/* SPDX-License-Identifier: GPL-2.0 */ /* * Copyright (C) 2020 Marvell International Ltd. * * Interface to the hardware Scheduling unit. * * New, starting with SDK 1.7.0, cvmx-pow supports a number of * extended consistency checks. The define * CVMX_ENABLE_POW_CHECKS controls the runtime insertion of POW * internal state checks to find common programming errors. If * CVMX_ENABLE_POW_CHECKS is not defined, checks are by default * enabled. For example, cvmx-pow will check for the following * program errors or POW state inconsistency. * - Requesting a POW operation with an active tag switch in * progress. * - Waiting for a tag switch to complete for an excessively * long period. This is normally a sign of an error in locking * causing deadlock. * - Illegal tag switches from NULL_NULL. * - Illegal tag switches from NULL. * - Illegal deschedule request. * - WQE pointer not matching the one attached to the core by * the POW. */ #ifndef __CVMX_POW_H__ #define __CVMX_POW_H__ #include "cvmx-wqe.h" #include "cvmx-pow-defs.h" #include "cvmx-sso-defs.h" #include "cvmx-address.h" #include "cvmx-coremask.h" /* Default to having all POW constancy checks turned on */ #ifndef CVMX_ENABLE_POW_CHECKS #define CVMX_ENABLE_POW_CHECKS 1 #endif /* * Special type for CN78XX style SSO groups (0..255), * for distinction from legacy-style groups (0..15) */ typedef union { u8 xgrp; /* Fields that map XGRP for backwards compatibility */ struct __attribute__((__packed__)) { u8 group : 5; u8 qus : 3; }; } cvmx_xgrp_t; /* * Softwsare-only structure to convey a return value * containing multiple information fields about an work queue entry */ typedef struct { u32 tag; u16 index; u8 grp; /* Legacy group # (0..15) */ u8 tag_type; } cvmx_pow_tag_info_t; /** * Wait flag values for pow functions. */ typedef enum { CVMX_POW_WAIT = 1, CVMX_POW_NO_WAIT = 0, } cvmx_pow_wait_t; /** * POW tag operations. These are used in the data stored to the POW. */ typedef enum { CVMX_POW_TAG_OP_SWTAG = 0L, CVMX_POW_TAG_OP_SWTAG_FULL = 1L, CVMX_POW_TAG_OP_SWTAG_DESCH = 2L, CVMX_POW_TAG_OP_DESCH = 3L, CVMX_POW_TAG_OP_ADDWQ = 4L, CVMX_POW_TAG_OP_UPDATE_WQP_GRP = 5L, CVMX_POW_TAG_OP_SET_NSCHED = 6L, CVMX_POW_TAG_OP_CLR_NSCHED = 7L, CVMX_POW_TAG_OP_NOP = 15L } cvmx_pow_tag_op_t; /** * This structure defines the store data on a store to POW */ typedef union { u64 u64; struct { u64 no_sched : 1; u64 unused : 2; u64 index : 13; cvmx_pow_tag_op_t op : 4; u64 unused2 : 2; u64 qos : 3; u64 grp : 4; cvmx_pow_tag_type_t type : 3; u64 tag : 32; } s_cn38xx; struct { u64 no_sched : 1; cvmx_pow_tag_op_t op : 4; u64 unused1 : 4; u64 index : 11; u64 unused2 : 1; u64 grp : 6; u64 unused3 : 3; cvmx_pow_tag_type_t type : 2; u64 tag : 32; } s_cn68xx_clr; struct { u64 no_sched : 1; cvmx_pow_tag_op_t op : 4; u64 unused1 : 12; u64 qos : 3; u64 unused2 : 1; u64 grp : 6; u64 unused3 : 3; cvmx_pow_tag_type_t type : 2; u64 tag : 32; } s_cn68xx_add; struct { u64 no_sched : 1; cvmx_pow_tag_op_t op : 4; u64 unused1 : 16; u64 grp : 6; u64 unused3 : 3; cvmx_pow_tag_type_t type : 2; u64 tag : 32; } s_cn68xx_other; struct { u64 rsvd_62_63 : 2; u64 grp : 10; cvmx_pow_tag_type_t type : 2; u64 no_sched : 1; u64 rsvd_48 : 1; cvmx_pow_tag_op_t op : 4; u64 rsvd_42_43 : 2; u64 wqp : 42; } s_cn78xx_other; } cvmx_pow_tag_req_t; union cvmx_pow_tag_req_addr { u64 u64; struct { u64 mem_region : 2; u64 reserved_49_61 : 13; u64 is_io : 1; u64 did : 8; u64 addr : 40; } s; struct { u64 mem_region : 2; u64 reserved_49_61 : 13; u64 is_io : 1; u64 did : 8; u64 node : 4; u64 tag : 32; u64 reserved_0_3 : 4; } s_cn78xx; }; /** * This structure describes the address to load stuff from POW */ typedef union { u64 u64; /** * Address for new work request loads (did<2:0> == 0) */ struct { u64 mem_region : 2; u64 reserved_49_61 : 13; u64 is_io : 1; u64 did : 8; u64 reserved_4_39 : 36; u64 wait : 1; u64 reserved_0_2 : 3; } swork; struct { u64 mem_region : 2; u64 reserved_49_61 : 13; u64 is_io : 1; u64 did : 8; u64 node : 4; u64 reserved_32_35 : 4; u64 indexed : 1; u64 grouped : 1; u64 rtngrp : 1; u64 reserved_16_28 : 13; u64 index : 12; u64 wait : 1; u64 reserved_0_2 : 3; } swork_78xx; /** * Address for loads to get POW internal status */ struct { u64 mem_region : 2; u64 reserved_49_61 : 13; u64 is_io : 1; u64 did : 8; u64 reserved_10_39 : 30; u64 coreid : 4; u64 get_rev : 1; u64 get_cur : 1; u64 get_wqp : 1; u64 reserved_0_2 : 3; } sstatus; /** * Address for loads to get 68XX SS0 internal status */ struct { u64 mem_region : 2; u64 reserved_49_61 : 13; u64 is_io : 1; u64 did : 8; u64 reserved_14_39 : 26; u64 coreid : 5; u64 reserved_6_8 : 3; u64 opcode : 3; u64 reserved_0_2 : 3; } sstatus_cn68xx; /** * Address for memory loads to get POW internal state */ struct { u64 mem_region : 2; u64 reserved_49_61 : 13; u64 is_io : 1; u64 did : 8; u64 reserved_16_39 : 24; u64 index : 11; u64 get_des : 1; u64 get_wqp : 1; u64 reserved_0_2 : 3; } smemload; /** * Address for memory loads to get SSO internal state */ struct { u64 mem_region : 2; u64 reserved_49_61 : 13; u64 is_io : 1; u64 did : 8; u64 reserved_20_39 : 20; u64 index : 11; u64 reserved_6_8 : 3; u64 opcode : 3; u64 reserved_0_2 : 3; } smemload_cn68xx; /** * Address for index/pointer loads */ struct { u64 mem_region : 2; u64 reserved_49_61 : 13; u64 is_io : 1; u64 did : 8; u64 reserved_9_39 : 31; u64 qosgrp : 4; u64 get_des_get_tail : 1; u64 get_rmt : 1; u64 reserved_0_2 : 3; } sindexload; /** * Address for a Index/Pointer loads to get SSO internal state */ struct { u64 mem_region : 2; u64 reserved_49_61 : 13; u64 is_io : 1; u64 did : 8; u64 reserved_15_39 : 25; u64 qos_grp : 6; u64 reserved_6_8 : 3; u64 opcode : 3; u64 reserved_0_2 : 3; } sindexload_cn68xx; /** * Address for NULL_RD request (did<2:0> == 4) * when this is read, HW attempts to change the state to NULL if it is NULL_NULL * (the hardware cannot switch from NULL_NULL to NULL if a POW entry is not available - * software may need to recover by finishing another piece of work before a POW * entry can ever become available.) */ struct { u64 mem_region : 2; u64 reserved_49_61 : 13; u64 is_io : 1; u64 did : 8; u64 reserved_0_39 : 40; } snull_rd; } cvmx_pow_load_addr_t; /** * This structure defines the response to a load/SENDSINGLE to POW (except CSR reads) */ typedef union { u64 u64; /** * Response to new work request loads */ struct { u64 no_work : 1; u64 pend_switch : 1; u64 tt : 2; u64 reserved_58_59 : 2; u64 grp : 10; u64 reserved_42_47 : 6; u64 addr : 42; } s_work; /** * Result for a POW Status Load (when get_cur==0 and get_wqp==0) */ struct { u64 reserved_62_63 : 2; u64 pend_switch : 1; u64 pend_switch_full : 1; u64 pend_switch_null : 1; u64 pend_desched : 1; u64 pend_desched_switch : 1; u64 pend_nosched : 1; u64 pend_new_work : 1; u64 pend_new_work_wait : 1; u64 pend_null_rd : 1; u64 pend_nosched_clr : 1; u64 reserved_51 : 1; u64 pend_index : 11; u64 pend_grp : 4; u64 reserved_34_35 : 2; u64 pend_type : 2; u64 pend_tag : 32; } s_sstatus0; /** * Result for a SSO Status Load (when opcode is SL_PENDTAG) */ struct { u64 pend_switch : 1; u64 pend_get_work : 1; u64 pend_get_work_wait : 1; u64 pend_nosched : 1; u64 pend_nosched_clr : 1; u64 pend_desched : 1; u64 pend_alloc_we : 1; u64 reserved_48_56 : 9; u64 pend_index : 11; u64 reserved_34_36 : 3; u64 pend_type : 2; u64 pend_tag : 32; } s_sstatus0_cn68xx; /** * Result for a POW Status Load (when get_cur==0 and get_wqp==1) */ struct { u64 reserved_62_63 : 2; u64 pend_switch : 1; u64 pend_switch_full : 1; u64 pend_switch_null : 1; u64 pend_desched : 1; u64 pend_desched_switch : 1; u64 pend_nosched : 1; u64 pend_new_work : 1; u64 pend_new_work_wait : 1; u64 pend_null_rd : 1; u64 pend_nosched_clr : 1; u64 reserved_51 : 1; u64 pend_index : 11; u64 pend_grp : 4; u64 pend_wqp : 36; } s_sstatus1; /** * Result for a SSO Status Load (when opcode is SL_PENDWQP) */ struct { u64 pend_switch : 1; u64 pend_get_work : 1; u64 pend_get_work_wait : 1; u64 pend_nosched : 1; u64 pend_nosched_clr : 1; u64 pend_desched : 1; u64 pend_alloc_we : 1; u64 reserved_51_56 : 6; u64 pend_index : 11; u64 reserved_38_39 : 2; u64 pend_wqp : 38; } s_sstatus1_cn68xx; struct { u64 pend_switch : 1; u64 pend_get_work : 1; u64 pend_get_work_wait : 1; u64 pend_nosched : 1; u64 pend_nosched_clr : 1; u64 pend_desched : 1; u64 pend_alloc_we : 1; u64 reserved_56 : 1; u64 prep_index : 12; u64 reserved_42_43 : 2; u64 pend_tag : 42; } s_sso_ppx_pendwqp_cn78xx; /** * Result for a POW Status Load (when get_cur==1, get_wqp==0, and get_rev==0) */ struct { u64 reserved_62_63 : 2; u64 link_index : 11; u64 index : 11; u64 grp : 4; u64 head : 1; u64 tail : 1; u64 tag_type : 2; u64 tag : 32; } s_sstatus2; /** * Result for a SSO Status Load (when opcode is SL_TAG) */ struct { u64 reserved_57_63 : 7; u64 index : 11; u64 reserved_45 : 1; u64 grp : 6; u64 head : 1; u64 tail : 1; u64 reserved_34_36 : 3; u64 tag_type : 2; u64 tag : 32; } s_sstatus2_cn68xx; struct { u64 tailc : 1; u64 reserved_60_62 : 3; u64 index : 12; u64 reserved_46_47 : 2; u64 grp : 10; u64 head : 1; u64 tail : 1; u64 tt : 2; u64 tag : 32; } s_sso_ppx_tag_cn78xx; /** * Result for a POW Status Load (when get_cur==1, get_wqp==0, and get_rev==1) */ struct { u64 reserved_62_63 : 2; u64 revlink_index : 11; u64 index : 11; u64 grp : 4; u64 head : 1; u64 tail : 1; u64 tag_type : 2; u64 tag : 32; } s_sstatus3; /** * Result for a SSO Status Load (when opcode is SL_WQP) */ struct { u64 reserved_58_63 : 6; u64 index : 11; u64 reserved_46 : 1; u64 grp : 6; u64 reserved_38_39 : 2; u64 wqp : 38; } s_sstatus3_cn68xx; struct { u64 reserved_58_63 : 6; u64 grp : 10; u64 reserved_42_47 : 6; u64 tag : 42; } s_sso_ppx_wqp_cn78xx; /** * Result for a POW Status Load (when get_cur==1, get_wqp==1, and get_rev==0) */ struct { u64 reserved_62_63 : 2; u64 link_index : 11; u64 index : 11; u64 grp : 4; u64 wqp : 36; } s_sstatus4; /** * Result for a SSO Status Load (when opcode is SL_LINKS) */ struct { u64 reserved_46_63 : 18; u64 index : 11; u64 reserved_34 : 1; u64 grp : 6; u64 head : 1; u64 tail : 1; u64 reserved_24_25 : 2; u64 revlink_index : 11; u64 reserved_11_12 : 2; u64 link_index : 11; } s_sstatus4_cn68xx; struct { u64 tailc : 1; u64 reserved_60_62 : 3; u64 index : 12; u64 reserved_38_47 : 10; u64 grp : 10; u64 head : 1; u64 tail : 1; u64 reserved_25 : 1; u64 revlink_index : 12; u64 link_index_vld : 1; u64 link_index : 12; } s_sso_ppx_links_cn78xx; /** * Result for a POW Status Load (when get_cur==1, get_wqp==1, and get_rev==1) */ struct { u64 reserved_62_63 : 2; u64 revlink_index : 11; u64 index : 11; u64 grp : 4; u64 wqp : 36; } s_sstatus5; /** * Result For POW Memory Load (get_des == 0 and get_wqp == 0) */ struct { u64 reserved_51_63 : 13; u64 next_index : 11; u64 grp : 4; u64 reserved_35 : 1; u64 tail : 1; u64 tag_type : 2; u64 tag : 32; } s_smemload0; /** * Result For SSO Memory Load (opcode is ML_TAG) */ struct { u64 reserved_38_63 : 26; u64 tail : 1; u64 reserved_34_36 : 3; u64 tag_type : 2; u64 tag : 32; } s_smemload0_cn68xx; struct { u64 reserved_39_63 : 25; u64 tail : 1; u64 reserved_34_36 : 3; u64 tag_type : 2; u64 tag : 32; } s_sso_iaq_ppx_tag_cn78xx; /** * Result For POW Memory Load (get_des == 0 and get_wqp == 1) */ struct { u64 reserved_51_63 : 13; u64 next_index : 11; u64 grp : 4; u64 wqp : 36; } s_smemload1; /** * Result For SSO Memory Load (opcode is ML_WQPGRP) */ struct { u64 reserved_48_63 : 16; u64 nosched : 1; u64 reserved_46 : 1; u64 grp : 6; u64 reserved_38_39 : 2; u64 wqp : 38; } s_smemload1_cn68xx; /** * Entry structures for the CN7XXX chips. */ struct { u64 reserved_39_63 : 25; u64 tailc : 1; u64 tail : 1; u64 reserved_34_36 : 3; u64 tt : 2; u64 tag : 32; } s_sso_ientx_tag_cn78xx; struct { u64 reserved_62_63 : 2; u64 head : 1; u64 nosched : 1; u64 reserved_56_59 : 4; u64 grp : 8; u64 reserved_42_47 : 6; u64 wqp : 42; } s_sso_ientx_wqpgrp_cn73xx; struct { u64 reserved_62_63 : 2; u64 head : 1; u64 nosched : 1; u64 reserved_58_59 : 2; u64 grp : 10; u64 reserved_42_47 : 6; u64 wqp : 42; } s_sso_ientx_wqpgrp_cn78xx; struct { u64 reserved_38_63 : 26; u64 pend_switch : 1; u64 reserved_34_36 : 3; u64 pend_tt : 2; u64 pend_tag : 32; } s_sso_ientx_pendtag_cn78xx; struct { u64 reserved_26_63 : 38; u64 prev_index : 10; u64 reserved_11_15 : 5; u64 next_index_vld : 1; u64 next_index : 10; } s_sso_ientx_links_cn73xx; struct { u64 reserved_28_63 : 36; u64 prev_index : 12; u64 reserved_13_15 : 3; u64 next_index_vld : 1; u64 next_index : 12; } s_sso_ientx_links_cn78xx; /** * Result For POW Memory Load (get_des == 1) */ struct { u64 reserved_51_63 : 13; u64 fwd_index : 11; u64 grp : 4; u64 nosched : 1; u64 pend_switch : 1; u64 pend_type : 2; u64 pend_tag : 32; } s_smemload2; /** * Result For SSO Memory Load (opcode is ML_PENTAG) */ struct { u64 reserved_38_63 : 26; u64 pend_switch : 1; u64 reserved_34_36 : 3; u64 pend_type : 2; u64 pend_tag : 32; } s_smemload2_cn68xx; struct { u64 pend_switch : 1; u64 pend_get_work : 1; u64 pend_get_work_wait : 1; u64 pend_nosched : 1; u64 pend_nosched_clr : 1; u64 pend_desched : 1; u64 pend_alloc_we : 1; u64 reserved_34_56 : 23; u64 pend_tt : 2; u64 pend_tag : 32; } s_sso_ppx_pendtag_cn78xx; /** * Result For SSO Memory Load (opcode is ML_LINKS) */ struct { u64 reserved_24_63 : 40; u64 fwd_index : 11; u64 reserved_11_12 : 2; u64 next_index : 11; } s_smemload3_cn68xx; /** * Result For POW Index/Pointer Load (get_rmt == 0/get_des_get_tail == 0) */ struct { u64 reserved_52_63 : 12; u64 free_val : 1; u64 free_one : 1; u64 reserved_49 : 1; u64 free_head : 11; u64 reserved_37 : 1; u64 free_tail : 11; u64 loc_val : 1; u64 loc_one : 1; u64 reserved_23 : 1; u64 loc_head : 11; u64 reserved_11 : 1; u64 loc_tail : 11; } sindexload0; /** * Result for SSO Index/Pointer Load(opcode == * IPL_IQ/IPL_DESCHED/IPL_NOSCHED) */ struct { u64 reserved_28_63 : 36; u64 queue_val : 1; u64 queue_one : 1; u64 reserved_24_25 : 2; u64 queue_head : 11; u64 reserved_11_12 : 2; u64 queue_tail : 11; } sindexload0_cn68xx; /** * Result For POW Index/Pointer Load (get_rmt == 0/get_des_get_tail == 1) */ struct { u64 reserved_52_63 : 12; u64 nosched_val : 1; u64 nosched_one : 1; u64 reserved_49 : 1; u64 nosched_head : 11; u64 reserved_37 : 1; u64 nosched_tail : 11; u64 des_val : 1; u64 des_one : 1; u64 reserved_23 : 1; u64 des_head : 11; u64 reserved_11 : 1; u64 des_tail : 11; } sindexload1; /** * Result for SSO Index/Pointer Load(opcode == IPL_FREE0/IPL_FREE1/IPL_FREE2) */ struct { u64 reserved_60_63 : 4; u64 qnum_head : 2; u64 qnum_tail : 2; u64 reserved_28_55 : 28; u64 queue_val : 1; u64 queue_one : 1; u64 reserved_24_25 : 2; u64 queue_head : 11; u64 reserved_11_12 : 2; u64 queue_tail : 11; } sindexload1_cn68xx; /** * Result For POW Index/Pointer Load (get_rmt == 1/get_des_get_tail == 0) */ struct { u64 reserved_39_63 : 25; u64 rmt_is_head : 1; u64 rmt_val : 1; u64 rmt_one : 1; u64 rmt_head : 36; } sindexload2; /** * Result For POW Index/Pointer Load (get_rmt == 1/get_des_get_tail == 1) */ struct { u64 reserved_39_63 : 25; u64 rmt_is_head : 1; u64 rmt_val : 1; u64 rmt_one : 1; u64 rmt_tail : 36; } sindexload3; /** * Response to NULL_RD request loads */ struct { u64 unused : 62; u64 state : 2; } s_null_rd; } cvmx_pow_tag_load_resp_t; typedef union { u64 u64; struct { u64 reserved_57_63 : 7; u64 index : 11; u64 reserved_45 : 1; u64 grp : 6; u64 head : 1; u64 tail : 1; u64 reserved_34_36 : 3; u64 tag_type : 2; u64 tag : 32; } s; } cvmx_pow_sl_tag_resp_t; /** * This structure describes the address used for stores to the POW. * The store address is meaningful on stores to the POW. The hardware assumes that an aligned * 64-bit store was used for all these stores. * Note the assumption that the work queue entry is aligned on an 8-byte * boundary (since the low-order 3 address bits must be zero). * Note that not all fields are used by all operations. * * NOTE: The following is the behavior of the pending switch bit at the PP * for POW stores (i.e. when did<7:3> == 0xc) * - did<2:0> == 0 => pending switch bit is set * - did<2:0> == 1 => no affect on the pending switch bit * - did<2:0> == 3 => pending switch bit is cleared * - did<2:0> == 7 => no affect on the pending switch bit * - did<2:0> == others => must not be used * - No other loads/stores have an affect on the pending switch bit * - The switch bus from POW can clear the pending switch bit * * NOTE: did<2:0> == 2 is used by the HW for a special single-cycle ADDWQ command * that only contains the pointer). SW must never use did<2:0> == 2. */ typedef union { u64 u64; struct { u64 mem_reg : 2; u64 reserved_49_61 : 13; u64 is_io : 1; u64 did : 8; u64 addr : 40; } stag; } cvmx_pow_tag_store_addr_t; /* FIXME- this type is unused */ /** * Decode of the store data when an IOBDMA SENDSINGLE is sent to POW */ typedef union { u64 u64; struct { u64 scraddr : 8; u64 len : 8; u64 did : 8; u64 unused : 36; u64 wait : 1; u64 unused2 : 3; } s; struct { u64 scraddr : 8; u64 len : 8; u64 did : 8; u64 node : 4; u64 unused1 : 4; u64 indexed : 1; u64 grouped : 1; u64 rtngrp : 1; u64 unused2 : 13; u64 index_grp_mask : 12; u64 wait : 1; u64 unused3 : 3; } s_cn78xx; } cvmx_pow_iobdma_store_t; /* CSR typedefs have been moved to cvmx-pow-defs.h */ /*enum for group priority parameters which needs modification*/ enum cvmx_sso_group_modify_mask { CVMX_SSO_MODIFY_GROUP_PRIORITY = 0x01, CVMX_SSO_MODIFY_GROUP_WEIGHT = 0x02, CVMX_SSO_MODIFY_GROUP_AFFINITY = 0x04 }; /** * @INTERNAL * Return the number of SSO groups for a given SoC model */ static inline unsigned int cvmx_sso_num_xgrp(void) { if (OCTEON_IS_MODEL(OCTEON_CN78XX)) return 256; if (OCTEON_IS_MODEL(OCTEON_CNF75XX)) return 64; if (OCTEON_IS_MODEL(OCTEON_CN73XX)) return 64; printf("ERROR: %s: Unknown model\n", __func__); return 0; } /** * @INTERNAL * Return the number of POW groups on current model. * In case of CN78XX/CN73XX this is the number of equivalent * "legacy groups" on the chip when it is used in backward * compatible mode. */ static inline unsigned int cvmx_pow_num_groups(void) { if (octeon_has_feature(OCTEON_FEATURE_CN78XX_WQE)) return cvmx_sso_num_xgrp() >> 3; else if (octeon_has_feature(OCTEON_FEATURE_CN68XX_WQE)) return 64; else return 16; } /** * @INTERNAL * Return the number of mask-set registers. */ static inline unsigned int cvmx_sso_num_maskset(void) { if (octeon_has_feature(OCTEON_FEATURE_CN78XX_WQE)) return 2; else return 1; } /** * Get the POW tag for this core. This returns the current * tag type, tag, group, and POW entry index associated with * this core. Index is only valid if the tag type isn't NULL_NULL. * If a tag switch is pending this routine returns the tag before * the tag switch, not after. * * Return: Current tag */ static inline cvmx_pow_tag_info_t cvmx_pow_get_current_tag(void) { cvmx_pow_load_addr_t load_addr; cvmx_pow_tag_info_t result; if (octeon_has_feature(OCTEON_FEATURE_CN78XX_WQE)) { cvmx_sso_sl_ppx_tag_t sl_ppx_tag; cvmx_xgrp_t xgrp; int node, core; CVMX_SYNCS; node = cvmx_get_node_num(); core = cvmx_get_local_core_num(); sl_ppx_tag.u64 = csr_rd_node(node, CVMX_SSO_SL_PPX_TAG(core)); result.index = sl_ppx_tag.s.index; result.tag_type = sl_ppx_tag.s.tt; result.tag = sl_ppx_tag.s.tag; /* Get native XGRP value */ xgrp.xgrp = sl_ppx_tag.s.grp; /* Return legacy style group 0..15 */ result.grp = xgrp.group; } else if (octeon_has_feature(OCTEON_FEATURE_CN68XX_WQE)) { cvmx_pow_sl_tag_resp_t load_resp; load_addr.u64 = 0; load_addr.sstatus_cn68xx.mem_region = CVMX_IO_SEG; load_addr.sstatus_cn68xx.is_io = 1; load_addr.sstatus_cn68xx.did = CVMX_OCT_DID_TAG_TAG5; load_addr.sstatus_cn68xx.coreid = cvmx_get_core_num(); load_addr.sstatus_cn68xx.opcode = 3; load_resp.u64 = csr_rd(load_addr.u64); result.grp = load_resp.s.grp; result.index = load_resp.s.index; result.tag_type = load_resp.s.tag_type; result.tag = load_resp.s.tag; } else { cvmx_pow_tag_load_resp_t load_resp; load_addr.u64 = 0; load_addr.sstatus.mem_region = CVMX_IO_SEG; load_addr.sstatus.is_io = 1; load_addr.sstatus.did = CVMX_OCT_DID_TAG_TAG1; load_addr.sstatus.coreid = cvmx_get_core_num(); load_addr.sstatus.get_cur = 1; load_resp.u64 = csr_rd(load_addr.u64); result.grp = load_resp.s_sstatus2.grp; result.index = load_resp.s_sstatus2.index; result.tag_type = load_resp.s_sstatus2.tag_type; result.tag = load_resp.s_sstatus2.tag; } return result; } /** * Get the POW WQE for this core. This returns the work queue * entry currently associated with this core. * * Return: WQE pointer */ static inline cvmx_wqe_t *cvmx_pow_get_current_wqp(void) { cvmx_pow_load_addr_t load_addr; cvmx_pow_tag_load_resp_t load_resp; if (octeon_has_feature(OCTEON_FEATURE_CN78XX_WQE)) { cvmx_sso_sl_ppx_wqp_t sso_wqp; int node = cvmx_get_node_num(); int core = cvmx_get_local_core_num(); sso_wqp.u64 = csr_rd_node(node, CVMX_SSO_SL_PPX_WQP(core)); if (sso_wqp.s.wqp) return (cvmx_wqe_t *)cvmx_phys_to_ptr(sso_wqp.s.wqp); return (cvmx_wqe_t *)0; } if (octeon_has_feature(OCTEON_FEATURE_CN68XX_WQE)) { load_addr.u64 = 0; load_addr.sstatus_cn68xx.mem_region = CVMX_IO_SEG; load_addr.sstatus_cn68xx.is_io = 1; load_addr.sstatus_cn68xx.did = CVMX_OCT_DID_TAG_TAG5; load_addr.sstatus_cn68xx.coreid = cvmx_get_core_num(); load_addr.sstatus_cn68xx.opcode = 4; load_resp.u64 = csr_rd(load_addr.u64); if (load_resp.s_sstatus3_cn68xx.wqp) return (cvmx_wqe_t *)cvmx_phys_to_ptr(load_resp.s_sstatus3_cn68xx.wqp); else return (cvmx_wqe_t *)0; } else { load_addr.u64 = 0; load_addr.sstatus.mem_region = CVMX_IO_SEG; load_addr.sstatus.is_io = 1; load_addr.sstatus.did = CVMX_OCT_DID_TAG_TAG1; load_addr.sstatus.coreid = cvmx_get_core_num(); load_addr.sstatus.get_cur = 1; load_addr.sstatus.get_wqp = 1; load_resp.u64 = csr_rd(load_addr.u64); return (cvmx_wqe_t *)cvmx_phys_to_ptr(load_resp.s_sstatus4.wqp); } } /** * @INTERNAL * Print a warning if a tag switch is pending for this core * * @param function Function name checking for a pending tag switch */ static inline void __cvmx_pow_warn_if_pending_switch(const char *function) { u64 switch_complete; CVMX_MF_CHORD(switch_complete); cvmx_warn_if(!switch_complete, "%s called with tag switch in progress\n", function); } /** * Waits for a tag switch to complete by polling the completion bit. * Note that switches to NULL complete immediately and do not need * to be waited for. */ static inline void cvmx_pow_tag_sw_wait(void) { const u64 TIMEOUT_MS = 10; /* 10ms timeout */ u64 switch_complete; u64 start_cycle; if (CVMX_ENABLE_POW_CHECKS) start_cycle = get_timer(0); while (1) { CVMX_MF_CHORD(switch_complete); if (cvmx_likely(switch_complete)) break; if (CVMX_ENABLE_POW_CHECKS) { if (cvmx_unlikely(get_timer(start_cycle) > TIMEOUT_MS)) { debug("WARNING: %s: Tag switch is taking a long time, possible deadlock\n", __func__); } } } } /** * Synchronous work request. Requests work from the POW. * This function does NOT wait for previous tag switches to complete, * so the caller must ensure that there is not a pending tag switch. * * @param wait When set, call stalls until work becomes available, or * times out. If not set, returns immediately. * * Return: Returns the WQE pointer from POW. Returns NULL if no work was * available. */ static inline cvmx_wqe_t *cvmx_pow_work_request_sync_nocheck(cvmx_pow_wait_t wait) { cvmx_pow_load_addr_t ptr; cvmx_pow_tag_load_resp_t result; if (CVMX_ENABLE_POW_CHECKS) __cvmx_pow_warn_if_pending_switch(__func__); ptr.u64 = 0; if (octeon_has_feature(OCTEON_FEATURE_CN78XX_WQE)) { ptr.swork_78xx.node = cvmx_get_node_num(); ptr.swork_78xx.mem_region = CVMX_IO_SEG; ptr.swork_78xx.is_io = 1; ptr.swork_78xx.did = CVMX_OCT_DID_TAG_SWTAG; ptr.swork_78xx.wait = wait; } else { ptr.swork.mem_region = CVMX_IO_SEG; ptr.swork.is_io = 1; ptr.swork.did = CVMX_OCT_DID_TAG_SWTAG; ptr.swork.wait = wait; } result.u64 = csr_rd(ptr.u64); if (result.s_work.no_work) return NULL; else return (cvmx_wqe_t *)cvmx_phys_to_ptr(result.s_work.addr); } /** * Synchronous work request. Requests work from the POW. * This function waits for any previous tag switch to complete before * requesting the new work. * * @param wait When set, call stalls until work becomes available, or * times out. If not set, returns immediately. * * Return: Returns the WQE pointer from POW. Returns NULL if no work was * available. */ static inline cvmx_wqe_t *cvmx_pow_work_request_sync(cvmx_pow_wait_t wait) { /* Must not have a switch pending when requesting work */ cvmx_pow_tag_sw_wait(); return (cvmx_pow_work_request_sync_nocheck(wait)); } /** * Synchronous null_rd request. Requests a switch out of NULL_NULL POW state. * This function waits for any previous tag switch to complete before * requesting the null_rd. * * Return: Returns the POW state of type cvmx_pow_tag_type_t. */ static inline cvmx_pow_tag_type_t cvmx_pow_work_request_null_rd(void) { cvmx_pow_load_addr_t ptr; cvmx_pow_tag_load_resp_t result; /* Must not have a switch pending when requesting work */ cvmx_pow_tag_sw_wait(); ptr.u64 = 0; if (octeon_has_feature(OCTEON_FEATURE_CN78XX_WQE)) { ptr.swork_78xx.mem_region = CVMX_IO_SEG; ptr.swork_78xx.is_io = 1; ptr.swork_78xx.did = CVMX_OCT_DID_TAG_NULL_RD; ptr.swork_78xx.node = cvmx_get_node_num(); } else { ptr.snull_rd.mem_region = CVMX_IO_SEG; ptr.snull_rd.is_io = 1; ptr.snull_rd.did = CVMX_OCT_DID_TAG_NULL_RD; } result.u64 = csr_rd(ptr.u64); return (cvmx_pow_tag_type_t)result.s_null_rd.state; } /** * Asynchronous work request. * Work is requested from the POW unit, and should later be checked with * function cvmx_pow_work_response_async. * This function does NOT wait for previous tag switches to complete, * so the caller must ensure that there is not a pending tag switch. * * @param scr_addr Scratch memory address that response will be returned to, * which is either a valid WQE, or a response with the invalid bit set. * Byte address, must be 8 byte aligned. * @param wait 1 to cause response to wait for work to become available * (or timeout) * 0 to cause response to return immediately */ static inline void cvmx_pow_work_request_async_nocheck(int scr_addr, cvmx_pow_wait_t wait) { cvmx_pow_iobdma_store_t data; if (CVMX_ENABLE_POW_CHECKS) __cvmx_pow_warn_if_pending_switch(__func__); /* scr_addr must be 8 byte aligned */ data.u64 = 0; if (octeon_has_feature(OCTEON_FEATURE_CN78XX_WQE)) { data.s_cn78xx.node = cvmx_get_node_num(); data.s_cn78xx.scraddr = scr_addr >> 3; data.s_cn78xx.len = 1; data.s_cn78xx.did = CVMX_OCT_DID_TAG_SWTAG; data.s_cn78xx.wait = wait; } else { data.s.scraddr = scr_addr >> 3; data.s.len = 1; data.s.did = CVMX_OCT_DID_TAG_SWTAG; data.s.wait = wait; } cvmx_send_single(data.u64); } /** * Asynchronous work request. * Work is requested from the POW unit, and should later be checked with * function cvmx_pow_work_response_async. * This function waits for any previous tag switch to complete before * requesting the new work. * * @param scr_addr Scratch memory address that response will be returned to, * which is either a valid WQE, or a response with the invalid bit set. * Byte address, must be 8 byte aligned. * @param wait 1 to cause response to wait for work to become available * (or timeout) * 0 to cause response to return immediately */ static inline void cvmx_pow_work_request_async(int scr_addr, cvmx_pow_wait_t wait) { /* Must not have a switch pending when requesting work */ cvmx_pow_tag_sw_wait(); cvmx_pow_work_request_async_nocheck(scr_addr, wait); } /** * Gets result of asynchronous work request. Performs a IOBDMA sync * to wait for the response. * * @param scr_addr Scratch memory address to get result from * Byte address, must be 8 byte aligned. * Return: Returns the WQE from the scratch register, or NULL if no work was * available. */ static inline cvmx_wqe_t *cvmx_pow_work_response_async(int scr_addr) { cvmx_pow_tag_load_resp_t result; CVMX_SYNCIOBDMA; result.u64 = cvmx_scratch_read64(scr_addr); if (result.s_work.no_work) return NULL; else return (cvmx_wqe_t *)cvmx_phys_to_ptr(result.s_work.addr); } /** * Checks if a work queue entry pointer returned by a work * request is valid. It may be invalid due to no work * being available or due to a timeout. * * @param wqe_ptr pointer to a work queue entry returned by the POW * * Return: 0 if pointer is valid * 1 if invalid (no work was returned) */ static inline u64 cvmx_pow_work_invalid(cvmx_wqe_t *wqe_ptr) { return (!wqe_ptr); /* FIXME: improve */ } /** * Starts a tag switch to the provided tag value and tag type. Completion for * the tag switch must be checked for separately. * This function does NOT update the * work queue entry in dram to match tag value and type, so the application must * keep track of these if they are important to the application. * This tag switch command must not be used for switches to NULL, as the tag * switch pending bit will be set by the switch request, but never cleared by * the hardware. * * NOTE: This should not be used when switching from a NULL tag. Use * cvmx_pow_tag_sw_full() instead. * * This function does no checks, so the caller must ensure that any previous tag * switch has completed. * * @param tag new tag value * @param tag_type new tag type (ordered or atomic) */ static inline void cvmx_pow_tag_sw_nocheck(u32 tag, cvmx_pow_tag_type_t tag_type) { union cvmx_pow_tag_req_addr ptr; cvmx_pow_tag_req_t tag_req; if (CVMX_ENABLE_POW_CHECKS) { cvmx_pow_tag_info_t current_tag; __cvmx_pow_warn_if_pending_switch(__func__); current_tag = cvmx_pow_get_current_tag(); cvmx_warn_if(current_tag.tag_type == CVMX_POW_TAG_TYPE_NULL_NULL, "%s called with NULL_NULL tag\n", __func__); cvmx_warn_if(current_tag.tag_type == CVMX_POW_TAG_TYPE_NULL, "%s called with NULL tag\n", __func__); cvmx_warn_if((current_tag.tag_type == tag_type) && (current_tag.tag == tag), "%s called to perform a tag switch to the same tag\n", __func__); cvmx_warn_if( tag_type == CVMX_POW_TAG_TYPE_NULL, "%s called to perform a tag switch to NULL. Use cvmx_pow_tag_sw_null() instead\n", __func__); } /* * Note that WQE in DRAM is not updated here, as the POW does not read * from DRAM once the WQE is in flight. See hardware manual for * complete details. * It is the application's responsibility to keep track of the * current tag value if that is important. */ tag_req.u64 = 0; if (octeon_has_feature(OCTEON_FEATURE_CN78XX_WQE)) { tag_req.s_cn78xx_other.op = CVMX_POW_TAG_OP_SWTAG; tag_req.s_cn78xx_other.type = tag_type; } else if (octeon_has_feature(OCTEON_FEATURE_CN68XX_WQE)) { tag_req.s_cn68xx_other.op = CVMX_POW_TAG_OP_SWTAG; tag_req.s_cn68xx_other.tag = tag; tag_req.s_cn68xx_other.type = tag_type; } else { tag_req.s_cn38xx.op = CVMX_POW_TAG_OP_SWTAG; tag_req.s_cn38xx.tag = tag; tag_req.s_cn38xx.type = tag_type; } ptr.u64 = 0; if (octeon_has_feature(OCTEON_FEATURE_CN78XX_WQE)) { ptr.s_cn78xx.mem_region = CVMX_IO_SEG; ptr.s_cn78xx.is_io = 1; ptr.s_cn78xx.did = CVMX_OCT_DID_TAG_SWTAG; ptr.s_cn78xx.node = cvmx_get_node_num(); ptr.s_cn78xx.tag = tag; } else { ptr.s.mem_region = CVMX_IO_SEG; ptr.s.is_io = 1; ptr.s.did = CVMX_OCT_DID_TAG_SWTAG; } /* Once this store arrives at POW, it will attempt the switch software must wait for the switch to complete separately */ cvmx_write_io(ptr.u64, tag_req.u64); } /** * Starts a tag switch to the provided tag value and tag type. Completion for * the tag switch must be checked for separately. * This function does NOT update the * work queue entry in dram to match tag value and type, so the application must * keep track of these if they are important to the application. * This tag switch command must not be used for switches to NULL, as the tag * switch pending bit will be set by the switch request, but never cleared by * the hardware. * * NOTE: This should not be used when switching from a NULL tag. Use * cvmx_pow_tag_sw_full() instead. * * This function waits for any previous tag switch to complete, and also * displays an error on tag switches to NULL. * * @param tag new tag value * @param tag_type new tag type (ordered or atomic) */ static inline void cvmx_pow_tag_sw(u32 tag, cvmx_pow_tag_type_t tag_type) { /* * Note that WQE in DRAM is not updated here, as the POW does not read * from DRAM once the WQE is in flight. See hardware manual for * complete details. It is the application's responsibility to keep * track of the current tag value if that is important. */ /* * Ensure that there is not a pending tag switch, as a tag switch * cannot be started if a previous switch is still pending. */ cvmx_pow_tag_sw_wait(); cvmx_pow_tag_sw_nocheck(tag, tag_type); } /** * Starts a tag switch to the provided tag value and tag type. Completion for * the tag switch must be checked for separately. * This function does NOT update the * work queue entry in dram to match tag value and type, so the application must * keep track of these if they are important to the application. * This tag switch command must not be used for switches to NULL, as the tag * switch pending bit will be set by the switch request, but never cleared by * the hardware. * * This function must be used for tag switches from NULL. * * This function does no checks, so the caller must ensure that any previous tag * switch has completed. * * @param wqp pointer to work queue entry to submit. This entry is * updated to match the other parameters * @param tag tag value to be assigned to work queue entry * @param tag_type type of tag * @param group group value for the work queue entry. */ static inline void cvmx_pow_tag_sw_full_nocheck(cvmx_wqe_t *wqp, u32 tag, cvmx_pow_tag_type_t tag_type, u64 group) { union cvmx_pow_tag_req_addr ptr; cvmx_pow_tag_req_t tag_req; unsigned int node = cvmx_get_node_num(); u64 wqp_phys = cvmx_ptr_to_phys(wqp); if (CVMX_ENABLE_POW_CHECKS) { cvmx_pow_tag_info_t current_tag; __cvmx_pow_warn_if_pending_switch(__func__); current_tag = cvmx_pow_get_current_tag(); cvmx_warn_if(current_tag.tag_type == CVMX_POW_TAG_TYPE_NULL_NULL, "%s called with NULL_NULL tag\n", __func__); cvmx_warn_if((current_tag.tag_type == tag_type) && (current_tag.tag == tag), "%s called to perform a tag switch to the same tag\n", __func__); cvmx_warn_if( tag_type == CVMX_POW_TAG_TYPE_NULL, "%s called to perform a tag switch to NULL. Use cvmx_pow_tag_sw_null() instead\n", __func__); if ((wqp != cvmx_phys_to_ptr(0x80)) && cvmx_pow_get_current_wqp()) cvmx_warn_if(wqp != cvmx_pow_get_current_wqp(), "%s passed WQE(%p) doesn't match the address in the POW(%p)\n", __func__, wqp, cvmx_pow_get_current_wqp()); } /* * Note that WQE in DRAM is not updated here, as the POW does not * read from DRAM once the WQE is in flight. See hardware manual * for complete details. It is the application's responsibility to * keep track of the current tag value if that is important. */ tag_req.u64 = 0; if (octeon_has_feature(OCTEON_FEATURE_CN78XX_WQE)) { unsigned int xgrp; if (wqp_phys != 0x80) { /* If WQE is valid, use its XGRP: * WQE GRP is 10 bits, and is mapped * to legacy GRP + QoS, includes node number. */ xgrp = wqp->word1.cn78xx.grp; /* Use XGRP[node] too */ node = xgrp >> 8; /* Modify XGRP with legacy group # from arg */ xgrp &= ~0xf8; xgrp |= 0xf8 & (group << 3); } else { /* If no WQE, build XGRP with QoS=0 and current node */ xgrp = group << 3; xgrp |= node << 8; } tag_req.s_cn78xx_other.op = CVMX_POW_TAG_OP_SWTAG_FULL; tag_req.s_cn78xx_other.type = tag_type; tag_req.s_cn78xx_other.grp = xgrp; tag_req.s_cn78xx_other.wqp = wqp_phys; } else if (octeon_has_feature(OCTEON_FEATURE_CN68XX_WQE)) { tag_req.s_cn68xx_other.op = CVMX_POW_TAG_OP_SWTAG_FULL; tag_req.s_cn68xx_other.tag = tag; tag_req.s_cn68xx_other.type = tag_type; tag_req.s_cn68xx_other.grp = group; } else { tag_req.s_cn38xx.op = CVMX_POW_TAG_OP_SWTAG_FULL; tag_req.s_cn38xx.tag = tag; tag_req.s_cn38xx.type = tag_type; tag_req.s_cn38xx.grp = group; } ptr.u64 = 0; if (octeon_has_feature(OCTEON_FEATURE_CN78XX_WQE)) { ptr.s_cn78xx.mem_region = CVMX_IO_SEG; ptr.s_cn78xx.is_io = 1; ptr.s_cn78xx.did = CVMX_OCT_DID_TAG_SWTAG; ptr.s_cn78xx.node = node; ptr.s_cn78xx.tag = tag; } else { ptr.s.mem_region = CVMX_IO_SEG; ptr.s.is_io = 1; ptr.s.did = CVMX_OCT_DID_TAG_SWTAG; ptr.s.addr = wqp_phys; } /* Once this store arrives at POW, it will attempt the switch software must wait for the switch to complete separately */ cvmx_write_io(ptr.u64, tag_req.u64); } /** * Starts a tag switch to the provided tag value and tag type. * Completion for the tag switch must be checked for separately. * This function does NOT update the work queue entry in dram to match tag value * and type, so the application must keep track of these if they are important * to the application. This tag switch command must not be used for switches * to NULL, as the tag switch pending bit will be set by the switch request, * but never cleared by the hardware. * * This function must be used for tag switches from NULL. * * This function waits for any pending tag switches to complete * before requesting the tag switch. * * @param wqp Pointer to work queue entry to submit. * This entry is updated to match the other parameters * @param tag Tag value to be assigned to work queue entry * @param tag_type Type of tag * @param group Group value for the work queue entry. */ static inline void cvmx_pow_tag_sw_full(cvmx_wqe_t *wqp, u32 tag, cvmx_pow_tag_type_t tag_type, u64 group) { /* * Ensure that there is not a pending tag switch, as a tag switch cannot * be started if a previous switch is still pending. */ cvmx_pow_tag_sw_wait(); cvmx_pow_tag_sw_full_nocheck(wqp, tag, tag_type, group); } /** * Switch to a NULL tag, which ends any ordering or * synchronization provided by the POW for the current * work queue entry. This operation completes immediately, * so completion should not be waited for. * This function does NOT wait for previous tag switches to complete, * so the caller must ensure that any previous tag switches have completed. */ static inline void cvmx_pow_tag_sw_null_nocheck(void) { union cvmx_pow_tag_req_addr ptr; cvmx_pow_tag_req_t tag_req; if (CVMX_ENABLE_POW_CHECKS) { cvmx_pow_tag_info_t current_tag; __cvmx_pow_warn_if_pending_switch(__func__); current_tag = cvmx_pow_get_current_tag(); cvmx_warn_if(current_tag.tag_type == CVMX_POW_TAG_TYPE_NULL_NULL, "%s called with NULL_NULL tag\n", __func__); cvmx_warn_if(current_tag.tag_type == CVMX_POW_TAG_TYPE_NULL, "%s called when we already have a NULL tag\n", __func__); } tag_req.u64 = 0; if (octeon_has_feature(OCTEON_FEATURE_CN78XX_WQE)) { tag_req.s_cn78xx_other.op = CVMX_POW_TAG_OP_SWTAG; tag_req.s_cn78xx_other.type = CVMX_POW_TAG_TYPE_NULL; } else if (octeon_has_feature(OCTEON_FEATURE_CN68XX_WQE)) { tag_req.s_cn68xx_other.op = CVMX_POW_TAG_OP_SWTAG; tag_req.s_cn68xx_other.type = CVMX_POW_TAG_TYPE_NULL; } else { tag_req.s_cn38xx.op = CVMX_POW_TAG_OP_SWTAG; tag_req.s_cn38xx.type = CVMX_POW_TAG_TYPE_NULL; } ptr.u64 = 0; if (octeon_has_feature(OCTEON_FEATURE_CN78XX_WQE)) { ptr.s_cn78xx.mem_region = CVMX_IO_SEG; ptr.s_cn78xx.is_io = 1; ptr.s_cn78xx.did = CVMX_OCT_DID_TAG_TAG1; ptr.s_cn78xx.node = cvmx_get_node_num(); } else { ptr.s.mem_region = CVMX_IO_SEG; ptr.s.is_io = 1; ptr.s.did = CVMX_OCT_DID_TAG_TAG1; } cvmx_write_io(ptr.u64, tag_req.u64); } /** * Switch to a NULL tag, which ends any ordering or * synchronization provided by the POW for the current * work queue entry. This operation completes immediately, * so completion should not be waited for. * This function waits for any pending tag switches to complete * before requesting the switch to NULL. */ static inline void cvmx_pow_tag_sw_null(void) { /* * Ensure that there is not a pending tag switch, as a tag switch cannot * be started if a previous switch is still pending. */ cvmx_pow_tag_sw_wait(); cvmx_pow_tag_sw_null_nocheck(); } /** * Submits work to an input queue. * This function updates the work queue entry in DRAM to match the arguments given. * Note that the tag provided is for the work queue entry submitted, and * is unrelated to the tag that the core currently holds. * * @param wqp pointer to work queue entry to submit. * This entry is updated to match the other parameters * @param tag tag value to be assigned to work queue entry * @param tag_type type of tag * @param qos Input queue to add to. * @param grp group value for the work queue entry. */ static inline void cvmx_pow_work_submit(cvmx_wqe_t *wqp, u32 tag, cvmx_pow_tag_type_t tag_type, u64 qos, u64 grp) { union cvmx_pow_tag_req_addr ptr; cvmx_pow_tag_req_t tag_req; tag_req.u64 = 0; ptr.u64 = 0; if (octeon_has_feature(OCTEON_FEATURE_CN78XX_WQE)) { unsigned int node = cvmx_get_node_num(); unsigned int xgrp; xgrp = (grp & 0x1f) << 3; xgrp |= (qos & 7); xgrp |= 0x300 & (node << 8); wqp->word1.cn78xx.rsvd_0 = 0; wqp->word1.cn78xx.rsvd_1 = 0; wqp->word1.cn78xx.tag = tag; wqp->word1.cn78xx.tag_type = tag_type; wqp->word1.cn78xx.grp = xgrp; CVMX_SYNCWS; tag_req.s_cn78xx_other.op = CVMX_POW_TAG_OP_ADDWQ; tag_req.s_cn78xx_other.type = tag_type; tag_req.s_cn78xx_other.wqp = cvmx_ptr_to_phys(wqp); tag_req.s_cn78xx_other.grp = xgrp; ptr.s_cn78xx.did = 0x66; // CVMX_OCT_DID_TAG_TAG6; ptr.s_cn78xx.mem_region = CVMX_IO_SEG; ptr.s_cn78xx.is_io = 1; ptr.s_cn78xx.node = node; ptr.s_cn78xx.tag = tag; } else if (octeon_has_feature(OCTEON_FEATURE_CN68XX_WQE)) { /* Reset all reserved bits */ wqp->word1.cn68xx.zero_0 = 0; wqp->word1.cn68xx.zero_1 = 0; wqp->word1.cn68xx.zero_2 = 0; wqp->word1.cn68xx.qos = qos; wqp->word1.cn68xx.grp = grp; wqp->word1.tag = tag; wqp->word1.tag_type = tag_type; tag_req.s_cn68xx_add.op = CVMX_POW_TAG_OP_ADDWQ; tag_req.s_cn68xx_add.type = tag_type; tag_req.s_cn68xx_add.tag = tag; tag_req.s_cn68xx_add.qos = qos; tag_req.s_cn68xx_add.grp = grp; ptr.s.mem_region = CVMX_IO_SEG; ptr.s.is_io = 1; ptr.s.did = CVMX_OCT_DID_TAG_TAG1; ptr.s.addr = cvmx_ptr_to_phys(wqp); } else { /* Reset all reserved bits */ wqp->word1.cn38xx.zero_2 = 0; wqp->word1.cn38xx.qos = qos; wqp->word1.cn38xx.grp = grp; wqp->word1.tag = tag; wqp->word1.tag_type = tag_type; tag_req.s_cn38xx.op = CVMX_POW_TAG_OP_ADDWQ; tag_req.s_cn38xx.type = tag_type; tag_req.s_cn38xx.tag = tag; tag_req.s_cn38xx.qos = qos; tag_req.s_cn38xx.grp = grp; ptr.s.mem_region = CVMX_IO_SEG; ptr.s.is_io = 1; ptr.s.did = CVMX_OCT_DID_TAG_TAG1; ptr.s.addr = cvmx_ptr_to_phys(wqp); } /* SYNC write to memory before the work submit. * This is necessary as POW may read values from DRAM at this time */ CVMX_SYNCWS; cvmx_write_io(ptr.u64, tag_req.u64); } /** * This function sets the group mask for a core. The group mask * indicates which groups each core will accept work from. There are * 16 groups. * * @param core_num core to apply mask to * @param mask Group mask, one bit for up to 64 groups. * Each 1 bit in the mask enables the core to accept work from * the corresponding group. * The CN68XX supports 64 groups, earlier models only support * 16 groups. * * The CN78XX in backwards compatibility mode allows up to 32 groups, * so the 'mask' argument has one bit for every of the legacy * groups, and a '1' in the mask causes a total of 8 groups * which share the legacy group numbher and 8 qos levels, * to be enabled for the calling processor core. * A '0' in the mask will disable the current core * from receiving work from the associated group. */ static inline void cvmx_pow_set_group_mask(u64 core_num, u64 mask) { u64 valid_mask; int num_groups = cvmx_pow_num_groups(); if (num_groups >= 64) valid_mask = ~0ull; else valid_mask = (1ull << num_groups) - 1; if ((mask & valid_mask) == 0) { printf("ERROR: %s empty group mask disables work on core# %llu, ignored.\n", __func__, (unsigned long long)core_num); return; } cvmx_warn_if(mask & (~valid_mask), "%s group number range exceeded: %#llx\n", __func__, (unsigned long long)mask); if (octeon_has_feature(OCTEON_FEATURE_CN78XX_WQE)) { unsigned int mask_set; cvmx_sso_ppx_sx_grpmskx_t grp_msk; unsigned int core, node; unsigned int rix; /* Register index */ unsigned int grp; /* Legacy group # */ unsigned int bit; /* bit index */ unsigned int xgrp; /* native group # */ node = cvmx_coremask_core_to_node(core_num); core = cvmx_coremask_core_on_node(core_num); /* 78xx: 256 groups divided into 4 X 64 bit registers */ /* 73xx: 64 groups are in one register */ for (rix = 0; rix < (cvmx_sso_num_xgrp() >> 6); rix++) { grp_msk.u64 = 0; for (bit = 0; bit < 64; bit++) { /* 8-bit native XGRP number */ xgrp = (rix << 6) | bit; /* Legacy 5-bit group number */ grp = (xgrp >> 3) & 0x1f; /* Inspect legacy mask by legacy group */ if (mask & (1ull << grp)) grp_msk.s.grp_msk |= 1ull << bit; /* Pre-set to all 0's */ } for (mask_set = 0; mask_set < cvmx_sso_num_maskset(); mask_set++) { csr_wr_node(node, CVMX_SSO_PPX_SX_GRPMSKX(core, mask_set, rix), grp_msk.u64); } } } else if (octeon_has_feature(OCTEON_FEATURE_CN68XX_WQE)) { cvmx_sso_ppx_grp_msk_t grp_msk; grp_msk.s.grp_msk = mask; csr_wr(CVMX_SSO_PPX_GRP_MSK(core_num), grp_msk.u64); } else { cvmx_pow_pp_grp_mskx_t grp_msk; grp_msk.u64 = csr_rd(CVMX_POW_PP_GRP_MSKX(core_num)); grp_msk.s.grp_msk = mask & 0xffff; csr_wr(CVMX_POW_PP_GRP_MSKX(core_num), grp_msk.u64); } } /** * This function gets the group mask for a core. The group mask * indicates which groups each core will accept work from. * * @param core_num core to apply mask to * Return: Group mask, one bit for up to 64 groups. * Each 1 bit in the mask enables the core to accept work from * the corresponding group. * The CN68XX supports 64 groups, earlier models only support * 16 groups. * * The CN78XX in backwards compatibility mode allows up to 32 groups, * so the 'mask' argument has one bit for every of the legacy * groups, and a '1' in the mask causes a total of 8 groups * which share the legacy group numbher and 8 qos levels, * to be enabled for the calling processor core. * A '0' in the mask will disable the current core * from receiving work from the associated group. */ static inline u64 cvmx_pow_get_group_mask(u64 core_num) { if (octeon_has_feature(OCTEON_FEATURE_CN78XX_WQE)) { cvmx_sso_ppx_sx_grpmskx_t grp_msk; unsigned int core, node, i; int rix; /* Register index */ u64 mask = 0; node = cvmx_coremask_core_to_node(core_num); core = cvmx_coremask_core_on_node(core_num); /* 78xx: 256 groups divided into 4 X 64 bit registers */ /* 73xx: 64 groups are in one register */ for (rix = (cvmx_sso_num_xgrp() >> 6) - 1; rix >= 0; rix--) { /* read only mask_set=0 (both 'set' was written same) */ grp_msk.u64 = csr_rd_node(node, CVMX_SSO_PPX_SX_GRPMSKX(core, 0, rix)); /* ASSUME: (this is how mask bits got written) */ /* grp_mask[7:0]: all bits 0..7 are same */ /* grp_mask[15:8]: all bits 8..15 are same, etc */ /* DO: mask[7:0] = grp_mask.u64[56,48,40,32,24,16,8,0] */ for (i = 0; i < 8; i++) mask |= (grp_msk.u64 & ((u64)1 << (i * 8))) >> (7 * i); /* we collected 8 MSBs in mask[7:0], <<=8 and continue */ if (cvmx_likely(rix != 0)) mask <<= 8; } return mask & 0xFFFFFFFF; } else if (octeon_has_feature(OCTEON_FEATURE_CN68XX_WQE)) { cvmx_sso_ppx_grp_msk_t grp_msk; grp_msk.u64 = csr_rd(CVMX_SSO_PPX_GRP_MSK(core_num)); return grp_msk.u64; } else { cvmx_pow_pp_grp_mskx_t grp_msk; grp_msk.u64 = csr_rd(CVMX_POW_PP_GRP_MSKX(core_num)); return grp_msk.u64 & 0xffff; } } /* * Returns 0 if 78xx(73xx,75xx) is not programmed in legacy compatible mode * Returns 1 if 78xx(73xx,75xx) is programmed in legacy compatible mode * Returns 1 if octeon model is not 78xx(73xx,75xx) */ static inline u64 cvmx_pow_is_legacy78mode(u64 core_num) { if (octeon_has_feature(OCTEON_FEATURE_CN78XX_WQE)) { cvmx_sso_ppx_sx_grpmskx_t grp_msk0, grp_msk1; unsigned int core, node, i; int rix; /* Register index */ u64 mask = 0; node = cvmx_coremask_core_to_node(core_num); core = cvmx_coremask_core_on_node(core_num); /* 78xx: 256 groups divided into 4 X 64 bit registers */ /* 73xx: 64 groups are in one register */ /* 1) in order for the 78_SSO to be in legacy compatible mode * the both mask_sets should be programmed the same */ for (rix = (cvmx_sso_num_xgrp() >> 6) - 1; rix >= 0; rix--) { /* read mask_set=0 (both 'set' was written same) */ grp_msk0.u64 = csr_rd_node(node, CVMX_SSO_PPX_SX_GRPMSKX(core, 0, rix)); grp_msk1.u64 = csr_rd_node(node, CVMX_SSO_PPX_SX_GRPMSKX(core, 1, rix)); if (grp_msk0.u64 != grp_msk1.u64) { return 0; } /* (this is how mask bits should be written) */ /* grp_mask[7:0]: all bits 0..7 are same */ /* grp_mask[15:8]: all bits 8..15 are same, etc */ /* 2) in order for the 78_SSO to be in legacy compatible * mode above should be true (test only mask_set=0 */ for (i = 0; i < 8; i++) { mask = (grp_msk0.u64 >> (i << 3)) & 0xFF; if (!(mask == 0 || mask == 0xFF)) { return 0; } } } /* if we come here, the 78_SSO is in legacy compatible mode */ } return 1; /* the SSO/POW is in legacy (or compatible) mode */ } /** * This function sets POW static priorities for a core. Each input queue has * an associated priority value. * * @param core_num core to apply priorities to * @param priority Vector of 8 priorities, one per POW Input Queue (0-7). * Highest priority is 0 and lowest is 7. A priority value * of 0xF instructs POW to skip the Input Queue when * scheduling to this specific core. * NOTE: priorities should not have gaps in values, meaning * {0,1,1,1,1,1,1,1} is a valid configuration while * {0,2,2,2,2,2,2,2} is not. */ static inline void cvmx_pow_set_priority(u64 core_num, const u8 priority[]) { /* Detect gaps between priorities and flag error */ if (!octeon_has_feature(OCTEON_FEATURE_CN78XX_WQE)) { int i; u32 prio_mask = 0; for (i = 0; i < 8; i++) if (priority[i] != 0xF) prio_mask |= 1 << priority[i]; if (prio_mask ^ ((1 << cvmx_pop(prio_mask)) - 1)) { debug("ERROR: POW static priorities should be contiguous (0x%llx)\n", (unsigned long long)prio_mask); return; } } if (octeon_has_feature(OCTEON_FEATURE_CN78XX_WQE)) { unsigned int group; unsigned int node = cvmx_get_node_num(); cvmx_sso_grpx_pri_t grp_pri; /*grp_pri.s.weight = 0x3f; these will be anyway overwritten */ /*grp_pri.s.affinity = 0xf; by the next csr_rd_node(..), */ for (group = 0; group < cvmx_sso_num_xgrp(); group++) { grp_pri.u64 = csr_rd_node(node, CVMX_SSO_GRPX_PRI(group)); grp_pri.s.pri = priority[group & 0x7]; csr_wr_node(node, CVMX_SSO_GRPX_PRI(group), grp_pri.u64); } } else if (octeon_has_feature(OCTEON_FEATURE_CN68XX_WQE)) { cvmx_sso_ppx_qos_pri_t qos_pri; qos_pri.u64 = csr_rd(CVMX_SSO_PPX_QOS_PRI(core_num)); qos_pri.s.qos0_pri = priority[0]; qos_pri.s.qos1_pri = priority[1]; qos_pri.s.qos2_pri = priority[2]; qos_pri.s.qos3_pri = priority[3]; qos_pri.s.qos4_pri = priority[4]; qos_pri.s.qos5_pri = priority[5]; qos_pri.s.qos6_pri = priority[6]; qos_pri.s.qos7_pri = priority[7]; csr_wr(CVMX_SSO_PPX_QOS_PRI(core_num), qos_pri.u64); } else { /* POW priorities on CN5xxx .. CN66XX */ cvmx_pow_pp_grp_mskx_t grp_msk; grp_msk.u64 = csr_rd(CVMX_POW_PP_GRP_MSKX(core_num)); grp_msk.s.qos0_pri = priority[0]; grp_msk.s.qos1_pri = priority[1]; grp_msk.s.qos2_pri = priority[2]; grp_msk.s.qos3_pri = priority[3]; grp_msk.s.qos4_pri = priority[4]; grp_msk.s.qos5_pri = priority[5]; grp_msk.s.qos6_pri = priority[6]; grp_msk.s.qos7_pri = priority[7]; csr_wr(CVMX_POW_PP_GRP_MSKX(core_num), grp_msk.u64); } } /** * This function gets POW static priorities for a core. Each input queue has * an associated priority value. * * @param[in] core_num core to get priorities for * @param[out] priority Pointer to u8[] where to return priorities * Vector of 8 priorities, one per POW Input Queue (0-7). * Highest priority is 0 and lowest is 7. A priority value * of 0xF instructs POW to skip the Input Queue when * scheduling to this specific core. * NOTE: priorities should not have gaps in values, meaning * {0,1,1,1,1,1,1,1} is a valid configuration while * {0,2,2,2,2,2,2,2} is not. */ static inline void cvmx_pow_get_priority(u64 core_num, u8 priority[]) { if (octeon_has_feature(OCTEON_FEATURE_CN78XX_WQE)) { unsigned int group; unsigned int node = cvmx_get_node_num(); cvmx_sso_grpx_pri_t grp_pri; /* read priority only from the first 8 groups */ /* the next groups are programmed the same (periodicaly) */ for (group = 0; group < 8 /*cvmx_sso_num_xgrp() */; group++) { grp_pri.u64 = csr_rd_node(node, CVMX_SSO_GRPX_PRI(group)); priority[group /* & 0x7 */] = grp_pri.s.pri; } } else if (octeon_has_feature(OCTEON_FEATURE_CN68XX_WQE)) { cvmx_sso_ppx_qos_pri_t qos_pri; qos_pri.u64 = csr_rd(CVMX_SSO_PPX_QOS_PRI(core_num)); priority[0] = qos_pri.s.qos0_pri; priority[1] = qos_pri.s.qos1_pri; priority[2] = qos_pri.s.qos2_pri; priority[3] = qos_pri.s.qos3_pri; priority[4] = qos_pri.s.qos4_pri; priority[5] = qos_pri.s.qos5_pri; priority[6] = qos_pri.s.qos6_pri; priority[7] = qos_pri.s.qos7_pri; } else { /* POW priorities on CN5xxx .. CN66XX */ cvmx_pow_pp_grp_mskx_t grp_msk; grp_msk.u64 = csr_rd(CVMX_POW_PP_GRP_MSKX(core_num)); priority[0] = grp_msk.s.qos0_pri; priority[1] = grp_msk.s.qos1_pri; priority[2] = grp_msk.s.qos2_pri; priority[3] = grp_msk.s.qos3_pri; priority[4] = grp_msk.s.qos4_pri; priority[5] = grp_msk.s.qos5_pri; priority[6] = grp_msk.s.qos6_pri; priority[7] = grp_msk.s.qos7_pri; } /* Detect gaps between priorities and flag error - (optional) */ if (!octeon_has_feature(OCTEON_FEATURE_CN78XX_WQE)) { int i; u32 prio_mask = 0; for (i = 0; i < 8; i++) if (priority[i] != 0xF) prio_mask |= 1 << priority[i]; if (prio_mask ^ ((1 << cvmx_pop(prio_mask)) - 1)) { debug("ERROR:%s: POW static priorities should be contiguous (0x%llx)\n", __func__, (unsigned long long)prio_mask); return; } } } static inline void cvmx_sso_get_group_priority(int node, cvmx_xgrp_t xgrp, int *priority, int *weight, int *affinity) { cvmx_sso_grpx_pri_t grp_pri; if (!octeon_has_feature(OCTEON_FEATURE_CN78XX_WQE)) { debug("ERROR: %s is not supported on this chip)\n", __func__); return; } grp_pri.u64 = csr_rd_node(node, CVMX_SSO_GRPX_PRI(xgrp.xgrp)); *affinity = grp_pri.s.affinity; *priority = grp_pri.s.pri; *weight = grp_pri.s.weight; } /** * Performs a tag switch and then an immediate deschedule. This completes * immediately, so completion must not be waited for. This function does NOT * update the wqe in DRAM to match arguments. * * This function does NOT wait for any prior tag switches to complete, so the * calling code must do this. * * Note the following CAVEAT of the Octeon HW behavior when * re-scheduling DE-SCHEDULEd items whose (next) state is * ORDERED: * - If there are no switches pending at the time that the * HW executes the de-schedule, the HW will only re-schedule * the head of the FIFO associated with the given tag. This * means that in many respects, the HW treats this ORDERED * tag as an ATOMIC tag. Note that in the SWTAG_DESCH * case (to an ORDERED tag), the HW will do the switch * before the deschedule whenever it is possible to do * the switch immediately, so it may often look like * this case. * - If there is a pending switch to ORDERED at the time * the HW executes the de-schedule, the HW will perform * the switch at the time it re-schedules, and will be * able to reschedule any/all of the entries with the * same tag. * Due to this behavior, the RECOMMENDATION to software is * that they have a (next) state of ATOMIC when they * DE-SCHEDULE. If an ORDERED tag is what was really desired, * SW can choose to immediately switch to an ORDERED tag * after the work (that has an ATOMIC tag) is re-scheduled. * Note that since there are never any tag switches pending * when the HW re-schedules, this switch can be IMMEDIATE upon * the reception of the pointer during the re-schedule. * * @param tag New tag value * @param tag_type New tag type * @param group New group value * @param no_sched Control whether this work queue entry will be rescheduled. * - 1 : don't schedule this work * - 0 : allow this work to be scheduled. */ static inline void cvmx_pow_tag_sw_desched_nocheck(u32 tag, cvmx_pow_tag_type_t tag_type, u64 group, u64 no_sched) { union cvmx_pow_tag_req_addr ptr; cvmx_pow_tag_req_t tag_req; if (CVMX_ENABLE_POW_CHECKS) { cvmx_pow_tag_info_t current_tag; __cvmx_pow_warn_if_pending_switch(__func__); current_tag = cvmx_pow_get_current_tag(); cvmx_warn_if(current_tag.tag_type == CVMX_POW_TAG_TYPE_NULL_NULL, "%s called with NULL_NULL tag\n", __func__); cvmx_warn_if(current_tag.tag_type == CVMX_POW_TAG_TYPE_NULL, "%s called with NULL tag. Deschedule not allowed from NULL state\n", __func__); cvmx_warn_if((current_tag.tag_type != CVMX_POW_TAG_TYPE_ATOMIC) && (tag_type != CVMX_POW_TAG_TYPE_ATOMIC), "%s called where neither the before or after tag is ATOMIC\n", __func__); } tag_req.u64 = 0; if (octeon_has_feature(OCTEON_FEATURE_CN78XX_WQE)) { cvmx_wqe_t *wqp = cvmx_pow_get_current_wqp(); if (!wqp) { debug("ERROR: Failed to get WQE, %s\n", __func__); return; } group &= 0x1f; wqp->word1.cn78xx.tag = tag; wqp->word1.cn78xx.tag_type = tag_type; wqp->word1.cn78xx.grp = group << 3; CVMX_SYNCWS; tag_req.s_cn78xx_other.op = CVMX_POW_TAG_OP_SWTAG_DESCH; tag_req.s_cn78xx_other.type = tag_type; tag_req.s_cn78xx_other.grp = group << 3; tag_req.s_cn78xx_other.no_sched = no_sched; } else if (octeon_has_feature(OCTEON_FEATURE_CN68XX_WQE)) { group &= 0x3f; tag_req.s_cn68xx_other.op = CVMX_POW_TAG_OP_SWTAG_DESCH; tag_req.s_cn68xx_other.tag = tag; tag_req.s_cn68xx_other.type = tag_type; tag_req.s_cn68xx_other.grp = group; tag_req.s_cn68xx_other.no_sched = no_sched; } else { group &= 0x0f; tag_req.s_cn38xx.op = CVMX_POW_TAG_OP_SWTAG_DESCH; tag_req.s_cn38xx.tag = tag; tag_req.s_cn38xx.type = tag_type; tag_req.s_cn38xx.grp = group; tag_req.s_cn38xx.no_sched = no_sched; } ptr.u64 = 0; if (octeon_has_feature(OCTEON_FEATURE_CN78XX_WQE)) { ptr.s.mem_region = CVMX_IO_SEG; ptr.s.is_io = 1; ptr.s.did = CVMX_OCT_DID_TAG_TAG3; ptr.s_cn78xx.node = cvmx_get_node_num(); ptr.s_cn78xx.tag = tag; } else { ptr.s.mem_region = CVMX_IO_SEG; ptr.s.is_io = 1; ptr.s.did = CVMX_OCT_DID_TAG_TAG3; } cvmx_write_io(ptr.u64, tag_req.u64); } /** * Performs a tag switch and then an immediate deschedule. This completes * immediately, so completion must not be waited for. This function does NOT * update the wqe in DRAM to match arguments. * * This function waits for any prior tag switches to complete, so the * calling code may call this function with a pending tag switch. * * Note the following CAVEAT of the Octeon HW behavior when * re-scheduling DE-SCHEDULEd items whose (next) state is * ORDERED: * - If there are no switches pending at the time that the * HW executes the de-schedule, the HW will only re-schedule * the head of the FIFO associated with the given tag. This * means that in many respects, the HW treats this ORDERED * tag as an ATOMIC tag. Note that in the SWTAG_DESCH * case (to an ORDERED tag), the HW will do the switch * before the deschedule whenever it is possible to do * the switch immediately, so it may often look like * this case. * - If there is a pending switch to ORDERED at the time * the HW executes the de-schedule, the HW will perform * the switch at the time it re-schedules, and will be * able to reschedule any/all of the entries with the * same tag. * Due to this behavior, the RECOMMENDATION to software is * that they have a (next) state of ATOMIC when they * DE-SCHEDULE. If an ORDERED tag is what was really desired, * SW can choose to immediately switch to an ORDERED tag * after the work (that has an ATOMIC tag) is re-scheduled. * Note that since there are never any tag switches pending * when the HW re-schedules, this switch can be IMMEDIATE upon * the reception of the pointer during the re-schedule. * * @param tag New tag value * @param tag_type New tag type * @param group New group value * @param no_sched Control whether this work queue entry will be rescheduled. * - 1 : don't schedule this work * - 0 : allow this work to be scheduled. */ static inline void cvmx_pow_tag_sw_desched(u32 tag, cvmx_pow_tag_type_t tag_type, u64 group, u64 no_sched) { /* Need to make sure any writes to the work queue entry are complete */ CVMX_SYNCWS; /* Ensure that there is not a pending tag switch, as a tag switch cannot be started * if a previous switch is still pending. */ cvmx_pow_tag_sw_wait(); cvmx_pow_tag_sw_desched_nocheck(tag, tag_type, group, no_sched); } /** * Descchedules the current work queue entry. * * @param no_sched no schedule flag value to be set on the work queue entry. * If this is set the entry will not be rescheduled. */ static inline void cvmx_pow_desched(u64 no_sched) { union cvmx_pow_tag_req_addr ptr; cvmx_pow_tag_req_t tag_req; if (CVMX_ENABLE_POW_CHECKS) { cvmx_pow_tag_info_t current_tag; __cvmx_pow_warn_if_pending_switch(__func__); current_tag = cvmx_pow_get_current_tag(); cvmx_warn_if(current_tag.tag_type == CVMX_POW_TAG_TYPE_NULL_NULL, "%s called with NULL_NULL tag\n", __func__); cvmx_warn_if(current_tag.tag_type == CVMX_POW_TAG_TYPE_NULL, "%s called with NULL tag. Deschedule not expected from NULL state\n", __func__); } /* Need to make sure any writes to the work queue entry are complete */ CVMX_SYNCWS; tag_req.u64 = 0; if (octeon_has_feature(OCTEON_FEATURE_CN78XX_WQE)) { tag_req.s_cn78xx_other.op = CVMX_POW_TAG_OP_DESCH; tag_req.s_cn78xx_other.no_sched = no_sched; } else if (octeon_has_feature(OCTEON_FEATURE_CN68XX_WQE)) { tag_req.s_cn68xx_other.op = CVMX_POW_TAG_OP_DESCH; tag_req.s_cn68xx_other.no_sched = no_sched; } else { tag_req.s_cn38xx.op = CVMX_POW_TAG_OP_DESCH; tag_req.s_cn38xx.no_sched = no_sched; } ptr.u64 = 0; if (octeon_has_feature(OCTEON_FEATURE_CN78XX_WQE)) { ptr.s_cn78xx.mem_region = CVMX_IO_SEG; ptr.s_cn78xx.is_io = 1; ptr.s_cn78xx.did = CVMX_OCT_DID_TAG_TAG3; ptr.s_cn78xx.node = cvmx_get_node_num(); } else { ptr.s.mem_region = CVMX_IO_SEG; ptr.s.is_io = 1; ptr.s.did = CVMX_OCT_DID_TAG_TAG3; } cvmx_write_io(ptr.u64, tag_req.u64); } /******************************************************************************/ /* OCTEON3-specific functions. */ /******************************************************************************/ /** * This function sets the the affinity of group to the cores in 78xx. * It sets up all the cores in core_mask to accept work from the specified group. * * @param xgrp Group to accept work from, 0 - 255. * @param core_mask Mask of all the cores which will accept work from this group * @param mask_set Every core has set of 2 masks which can be set to accept work * from 256 groups. At the time of get_work, cores can choose which mask_set * to get work from. 'mask_set' values range from 0 to 3, where each of the * two bits represents a mask set. Cores will be added to the mask set with * corresponding bit set, and removed from the mask set with corresponding * bit clear. * Note: cores can only accept work from SSO groups on the same node, * so the node number for the group is derived from the core number. */ static inline void cvmx_sso_set_group_core_affinity(cvmx_xgrp_t xgrp, const struct cvmx_coremask *core_mask, u8 mask_set) { cvmx_sso_ppx_sx_grpmskx_t grp_msk; int core; int grp_index = xgrp.xgrp >> 6; int bit_pos = xgrp.xgrp % 64; if (!octeon_has_feature(OCTEON_FEATURE_CN78XX_WQE)) { debug("ERROR: %s is not supported on this chip)\n", __func__); return; } cvmx_coremask_for_each_core(core, core_mask) { unsigned int node, ncore; u64 reg_addr; node = cvmx_coremask_core_to_node(core); ncore = cvmx_coremask_core_on_node(core); reg_addr = CVMX_SSO_PPX_SX_GRPMSKX(ncore, 0, grp_index); grp_msk.u64 = csr_rd_node(node, reg_addr); if (mask_set & 1) grp_msk.s.grp_msk |= (1ull << bit_pos); else grp_msk.s.grp_msk &= ~(1ull << bit_pos); csr_wr_node(node, reg_addr, grp_msk.u64); reg_addr = CVMX_SSO_PPX_SX_GRPMSKX(ncore, 1, grp_index); grp_msk.u64 = csr_rd_node(node, reg_addr); if (mask_set & 2) grp_msk.s.grp_msk |= (1ull << bit_pos); else grp_msk.s.grp_msk &= ~(1ull << bit_pos); csr_wr_node(node, reg_addr, grp_msk.u64); } } /** * This function sets the priority and group affinity arbitration for each group. * * @param node Node number * @param xgrp Group 0 - 255 to apply mask parameters to * @param priority Priority of the group relative to other groups * 0x0 - highest priority * 0x7 - lowest priority * @param weight Cross-group arbitration weight to apply to this group. * valid values are 1-63 * h/w default is 0x3f * @param affinity Processor affinity arbitration weight to apply to this group. * If zero, affinity is disabled. * valid values are 0-15 * h/w default which is 0xf. * @param modify_mask mask of the parameters which needs to be modified. * enum cvmx_sso_group_modify_mask * to modify only priority -- set bit0 * to modify only weight -- set bit1 * to modify only affinity -- set bit2 */ static inline void cvmx_sso_set_group_priority(int node, cvmx_xgrp_t xgrp, int priority, int weight, int affinity, enum cvmx_sso_group_modify_mask modify_mask) { cvmx_sso_grpx_pri_t grp_pri; if (!octeon_has_feature(OCTEON_FEATURE_CN78XX_WQE)) { debug("ERROR: %s is not supported on this chip)\n", __func__); return; } if (weight <= 0) weight = 0x3f; /* Force HW default when out of range */ grp_pri.u64 = csr_rd_node(node, CVMX_SSO_GRPX_PRI(xgrp.xgrp)); if (grp_pri.s.weight == 0) grp_pri.s.weight = 0x3f; if (modify_mask & CVMX_SSO_MODIFY_GROUP_PRIORITY) grp_pri.s.pri = priority; if (modify_mask & CVMX_SSO_MODIFY_GROUP_WEIGHT) grp_pri.s.weight = weight; if (modify_mask & CVMX_SSO_MODIFY_GROUP_AFFINITY) grp_pri.s.affinity = affinity; csr_wr_node(node, CVMX_SSO_GRPX_PRI(xgrp.xgrp), grp_pri.u64); } /** * Asynchronous work request. * Only works on CN78XX style SSO. * * Work is requested from the SSO unit, and should later be checked with * function cvmx_pow_work_response_async. * This function does NOT wait for previous tag switches to complete, * so the caller must ensure that there is not a pending tag switch. * * @param scr_addr Scratch memory address that response will be returned to, * which is either a valid WQE, or a response with the invalid bit set. * Byte address, must be 8 byte aligned. * @param xgrp Group to receive work for (0-255). * @param wait * 1 to cause response to wait for work to become available (or timeout) * 0 to cause response to return immediately */ static inline void cvmx_sso_work_request_grp_async_nocheck(int scr_addr, cvmx_xgrp_t xgrp, cvmx_pow_wait_t wait) { cvmx_pow_iobdma_store_t data; unsigned int node = cvmx_get_node_num(); if (CVMX_ENABLE_POW_CHECKS) { __cvmx_pow_warn_if_pending_switch(__func__); cvmx_warn_if(!octeon_has_feature(OCTEON_FEATURE_CN78XX_WQE), "Not CN78XX"); } /* scr_addr must be 8 byte aligned */ data.u64 = 0; data.s_cn78xx.scraddr = scr_addr >> 3; data.s_cn78xx.len = 1; data.s_cn78xx.did = CVMX_OCT_DID_TAG_SWTAG; data.s_cn78xx.grouped = 1; data.s_cn78xx.index_grp_mask = (node << 8) | xgrp.xgrp; data.s_cn78xx.wait = wait; data.s_cn78xx.node = node; cvmx_send_single(data.u64); } /** * Synchronous work request from the node-local SSO without verifying * pending tag switch. It requests work from a specific SSO group. * * @param lgrp The local group number (within the SSO of the node of the caller) * from which to get the work. * @param wait When set, call stalls until work becomes available, or times out. * If not set, returns immediately. * * Return: Returns the WQE pointer from SSO. * Returns NULL if no work was available. */ static inline void *cvmx_sso_work_request_grp_sync_nocheck(unsigned int lgrp, cvmx_pow_wait_t wait) { cvmx_pow_load_addr_t ptr; cvmx_pow_tag_load_resp_t result; unsigned int node = cvmx_get_node_num() & 3; if (CVMX_ENABLE_POW_CHECKS) { __cvmx_pow_warn_if_pending_switch(__func__); cvmx_warn_if(!octeon_has_feature(OCTEON_FEATURE_CN78XX_WQE), "Not CN78XX"); } ptr.u64 = 0; ptr.swork_78xx.mem_region = CVMX_IO_SEG; ptr.swork_78xx.is_io = 1; ptr.swork_78xx.did = CVMX_OCT_DID_TAG_SWTAG; ptr.swork_78xx.node = node; ptr.swork_78xx.grouped = 1; ptr.swork_78xx.index = (lgrp & 0xff) | node << 8; ptr.swork_78xx.wait = wait; result.u64 = csr_rd(ptr.u64); if (result.s_work.no_work) return NULL; else return cvmx_phys_to_ptr(result.s_work.addr); } /** * Synchronous work request from the node-local SSO. * It requests work from a specific SSO group. * This function waits for any previous tag switch to complete before * requesting the new work. * * @param lgrp The node-local group number from which to get the work. * @param wait When set, call stalls until work becomes available, or times out. * If not set, returns immediately. * * Return: The WQE pointer or NULL, if work is not available. */ static inline void *cvmx_sso_work_request_grp_sync(unsigned int lgrp, cvmx_pow_wait_t wait) { cvmx_pow_tag_sw_wait(); return cvmx_sso_work_request_grp_sync_nocheck(lgrp, wait); } /** * This function sets the group mask for a core. The group mask bits * indicate which groups each core will accept work from. * * @param core_num Processor core to apply mask to. * @param mask_set 7XXX has 2 sets of masks per core. * Bit 0 represents the first mask set, bit 1 -- the second. * @param xgrp_mask Group mask array. * Total number of groups is divided into a number of * 64-bits mask sets. Each bit in the mask, if set, enables * the core to accept work from the corresponding group. * * NOTE: Each core can be configured to accept work in accordance to both * mask sets, with the first having higher precedence over the second, * or to accept work in accordance to just one of the two mask sets. * The 'core_num' argument represents a processor core on any node * in a coherent multi-chip system. * * If the 'mask_set' argument is 3, both mask sets are configured * with the same value (which is not typically the intention), * so keep in mind the function needs to be called twice * to set a different value into each of the mask sets, * once with 'mask_set=1' and second time with 'mask_set=2'. */ static inline void cvmx_pow_set_xgrp_mask(u64 core_num, u8 mask_set, const u64 xgrp_mask[]) { unsigned int grp, node, core; u64 reg_addr; if (!octeon_has_feature(OCTEON_FEATURE_CN78XX_WQE)) { debug("ERROR: %s is not supported on this chip)\n", __func__); return; } if (CVMX_ENABLE_POW_CHECKS) { cvmx_warn_if(((mask_set < 1) || (mask_set > 3)), "Invalid mask set"); } if ((mask_set < 1) || (mask_set > 3)) mask_set = 3; node = cvmx_coremask_core_to_node(core_num); core = cvmx_coremask_core_on_node(core_num); for (grp = 0; grp < (cvmx_sso_num_xgrp() >> 6); grp++) { if (mask_set & 1) { reg_addr = CVMX_SSO_PPX_SX_GRPMSKX(core, 0, grp), csr_wr_node(node, reg_addr, xgrp_mask[grp]); } if (mask_set & 2) { reg_addr = CVMX_SSO_PPX_SX_GRPMSKX(core, 1, grp), csr_wr_node(node, reg_addr, xgrp_mask[grp]); } } } /** * This function gets the group mask for a core. The group mask bits * indicate which groups each core will accept work from. * * @param core_num Processor core to apply mask to. * @param mask_set 7XXX has 2 sets of masks per core. * Bit 0 represents the first mask set, bit 1 -- the second. * @param xgrp_mask Provide pointer to u64 mask[8] output array. * Total number of groups is divided into a number of * 64-bits mask sets. Each bit in the mask represents * the core accepts work from the corresponding group. * * NOTE: Each core can be configured to accept work in accordance to both * mask sets, with the first having higher precedence over the second, * or to accept work in accordance to just one of the two mask sets. * The 'core_num' argument represents a processor core on any node * in a coherent multi-chip system. */ static inline void cvmx_pow_get_xgrp_mask(u64 core_num, u8 mask_set, u64 *xgrp_mask) { cvmx_sso_ppx_sx_grpmskx_t grp_msk; unsigned int grp, node, core; u64 reg_addr; if (!octeon_has_feature(OCTEON_FEATURE_CN78XX_WQE)) { debug("ERROR: %s is not supported on this chip)\n", __func__); return; } if (CVMX_ENABLE_POW_CHECKS) { cvmx_warn_if(mask_set != 1 && mask_set != 2, "Invalid mask set"); } node = cvmx_coremask_core_to_node(core_num); core = cvmx_coremask_core_on_node(core_num); for (grp = 0; grp < cvmx_sso_num_xgrp() >> 6; grp++) { if (mask_set & 1) { reg_addr = CVMX_SSO_PPX_SX_GRPMSKX(core, 0, grp), grp_msk.u64 = csr_rd_node(node, reg_addr); xgrp_mask[grp] = grp_msk.s.grp_msk; } if (mask_set & 2) { reg_addr = CVMX_SSO_PPX_SX_GRPMSKX(core, 1, grp), grp_msk.u64 = csr_rd_node(node, reg_addr); xgrp_mask[grp] = grp_msk.s.grp_msk; } } } /** * Executes SSO SWTAG command. * This is similar to cvmx_pow_tag_sw() function, but uses linear * (vs. integrated group-qos) group index. */ static inline void cvmx_pow_tag_sw_node(cvmx_wqe_t *wqp, u32 tag, cvmx_pow_tag_type_t tag_type, int node) { union cvmx_pow_tag_req_addr ptr; cvmx_pow_tag_req_t tag_req; if (cvmx_unlikely(!octeon_has_feature(OCTEON_FEATURE_CN78XX_WQE))) { debug("ERROR: %s is supported on OCTEON3 only\n", __func__); return; } CVMX_SYNCWS; cvmx_pow_tag_sw_wait(); if (CVMX_ENABLE_POW_CHECKS) { cvmx_pow_tag_info_t current_tag; __cvmx_pow_warn_if_pending_switch(__func__); current_tag = cvmx_pow_get_current_tag(); cvmx_warn_if(current_tag.tag_type == CVMX_POW_TAG_TYPE_NULL_NULL, "%s called with NULL_NULL tag\n", __func__); cvmx_warn_if(current_tag.tag_type == CVMX_POW_TAG_TYPE_NULL, "%s called with NULL tag\n", __func__); cvmx_warn_if((current_tag.tag_type == tag_type) && (current_tag.tag == tag), "%s called to perform a tag switch to the same tag\n", __func__); cvmx_warn_if( tag_type == CVMX_POW_TAG_TYPE_NULL, "%s called to perform a tag switch to NULL. Use cvmx_pow_tag_sw_null() instead\n", __func__); } wqp->word1.cn78xx.tag = tag; wqp->word1.cn78xx.tag_type = tag_type; CVMX_SYNCWS; tag_req.u64 = 0; tag_req.s_cn78xx_other.op = CVMX_POW_TAG_OP_SWTAG; tag_req.s_cn78xx_other.type = tag_type; ptr.u64 = 0; ptr.s_cn78xx.mem_region = CVMX_IO_SEG; ptr.s_cn78xx.is_io = 1; ptr.s_cn78xx.did = CVMX_OCT_DID_TAG_SWTAG; ptr.s_cn78xx.node = node; ptr.s_cn78xx.tag = tag; cvmx_write_io(ptr.u64, tag_req.u64); } /** * Executes SSO SWTAG_FULL command. * This is similar to cvmx_pow_tag_sw_full() function, but * uses linear (vs. integrated group-qos) group index. */ static inline void cvmx_pow_tag_sw_full_node(cvmx_wqe_t *wqp, u32 tag, cvmx_pow_tag_type_t tag_type, u8 xgrp, int node) { union cvmx_pow_tag_req_addr ptr; cvmx_pow_tag_req_t tag_req; u16 gxgrp; if (cvmx_unlikely(!octeon_has_feature(OCTEON_FEATURE_CN78XX_WQE))) { debug("ERROR: %s is supported on OCTEON3 only\n", __func__); return; } /* Ensure that there is not a pending tag switch, as a tag switch cannot be * started, if a previous switch is still pending. */ CVMX_SYNCWS; cvmx_pow_tag_sw_wait(); if (CVMX_ENABLE_POW_CHECKS) { cvmx_pow_tag_info_t current_tag; __cvmx_pow_warn_if_pending_switch(__func__); current_tag = cvmx_pow_get_current_tag(); cvmx_warn_if(current_tag.tag_type == CVMX_POW_TAG_TYPE_NULL_NULL, "%s called with NULL_NULL tag\n", __func__); cvmx_warn_if((current_tag.tag_type == tag_type) && (current_tag.tag == tag), "%s called to perform a tag switch to the same tag\n", __func__); cvmx_warn_if( tag_type == CVMX_POW_TAG_TYPE_NULL, "%s called to perform a tag switch to NULL. Use cvmx_pow_tag_sw_null() instead\n", __func__); if ((wqp != cvmx_phys_to_ptr(0x80)) && cvmx_pow_get_current_wqp()) cvmx_warn_if(wqp != cvmx_pow_get_current_wqp(), "%s passed WQE(%p) doesn't match the address in the POW(%p)\n", __func__, wqp, cvmx_pow_get_current_wqp()); } gxgrp = node; gxgrp = gxgrp << 8 | xgrp; wqp->word1.cn78xx.grp = gxgrp; wqp->word1.cn78xx.tag = tag; wqp->word1.cn78xx.tag_type = tag_type; CVMX_SYNCWS; tag_req.u64 = 0; tag_req.s_cn78xx_other.op = CVMX_POW_TAG_OP_SWTAG_FULL; tag_req.s_cn78xx_other.type = tag_type; tag_req.s_cn78xx_other.grp = gxgrp; tag_req.s_cn78xx_other.wqp = cvmx_ptr_to_phys(wqp); ptr.u64 = 0; ptr.s_cn78xx.mem_region = CVMX_IO_SEG; ptr.s_cn78xx.is_io = 1; ptr.s_cn78xx.did = CVMX_OCT_DID_TAG_SWTAG; ptr.s_cn78xx.node = node; ptr.s_cn78xx.tag = tag; cvmx_write_io(ptr.u64, tag_req.u64); } /** * Submits work to an SSO group on any OCI node. * This function updates the work queue entry in DRAM to match * the arguments given. * Note that the tag provided is for the work queue entry submitted, * and is unrelated to the tag that the core currently holds. * * @param wqp pointer to work queue entry to submit. * This entry is updated to match the other parameters * @param tag tag value to be assigned to work queue entry * @param tag_type type of tag * @param xgrp native CN78XX group in the range 0..255 * @param node The OCI node number for the target group * * When this function is called on a model prior to CN78XX, which does * not support OCI nodes, the 'node' argument is ignored, and the 'xgrp' * parameter is converted into 'qos' (the lower 3 bits) and 'grp' (the higher * 5 bits), following the backward-compatibility scheme of translating * between new and old style group numbers. */ static inline void cvmx_pow_work_submit_node(cvmx_wqe_t *wqp, u32 tag, cvmx_pow_tag_type_t tag_type, u8 xgrp, u8 node) { union cvmx_pow_tag_req_addr ptr; cvmx_pow_tag_req_t tag_req; u16 group; if (cvmx_unlikely(!octeon_has_feature(OCTEON_FEATURE_CN78XX_WQE))) { debug("ERROR: %s is supported on OCTEON3 only\n", __func__); return; } group = node; group = group << 8 | xgrp; wqp->word1.cn78xx.tag = tag; wqp->word1.cn78xx.tag_type = tag_type; wqp->word1.cn78xx.grp = group; CVMX_SYNCWS; tag_req.u64 = 0; tag_req.s_cn78xx_other.op = CVMX_POW_TAG_OP_ADDWQ; tag_req.s_cn78xx_other.type = tag_type; tag_req.s_cn78xx_other.wqp = cvmx_ptr_to_phys(wqp); tag_req.s_cn78xx_other.grp = group; ptr.u64 = 0; ptr.s_cn78xx.did = 0x66; // CVMX_OCT_DID_TAG_TAG6; ptr.s_cn78xx.mem_region = CVMX_IO_SEG; ptr.s_cn78xx.is_io = 1; ptr.s_cn78xx.node = node; ptr.s_cn78xx.tag = tag; /* SYNC write to memory before the work submit. This is necessary ** as POW may read values from DRAM at this time */ CVMX_SYNCWS; cvmx_write_io(ptr.u64, tag_req.u64); } /** * Executes the SSO SWTAG_DESCHED operation. * This is similar to the cvmx_pow_tag_sw_desched() function, but * uses linear (vs. unified group-qos) group index. */ static inline void cvmx_pow_tag_sw_desched_node(cvmx_wqe_t *wqe, u32 tag, cvmx_pow_tag_type_t tag_type, u8 xgrp, u64 no_sched, u8 node) { union cvmx_pow_tag_req_addr ptr; cvmx_pow_tag_req_t tag_req; u16 group; if (cvmx_unlikely(!octeon_has_feature(OCTEON_FEATURE_CN78XX_WQE))) { debug("ERROR: %s is supported on OCTEON3 only\n", __func__); return; } /* Need to make sure any writes to the work queue entry are complete */ CVMX_SYNCWS; /* * Ensure that there is not a pending tag switch, as a tag switch cannot * be started if a previous switch is still pending. */ cvmx_pow_tag_sw_wait(); if (CVMX_ENABLE_POW_CHECKS) { cvmx_pow_tag_info_t current_tag; __cvmx_pow_warn_if_pending_switch(__func__); current_tag = cvmx_pow_get_current_tag(); cvmx_warn_if(current_tag.tag_type == CVMX_POW_TAG_TYPE_NULL_NULL, "%s called with NULL_NULL tag\n", __func__); cvmx_warn_if(current_tag.tag_type == CVMX_POW_TAG_TYPE_NULL, "%s called with NULL tag. Deschedule not allowed from NULL state\n", __func__); cvmx_warn_if((current_tag.tag_type != CVMX_POW_TAG_TYPE_ATOMIC) && (tag_type != CVMX_POW_TAG_TYPE_ATOMIC), "%s called where neither the before or after tag is ATOMIC\n", __func__); } group = node; group = group << 8 | xgrp; wqe->word1.cn78xx.tag = tag; wqe->word1.cn78xx.tag_type = tag_type; wqe->word1.cn78xx.grp = group; CVMX_SYNCWS; tag_req.u64 = 0; tag_req.s_cn78xx_other.op = CVMX_POW_TAG_OP_SWTAG_DESCH; tag_req.s_cn78xx_other.type = tag_type; tag_req.s_cn78xx_other.grp = group; tag_req.s_cn78xx_other.no_sched = no_sched; ptr.u64 = 0; ptr.s.mem_region = CVMX_IO_SEG; ptr.s.is_io = 1; ptr.s.did = CVMX_OCT_DID_TAG_TAG3; ptr.s_cn78xx.node = node; ptr.s_cn78xx.tag = tag; cvmx_write_io(ptr.u64, tag_req.u64); } /* Executes the UPD_WQP_GRP SSO operation. * * @param wqp Pointer to the new work queue entry to switch to. * @param xgrp SSO group in the range 0..255 * * NOTE: The operation can be performed only on the local node. */ static inline void cvmx_sso_update_wqp_group(cvmx_wqe_t *wqp, u8 xgrp) { union cvmx_pow_tag_req_addr addr; cvmx_pow_tag_req_t data; int node = cvmx_get_node_num(); int group = node << 8 | xgrp; if (!octeon_has_feature(OCTEON_FEATURE_CN78XX_WQE)) { debug("ERROR: %s is not supported on this chip)\n", __func__); return; } wqp->word1.cn78xx.grp = group; CVMX_SYNCWS; data.u64 = 0; data.s_cn78xx_other.op = CVMX_POW_TAG_OP_UPDATE_WQP_GRP; data.s_cn78xx_other.grp = group; data.s_cn78xx_other.wqp = cvmx_ptr_to_phys(wqp); addr.u64 = 0; addr.s_cn78xx.mem_region = CVMX_IO_SEG; addr.s_cn78xx.is_io = 1; addr.s_cn78xx.did = CVMX_OCT_DID_TAG_TAG1; addr.s_cn78xx.node = node; cvmx_write_io(addr.u64, data.u64); } /******************************************************************************/ /* Define usage of bits within the 32 bit tag values. */ /******************************************************************************/ /* * Number of bits of the tag used by software. The SW bits * are always a contiguous block of the high starting at bit 31. * The hardware bits are always the low bits. By default, the top 8 bits * of the tag are reserved for software, and the low 24 are set by the IPD unit. */ #define CVMX_TAG_SW_BITS (8) #define CVMX_TAG_SW_SHIFT (32 - CVMX_TAG_SW_BITS) /* Below is the list of values for the top 8 bits of the tag. */ /* * Tag values with top byte of this value are reserved for internal executive * uses */ #define CVMX_TAG_SW_BITS_INTERNAL 0x1 /* * The executive divides the remaining 24 bits as follows: * the upper 8 bits (bits 23 - 16 of the tag) define a subgroup * the lower 16 bits (bits 15 - 0 of the tag) define are the value with * the subgroup. Note that this section describes the format of tags generated * by software - refer to the hardware documentation for a description of the * tags values generated by the packet input hardware. * Subgroups are defined here */ /* Mask for the value portion of the tag */ #define CVMX_TAG_SUBGROUP_MASK 0xFFFF #define CVMX_TAG_SUBGROUP_SHIFT 16 #define CVMX_TAG_SUBGROUP_PKO 0x1 /* End of executive tag subgroup definitions */ /* The remaining values software bit values 0x2 - 0xff are available * for application use */ /** * This function creates a 32 bit tag value from the two values provided. * * @param sw_bits The upper bits (number depends on configuration) are set * to this value. The remainder of bits are set by the hw_bits parameter. * @param hw_bits The lower bits (number depends on configuration) are set * to this value. The remainder of bits are set by the sw_bits parameter. * * Return: 32 bit value of the combined hw and sw bits. */ static inline u32 cvmx_pow_tag_compose(u64 sw_bits, u64 hw_bits) { return (((sw_bits & cvmx_build_mask(CVMX_TAG_SW_BITS)) << CVMX_TAG_SW_SHIFT) | (hw_bits & cvmx_build_mask(32 - CVMX_TAG_SW_BITS))); } /** * Extracts the bits allocated for software use from the tag * * @param tag 32 bit tag value * * Return: N bit software tag value, where N is configurable with * the CVMX_TAG_SW_BITS define */ static inline u32 cvmx_pow_tag_get_sw_bits(u64 tag) { return ((tag >> (32 - CVMX_TAG_SW_BITS)) & cvmx_build_mask(CVMX_TAG_SW_BITS)); } /** * * Extracts the bits allocated for hardware use from the tag * * @param tag 32 bit tag value * * Return: (32 - N) bit software tag value, where N is configurable with * the CVMX_TAG_SW_BITS define */ static inline u32 cvmx_pow_tag_get_hw_bits(u64 tag) { return (tag & cvmx_build_mask(32 - CVMX_TAG_SW_BITS)); } static inline u64 cvmx_sso3_get_wqe_count(int node) { cvmx_sso_grpx_aq_cnt_t aq_cnt; unsigned int grp = 0; u64 cnt = 0; for (grp = 0; grp < cvmx_sso_num_xgrp(); grp++) { aq_cnt.u64 = csr_rd_node(node, CVMX_SSO_GRPX_AQ_CNT(grp)); cnt += aq_cnt.s.aq_cnt; } return cnt; } static inline u64 cvmx_sso_get_total_wqe_count(void) { if (octeon_has_feature(OCTEON_FEATURE_CN78XX_WQE)) { int node = cvmx_get_node_num(); return cvmx_sso3_get_wqe_count(node); } else if (OCTEON_IS_MODEL(OCTEON_CN68XX)) { cvmx_sso_iq_com_cnt_t sso_iq_com_cnt; sso_iq_com_cnt.u64 = csr_rd(CVMX_SSO_IQ_COM_CNT); return (sso_iq_com_cnt.s.iq_cnt); } else { cvmx_pow_iq_com_cnt_t pow_iq_com_cnt; pow_iq_com_cnt.u64 = csr_rd(CVMX_POW_IQ_COM_CNT); return (pow_iq_com_cnt.s.iq_cnt); } } /** * Store the current POW internal state into the supplied * buffer. It is recommended that you pass a buffer of at least * 128KB. The format of the capture may change based on SDK * version and Octeon chip. * * @param buffer Buffer to store capture into * @param buffer_size The size of the supplied buffer * * Return: Zero on success, negative on failure */ int cvmx_pow_capture(void *buffer, int buffer_size); /** * Dump a POW capture to the console in a human readable format. * * @param buffer POW capture from cvmx_pow_capture() * @param buffer_size Size of the buffer */ void cvmx_pow_display(void *buffer, int buffer_size); /** * Return the number of POW entries supported by this chip * * Return: Number of POW entries */ int cvmx_pow_get_num_entries(void); int cvmx_pow_get_dump_size(void); /** * This will allocate count number of SSO groups on the specified node to the * calling application. These groups will be for exclusive use of the * application until they are freed. * @param node The numa node for the allocation. * @param base_group Pointer to the initial group, -1 to allocate anywhere. * @param count The number of consecutive groups to allocate. * Return: 0 on success and -1 on failure. */ int cvmx_sso_reserve_group_range(int node, int *base_group, int count); #define cvmx_sso_allocate_group_range cvmx_sso_reserve_group_range int cvmx_sso_reserve_group(int node); #define cvmx_sso_allocate_group cvmx_sso_reserve_group int cvmx_sso_release_group_range(int node, int base_group, int count); int cvmx_sso_release_group(int node, int group); /** * Show integrated SSO configuration. * * @param node node number */ int cvmx_sso_config_dump(unsigned int node); /** * Show integrated SSO statistics. * * @param node node number */ int cvmx_sso_stats_dump(unsigned int node); /** * Clear integrated SSO statistics. * * @param node node number */ int cvmx_sso_stats_clear(unsigned int node); /** * Show SSO core-group affinity and priority per node (multi-node systems) */ void cvmx_pow_mask_priority_dump_node(unsigned int node, struct cvmx_coremask *avail_coremask); /** * Show POW/SSO core-group affinity and priority (legacy, single-node systems) */ static inline void cvmx_pow_mask_priority_dump(struct cvmx_coremask *avail_coremask) { cvmx_pow_mask_priority_dump_node(0 /*node */, avail_coremask); } /** * Show SSO performance counters (multi-node systems) */ void cvmx_pow_show_perf_counters_node(unsigned int node); /** * Show POW/SSO performance counters (legacy, single-node systems) */ static inline void cvmx_pow_show_perf_counters(void) { cvmx_pow_show_perf_counters_node(0 /*node */); } #endif /* __CVMX_POW_H__ */