] = long_opts[i].val = sb_opt[i]->flag_short; if (long_opts[i].has_arg == required_argument) short_opts[si++] = ':'; } else long_opts[i].val = sb_opt[i]->flag_short = hidden_short_opt++; } short_opts[si] = '\0'; /* we need to handle output ourselves since u-boot provides printf */ opterr = 0; memset(&long_opts[num_options], '\0', sizeof(*long_opts)); /* * walk all of the options the user gave us on the command line, * figure out what u-boot option structure they belong to (via * the unique short val key), and call the appropriate callback. */ while ((c = getopt_long(argc, argv, short_opts, long_opts, NULL)) != -1) { for (i = 0; i < num_options; ++i) { if (sb_opt[i]->flag_short == c) { if (sb_opt[i]->callback(state, optarg)) { state->parse_err = sb_opt[i]->flag; return 0; } break; } } if (i == num_options) { /* * store the faulting flag for later display. we have to * store the flag itself as the getopt parsing itself is * tricky: need to handle the following flags (assume all * of the below are unknown): * -a optopt='a' optind= * -abbbb optopt='a' optind= * -aaaaa optopt='a' optind= * --a optopt=0 optind= * as you can see, it is impossible to determine the exact * faulting flag without doing the parsing ourselves, so * we just report the specific flag that failed. */ if (optopt) { static char parse_err[3] = { '-', 0, '\0', }; parse_err[1] = optopt; state->parse_err = parse_err; } else state->parse_err = argv[optind - 1]; break; } } return 0; } void os_dirent_free(struct os_dirent_node *node) { struct os_dirent_node *next; while (node) { next = node->next; os_free(node); node = next; } } int os_dirent_ls(const char *dirname, struct os_dirent_node **headp) { struct dirent *entry; struct os_dirent_node *head, *node, *next; struct stat buf; DIR *dir; int ret; char *fname; char *old_fname; int len; int dirlen; *headp = NULL; dir = opendir(dirname); if (!dir) return -1; /* Create a buffer upfront, with typically sufficient size */ dirlen = strlen(dirname) + 2; len = dirlen + 256; fname = os_malloc(len); if (!fname) { ret = -ENOMEM; goto done; } for (node = head = NULL;; node = next) { errno = 0; entry = readdir(dir); if (!entry) { ret = errno; break; } next = os_malloc(sizeof(*node) + strlen(entry->d_name) + 1); if (!next) { os_dirent_free(head); ret = -ENOMEM; goto done; } if (dirlen + strlen(entry->d_name) > len) { len = dirlen + strlen(entry->d_name); old_fname = fname; fname = os_realloc(fname, len); if (!fname) { os_free(old_fname); os_free(next); os_dirent_free(head); ret = -ENOMEM; goto done; } } next->next = NULL; strcpy(next->name, entry->d_name); switch (entry->d_type) { case DT_REG: next->type = OS_FILET_REG; break; case DT_DIR: next->type = OS_FILET_DIR; break; case DT_LNK: next->type = OS_FILET_LNK; break; default: next->type = OS_FILET_UNKNOWN; } next->size = 0; snprintf(fname, len, "%s/%s", dirname, next->name); if (!stat(fname, &buf)) next->size = buf.st_size; if (node) node->next = next; else head = next; } *headp = head; done: closedir(dir); os_free(fname); return ret; } const char *os_dirent_typename[OS_FILET_COUNT] = { " ", "SYM", "DIR", "???", }; const char *os_dirent_get_typename(enum os_dirent_t type) { if (type >= OS_FILET_REG && type < OS_FILET_COUNT) return os_dirent_typename[type]; return os_dirent_typename[OS_FILET_UNKNOWN]; } /* * For compatibility reasons avoid loff_t here. * U-Boot defines loff_t as long long. * But /usr/include/linux/types.h may not define it at all. * Alpine Linux being one example. */ int os_get_filesize(const char *fname, long long *size) { struct stat buf; int ret; ret = stat(fname, &buf); if (ret) return ret; *size = buf.st_size; return 0; } void os_putc(int ch) { os_write(1, &ch, 1); } void os_puts(const char *str) { while (*str) os_putc(*str++); } void os_flush(void) { fflush(stdout); } int os_write_ram_buf(const char *fname) { struct sandbox_state *state = state_get_current(); int fd, ret; fd = open(fname, O_CREAT | O_WRONLY, 0777); if (fd < 0) return -ENOENT; ret = write(fd, state->ram_buf, state->ram_size); close(fd); if (ret != state->ram_size) return -EIO; return 0; } int os_read_ram_buf(const char *fname) { struct sandbox_state *state = state_get_current(); int fd, ret; long long size; ret = os_get_filesize(fname, &size); if (ret < 0) return ret; if (size != state->ram_size) return -ENOSPC; fd = open(fname, O_RDONLY); if (fd < 0) return -ENOENT; ret = read(fd, state->ram_buf, state->ram_size); close(fd); if (ret != state->ram_size) return -EIO; return 0; } static int make_exec(char *fname, const void *data, int size) { int fd; strcpy(fname, "/tmp/u-boot.jump.XXXXXX"); fd = mkstemp(fname); if (fd < 0) return -ENOENT; if (write(fd, data, size) < 0) return -EIO; close(fd); if (chmod(fname, 0777)) return -ENOEXEC; return 0; } /** * add_args() - Allocate a new argv with the given args * * This is used to create a new argv array with all the old arguments and some * new ones that are passed in * * @argvp: Returns newly allocated args list * @add_args: Arguments to add, each a string * @count: Number of arguments in @add_args * Return: 0 if OK, -ENOMEM if out of memory */ static int add_args(char ***argvp, char *add_args[], int count) { char **argv, **ap; int argc; for (argc = 0; (*argvp)[argc]; argc++) ; argv = os_malloc((argc + count + 1) * sizeof(char *)); if (!argv) { printf("Out of memory for %d argv\n", count); return -ENOMEM; } for (ap = *argvp, argc = 0; *ap; ap++) { char *arg = *ap; /* Drop args that we don't want to propagate */ if (*arg == '-' && strlen(arg) == 2) { switch (arg[1]) { case 'j': case 'm': ap++; continue; } } else if (!strcmp(arg, "--rm_memory")) { continue; } argv[argc++] = arg; } memcpy(argv + argc, add_args, count * sizeof(char *)); argv[argc + count] = NULL; *argvp = argv; return 0; } /** * os_jump_to_file() - Jump to a new program * * This saves the memory buffer, sets up arguments to the new process, then * execs it. * * @fname: Filename to exec * Return: does not return on success, any return value is an error */ static int os_jump_to_file(const char *fname, bool delete_it) { struct sandbox_state *state = state_get_current(); char mem_fname[30]; int fd, err; char *extra_args[5]; char **argv = state->argv; int argc; #ifdef DEBUG int i; #endif strcpy(mem_fname, "/tmp/u-boot.mem.XXXXXX"); fd = mkstemp(mem_fname); if (fd < 0) return -ENOENT; close(fd); err = os_write_ram_buf(mem_fname); if (err) return err; os_fd_restore(); argc = 0; if (delete_it) { extra_args[argc++] = "-j"; extra_args[argc++] = (char *)fname; } extra_args[argc++] = "-m"; extra_args[argc++] = mem_fname; if (state->ram_buf_rm) extra_args[argc++] = "--rm_memory"; err = add_args(&argv, extra_args, argc); if (err) return err; argv[0] = (char *)fname; #ifdef DEBUG for (i = 0; argv[i]; i++) printf("%d %s\n", i, argv[i]); #endif if (state_uninit()) os_exit(2); err = execv(fname, argv); os_free(argv); if (err) { perror("Unable to run image"); printf("Image filename '%s'\n", fname); return err; } if (delete_it) return unlink(fname); return -EFAULT; } int os_jump_to_image(const void *dest, int size) { char fname[30]; int err; err = make_exec(fname, dest, size); if (err) return err; return os_jump_to_file(fname, true); } int os_find_u_boot(char *fname, int maxlen, bool use_img, const char *cur_prefix, const char *next_prefix) { struct sandbox_state *state = state_get_current(); const char *progname = state->argv[0]; int len = strlen(progname); char subdir[10]; char *suffix; char *p; int fd; if (len >= maxlen || len < 4) return -ENOSPC; strcpy(fname, progname); suffix = fname + len - 4; /* Change the existing suffix to the new one */ if (*suffix != '-') return -EINVAL; if (*next_prefix) strcpy(suffix + 1, next_prefix); /* e.g. "-tpl" to "-spl" */ else *suffix = '\0'; /* e.g. "-spl" to "" */ fd = os_open(fname, O_RDONLY); if (fd >= 0) { close(fd); return 0; } /* * We didn't find it, so try looking for 'u-boot-xxx' in the xxx/ * directory. Replace the old dirname with the new one. */ snprintf(subdir, sizeof(subdir), "/%s/", cur_prefix); p = strstr(fname, subdir); if (p) { if (*next_prefix) /* e.g. ".../tpl/u-boot-spl" to "../spl/u-boot-spl" */ memcpy(p + 1, next_prefix, strlen(next_prefix)); else /* e.g. ".../spl/u-boot" to ".../u-boot" */ strcpy(p, p + 1 + strlen(cur_prefix)); if (use_img) strcat(p, ".img"); fd = os_open(fname, O_RDONLY); if (fd >= 0) { close(fd); return 0; } } return -ENOENT; } int os_spl_to_uboot(const char *fname) { struct sandbox_state *state = state_get_current(); /* U-Boot will delete ram buffer after read: "--rm_memory"*/ state->ram_buf_rm = true; return os_jump_to_file(fname, false); } long os_get_time_offset(void) { const char *offset; offset = getenv(ENV_TIME_OFFSET); if (offset) return strtol(offset, NULL, 0); return 0; } void os_set_time_offset(long offset) { char buf[21]; int ret; snprintf(buf, sizeof(buf), "%ld", offset); ret = setenv(ENV_TIME_OFFSET, buf, true); if (ret) printf("Could not set environment variable %s\n", ENV_TIME_OFFSET); } void os_localtime(struct rtc_time *rt) { time_t t = time(NULL); struct tm *tm; tm = localtime(&t); rt->tm_sec = tm->tm_sec; rt->tm_min = tm->tm_min; rt->tm_hour = tm->tm_hour; rt->tm_mday = tm->tm_mday; rt->tm_mon = tm->tm_mon + 1; rt->tm_year = tm->tm_year + 1900; rt->tm_wday = tm->tm_wday; rt->tm_yday = tm->tm_yday; rt->tm_isdst = tm->tm_isdst; } void os_abort(void) { abort(); } int os_mprotect_allow(void *start, size_t len) { int page_size = getpagesize(); /* Move start to the start of a page, len to the end */ start = (void *)(((ulong)start) & ~(page_size - 1)); len = (len + page_size * 2) & ~(page_size - 1); return mprotect(start, len, PROT_READ | PROT_WRITE); } void *os_find_text_base(void) { char line[500]; void *base = NULL; int len; int fd; /* * This code assumes that the first line of /proc/self/maps holds * information about the text, for example: * * 5622d9907000-5622d9a55000 r-xp 00000000 08:01 15067168 u-boot * * The first hex value is assumed to be the address. * * This is tested in Linux 4.15. */ fd = open("/proc/self/maps", O_RDONLY); if (fd == -1) return NULL; len = read(fd, line, sizeof(line)); if (len > 0) { char *end = memchr(line, '-', len); if (end) { uintptr_t addr; *end = '\0'; if (sscanf(line, "%zx", &addr) == 1) base = (void *)addr; } } close(fd); return base; } /** * os_unblock_signals() - unblock all signals * * If we are relaunching the sandbox in a signal handler, we have to unblock * the respective signal before calling execv(). See signal(7) man-page. */ static void os_unblock_signals(void) { sigset_t sigs; sigfillset(&sigs); sigprocmask(SIG_UNBLOCK, &sigs, NULL); } void os_relaunch(char *argv[]) { os_unblock_signals(); execv(argv[0], argv); os_exit(1); } #ifdef CONFIG_FUZZ static void *fuzzer_thread(void * ptr) { char cmd[64]; char *argv[5] = {"./u-boot", "-T", "-c", cmd, NULL}; const char *fuzz_test; /* Find which test to run from an environment variable. */ fuzz_test = getenv("UBOOT_SB_FUZZ_TEST"); if (!fuzz_test) os_abort(); snprintf(cmd, sizeof(cmd), "fuzz %s", fuzz_test); sandbox_main(4, argv); os_abort(); return NULL; } static bool fuzzer_initialized = false; static pthread_mutex_t fuzzer_mutex = PTHREAD_MUTEX_INITIALIZER; static pthread_cond_t fuzzer_cond = PTHREAD_COND_INITIALIZER; static const uint8_t *fuzzer_data; static size_t fuzzer_size; int sandbox_fuzzing_engine_get_input(const uint8_t **data, size_t *size) { if (!fuzzer_initialized) return -ENOSYS; /* Tell the main thread we need new inputs then wait for them. */ pthread_mutex_lock(&fuzzer_mutex); pthread_cond_signal(&fuzzer_cond); pthread_cond_wait(&fuzzer_cond, &fuzzer_mutex); *data = fuzzer_data; *size = fuzzer_size; pthread_mutex_unlock(&fuzzer_mutex); return 0; } int LLVMFuzzerTestOneInput(const uint8_t *data, size_t size) { static pthread_t tid; pthread_mutex_lock(&fuzzer_mutex); /* Initialize the sandbox on another thread. */ if (!fuzzer_initialized) { fuzzer_initialized = true; if (pthread_create(&tid, NULL, fuzzer_thread, NULL)) os_abort(); pthread_cond_wait(&fuzzer_cond, &fuzzer_mutex); } /* Hand over the input. */ fuzzer_data = data; fuzzer_size = size; pthread_cond_signal(&fuzzer_cond); /* Wait for the inputs to be finished with. */ pthread_cond_wait(&fuzzer_cond, &fuzzer_mutex); pthread_mutex_unlock(&fuzzer_mutex); return 0; } #else int main(int argc, char *argv[]) { return sandbox_main(argc, argv); } #endif