/* SPDX-License-Identifier: GPL-2.0 */ /* * Copyright (C) 2020 Marvell International Ltd. */ #ifndef __CVMX_LMCX_DEFS_H__ #define __CVMX_LMCX_DEFS_H__ #define CVMX_LMCX_BANK_CONFLICT1(offs) \ ((0x000360ull) + ((offs) & 3) * 0x1000000ull) #define CVMX_LMCX_BANK_CONFLICT2(offs) \ ((0x000368ull) + ((offs) & 3) * 0x1000000ull) #define CVMX_LMCX_BIST_RESULT(offs) \ ((0x0000F8ull) + ((offs) & 1) * 0x60000000ull) #define CVMX_LMCX_CHAR_CTL(offs) \ ((0x000220ull) + ((offs) & 3) * 0x1000000ull) #define CVMX_LMCX_CHAR_DQ_ERR_COUNT(offs) \ ((0x000040ull) + ((offs) & 3) * 0x1000000ull) #define CVMX_LMCX_CHAR_MASK0(offs) \ ((0x000228ull) + ((offs) & 3) * 0x1000000ull) #define CVMX_LMCX_CHAR_MASK1(offs) \ ((0x000230ull) + ((offs) & 3) * 0x1000000ull) #define CVMX_LMCX_CHAR_MASK2(offs) \ ((0x000238ull) + ((offs) & 3) * 0x1000000ull) #define CVMX_LMCX_CHAR_MASK3(offs) \ ((0x000240ull) + ((offs) & 3) * 0x1000000ull) #define CVMX_LMCX_CHAR_MASK4(offs) \ ((0x000318ull) + ((offs) & 3) * 0x1000000ull) #define CVMX_LMCX_COMP_CTL(offs) \ ((0x000028ull) + ((offs) & 1) * 0x60000000ull) #define CVMX_LMCX_COMP_CTL2(offs) \ ((0x0001B8ull) + ((offs) & 3) * 0x1000000ull) #define CVMX_LMCX_CONFIG(offs) \ ((0x000188ull) + ((offs) & 3) * 0x1000000ull) #define CVMX_LMCX_CONTROL(offs) \ ((0x000190ull) + ((offs) & 3) * 0x1000000ull) #define CVMX_LMCX_CTL(offs) \ ((0x000010ull) + ((offs) & 1) * 0x60000000ull) #define CVMX_LMCX_CTL1(offs) \ ((0x000090ull) + ((offs) & 1) * 0x60000000ull) #define CVMX_LMCX_DBTRAIN_CTL(offs) \ ((0x0003F8ull) + ((offs) & 3) * 0x1000000ull) #define CVMX_LMCX_DCLK_CNT(offs) \ ((0x0001E0ull) + ((offs) & 3) * 0x1000000ull) #define CVMX_LMCX_DCLK_CNT_HI(offs) \ ((0x000070ull) + ((offs) & 1) * 0x60000000ull) #define CVMX_LMCX_DCLK_CNT_LO(offs) \ ((0x000068ull) + ((offs) & 1) * 0x60000000ull) #define CVMX_LMCX_DCLK_CTL(offs) \ ((0x0000B8ull) + ((offs) & 1) * 0x60000000ull) #define CVMX_LMCX_DDR2_CTL(offs) \ ((0x000018ull) + ((offs) & 1) * 0x60000000ull) #define CVMX_LMCX_DDR4_DIMM_CTL(offs) \ ((0x0003F0ull) + ((offs) & 3) * 0x1000000ull) #define CVMX_LMCX_DDR_PLL_CTL(offs) \ ((0x000258ull) + ((offs) & 3) * 0x1000000ull) #define CVMX_LMCX_DELAY_CFG(offs) \ ((0x000088ull) + ((offs) & 1) * 0x60000000ull) #define CVMX_LMCX_DIMMX_DDR4_PARAMS0(offs, id) \ ((0x0000D0ull) + (((offs) & 1) + ((id) & 3) * 0x200000ull) * 8) #define CVMX_LMCX_DIMMX_DDR4_PARAMS1(offs, id) \ ((0x000140ull) + (((offs) & 1) + ((id) & 3) * 0x200000ull) * 8) #define CVMX_LMCX_DIMMX_PARAMS(offs, id) \ ((0x000270ull) + (((offs) & 1) + ((id) & 3) * 0x200000ull) * 8) #define CVMX_LMCX_DIMM_CTL(offs) \ ((0x000310ull) + ((offs) & 3) * 0x1000000ull) #define CVMX_LMCX_DLL_CTL(offs) \ ((0x0000C0ull) + ((offs) & 1) * 0x60000000ull) #define CVMX_LMCX_DLL_CTL2(offs) \ ((0x0001C8ull) + ((offs) & 3) * 0x1000000ull) #define CVMX_LMCX_DLL_CTL3(offs) \ ((0x000218ull) + ((offs) & 3) * 0x1000000ull) #define CVMX_LMCX_ECC_PARITY_TEST(offs) \ ((0x000108ull) + ((offs) & 3) * 0x1000000ull) #define CVMX_LMCX_EXT_CONFIG(offs) \ ((0x000030ull) + ((offs) & 3) * 0x1000000ull) #define CVMX_LMCX_EXT_CONFIG2(offs) \ ((0x000090ull) + ((offs) & 3) * 0x1000000ull) #define CVMX_LMCX_GENERAL_PURPOSE0(offs) \ ((0x000340ull) + ((offs) & 3) * 0x1000000ull) #define CVMX_LMCX_GENERAL_PURPOSE1(offs) \ ((0x000348ull) + ((offs) & 3) * 0x1000000ull) #define CVMX_LMCX_GENERAL_PURPOSE2(offs) \ ((0x000350ull) + ((offs) & 3) * 0x1000000ull) #define CVMX_LMCX_IFB_CNT(offs) \ ((0x0001D0ull) + ((offs) & 3) * 0x1000000ull) #define CVMX_LMCX_IFB_CNT_HI(offs) \ ((0x000050ull) + ((offs) & 1) * 0x60000000ull) #define CVMX_LMCX_IFB_CNT_LO(offs) \ ((0x000048ull) + ((offs) & 1) * 0x60000000ull) #define CVMX_LMCX_INT(offs) \ ((0x0001F0ull) + ((offs) & 3) * 0x1000000ull) #define CVMX_LMCX_INT_EN(offs) \ ((0x0001E8ull) + ((offs) & 3) * 0x1000000ull) #define CVMX_LMCX_LANEX_CRC_SWIZ(x, id) \ ((0x000380ull) + (((offs) & 15) + ((id) & 3) * 0x200000ull) * 8) #define CVMX_LMCX_MEM_CFG0(offs) \ ((0x000000ull) + ((offs) & 1) * 0x60000000ull) #define CVMX_LMCX_MEM_CFG1(offs) \ ((0x000008ull) + ((offs) & 1) * 0x60000000ull) #define CVMX_LMCX_MODEREG_PARAMS0(offs) \ ((0x0001A8ull) + ((offs) & 3) * 0x1000000ull) #define CVMX_LMCX_MODEREG_PARAMS1(offs) \ ((0x000260ull) + ((offs) & 3) * 0x1000000ull) #define CVMX_LMCX_MODEREG_PARAMS2(offs) \ ((0x000050ull) + ((offs) & 3) * 0x1000000ull) #define CVMX_LMCX_MODEREG_PARAMS3(offs) \ ((0x000058ull) + ((offs) & 3) * 0x1000000ull) #define CVMX_LMCX_MPR_DATA0(offs) \ ((0x000070ull) + ((offs) & 3) * 0x1000000ull) #define CVMX_LMCX_MPR_DATA1(offs) \ ((0x000078ull) + ((offs) & 3) * 0x1000000ull) #define CVMX_LMCX_MPR_DATA2(offs) \ ((0x000080ull) + ((offs) & 3) * 0x1000000ull) #define CVMX_LMCX_MR_MPR_CTL(offs) \ ((0x000068ull) + ((offs) & 3) * 0x1000000ull) #define CVMX_LMCX_NS_CTL(offs) \ ((0x000178ull) + ((offs) & 3) * 0x1000000ull) static inline uint64_t CVMX_LMCX_NXM(unsigned long offs) { switch (cvmx_get_octeon_family()) { case OCTEON_CNF71XX & OCTEON_FAMILY_MASK: case OCTEON_CN61XX & OCTEON_FAMILY_MASK: case OCTEON_CN70XX & OCTEON_FAMILY_MASK: case OCTEON_CN66XX & OCTEON_FAMILY_MASK: case OCTEON_CN63XX & OCTEON_FAMILY_MASK: return (0x0000C8ull) + (offs) * 0x60000000ull; case OCTEON_CNF75XX & OCTEON_FAMILY_MASK: case OCTEON_CN73XX & OCTEON_FAMILY_MASK: return (0x0000C8ull) + (offs) * 0x1000000ull; case OCTEON_CN78XX & OCTEON_FAMILY_MASK: if (OCTEON_IS_MODEL(OCTEON_CN78XX_PASS1_X)) return (0x0000C8ull) + (offs) * 0x1000000ull; if (OCTEON_IS_MODEL(OCTEON_CN78XX)) return (0x0000C8ull) + (offs) * 0x1000000ull; case OCTEON_CN68XX & OCTEON_FAMILY_MASK: return (0x0000C8ull) + (offs) * 0x1000000ull; } return (0x0000C8ull) + (offs) * 0x1000000ull; } #define CVMX_LMCX_NXM_FADR(offs) \ ((0x000028ull) + ((offs) & 3) * 0x1000000ull) #define CVMX_LMCX_OPS_CNT(offs) \ ((0x0001D8ull) + ((offs) & 3) * 0x1000000ull) #define CVMX_LMCX_OPS_CNT_HI(offs) \ ((0x000060ull) + ((offs) & 1) * 0x60000000ull) #define CVMX_LMCX_OPS_CNT_LO(offs) \ ((0x000058ull) + ((offs) & 1) * 0x60000000ull) #define CVMX_LMCX_PHY_CTL(offs) \ ((0x000210ull) + ((offs) & 3) * 0x1000000ull) #define CVMX_LMCX_PHY_CTL2(offs) \ ((0x000250ull) + ((offs) & 3) * 0x1000000ull) #define CVMX_LMCX_PLL_BWCTL(offs) \ ((0x000040ull)) #define CVMX_LMCX_PLL_CTL(offs) \ ((0x0000A8ull) + ((offs) & 1) * 0x60000000ull) #define CVMX_LMCX_PLL_STATUS(offs) \ ((0x0000B0ull) + ((offs) & 1) * 0x60000000ull) #define CVMX_LMCX_PPR_CTL(offs) \ ((0x0003E0ull) + ((offs) & 3) * 0x1000000ull) #define CVMX_LMCX_READ_LEVEL_CTL(offs) \ ((0x000140ull) + ((offs) & 1) * 0x60000000ull) #define CVMX_LMCX_READ_LEVEL_DBG(offs) \ ((0x000148ull) + ((offs) & 1) * 0x60000000ull) #define CVMX_LMCX_READ_LEVEL_RANKX(offs, id) \ ((0x000100ull) + (((offs) & 3) + ((id) & 1) * 0xC000000ull) * 8) #define CVMX_LMCX_REF_STATUS(offs) \ ((0x0000A0ull) + ((offs) & 3) * 0x1000000ull) #define CVMX_LMCX_RESET_CTL(offs) \ ((0x000180ull) + ((offs) & 3) * 0x1000000ull) #define CVMX_LMCX_RETRY_CONFIG(offs) \ ((0x000110ull) + ((offs) & 3) * 0x1000000ull) #define CVMX_LMCX_RETRY_STATUS(offs) \ ((0x000118ull) + ((offs) & 3) * 0x1000000ull) #define CVMX_LMCX_RLEVEL_CTL(offs) \ ((0x0002A0ull) + ((offs) & 3) * 0x1000000ull) #define CVMX_LMCX_RLEVEL_DBG(offs) \ ((0x0002A8ull) + ((offs) & 3) * 0x1000000ull) #define CVMX_LMCX_RLEVEL_RANKX(offs, id) \ ((0x000280ull) + (((offs) & 3) + ((id) & 3) * 0x200000ull) * 8) #define CVMX_LMCX_RODT_COMP_CTL(offs) \ ((0x0000A0ull) + ((offs) & 1) * 0x60000000ull) #define CVMX_LMCX_RODT_CTL(offs) \ ((0x000078ull) + ((offs) & 1) * 0x60000000ull) #define CVMX_LMCX_RODT_MASK(offs) \ ((0x000268ull) + ((offs) & 3) * 0x1000000ull) #define CVMX_LMCX_SCRAMBLED_FADR(offs) \ ((0x000330ull) + ((offs) & 3) * 0x1000000ull) #define CVMX_LMCX_SCRAMBLE_CFG0(offs) \ ((0x000320ull) + ((offs) & 3) * 0x1000000ull) #define CVMX_LMCX_SCRAMBLE_CFG1(offs) \ ((0x000328ull) + ((offs) & 3) * 0x1000000ull) #define CVMX_LMCX_SCRAMBLE_CFG2(offs) \ ((0x000338ull) + ((offs) & 3) * 0x1000000ull) #define CVMX_LMCX_SEQ_CTL(offs) \ ((0x000048ull) + ((offs) & 3) * 0x1000000ull) #define CVMX_LMCX_SLOT_CTL0(offs) \ ((0x0001F8ull) + ((offs) & 3) * 0x1000000ull) #define CVMX_LMCX_SLOT_CTL1(offs) \ ((0x000200ull) + ((offs) & 3) * 0x1000000ull) #define CVMX_LMCX_SLOT_CTL2(offs) \ ((0x000208ull) + ((offs) & 3) * 0x1000000ull) #define CVMX_LMCX_SLOT_CTL3(offs) \ ((0x000248ull) + ((offs) & 3) * 0x1000000ull) #define CVMX_LMCX_TIMING_PARAMS0(offs) \ ((0x000198ull) + ((offs) & 3) * 0x1000000ull) #define CVMX_LMCX_TIMING_PARAMS1(offs) \ ((0x0001A0ull) + ((offs) & 3) * 0x1000000ull) #define CVMX_LMCX_TIMING_PARAMS2(offs) \ ((0x000060ull) + ((offs) & 3) * 0x1000000ull) #define CVMX_LMCX_TRO_CTL(offs) \ ((0x000248ull) + ((offs) & 3) * 0x1000000ull) #define CVMX_LMCX_TRO_STAT(offs) \ ((0x000250ull) + ((offs) & 3) * 0x1000000ull) #define CVMX_LMCX_WLEVEL_CTL(offs) \ ((0x000300ull) + ((offs) & 3) * 0x1000000ull) #define CVMX_LMCX_WLEVEL_DBG(offs) \ ((0x000308ull) + ((offs) & 3) * 0x1000000ull) static inline uint64_t CVMX_LMCX_WLEVEL_RANKX(unsigned long offs, unsigned long id) { switch (cvmx_get_octeon_family()) { case OCTEON_CN70XX & OCTEON_FAMILY_MASK: return (0x0002C0ull) + ((offs) + (id) * 0x200000ull) * 8; case OCTEON_CNF75XX & OCTEON_FAMILY_MASK: case OCTEON_CN73XX & OCTEON_FAMILY_MASK: return (0x0002C0ull) + ((offs) + (id) * 0x200000ull) * 8; case OCTEON_CN78XX & OCTEON_FAMILY_MASK: if (OCTEON_IS_MODEL(OCTEON_CN78XX_PASS1_X)) return (0x0002C0ull) + ((offs) + (id) * 0x200000ull) * 8; if (OCTEON_IS_MODEL(OCTEON_CN78XX)) return (0x0002C0ull) + ((offs) + (id) * 0x200000ull) * 8; case OCTEON_CN66XX & OCTEON_FAMILY_MASK: case OCTEON_CN63XX & OCTEON_FAMILY_MASK: return (0x0002B0ull) + ((offs) + (id) * 0x0ull) * 8; case OCTEON_CNF71XX & OCTEON_FAMILY_MASK: case OCTEON_CN61XX & OCTEON_FAMILY_MASK: return (0x0002B0ull) + ((offs) + (id) * 0x200000ull) * 8; case OCTEON_CN68XX & OCTEON_FAMILY_MASK: return (0x0002B0ull) + ((offs) + (id) * 0x200000ull) * 8; } return (0x0002C0ull) + ((offs) + (id) * 0x200000ull) * 8; } #define CVMX_LMCX_WODT_CTL0(offs) \ ((0x000030ull) + ((offs) & 1) * 0x60000000ull) #define CVMX_LMCX_WODT_CTL1(offs) \ ((0x000080ull) + ((offs) & 1) * 0x60000000ull) #define CVMX_LMCX_WODT_MASK(offs) \ ((0x0001B0ull) + ((offs) & 3) * 0x1000000ull) /** * cvmx_lmc#_char_ctl * * This register provides an assortment of various control fields needed * to characterize the DDR3 interface. */ union cvmx_lmcx_char_ctl { u64 u64; struct cvmx_lmcx_char_ctl_s { uint64_t reserved_54_63:10; uint64_t dq_char_byte_check:1; uint64_t dq_char_check_lock:1; uint64_t dq_char_check_enable:1; uint64_t dq_char_bit_sel:3; uint64_t dq_char_byte_sel:4; uint64_t dr:1; uint64_t skew_on:1; uint64_t en:1; uint64_t sel:1; uint64_t prog:8; uint64_t prbs:32; } s; struct cvmx_lmcx_char_ctl_cn61xx { uint64_t reserved_44_63:20; uint64_t dr:1; uint64_t skew_on:1; uint64_t en:1; uint64_t sel:1; uint64_t prog:8; uint64_t prbs:32; } cn61xx; struct cvmx_lmcx_char_ctl_cn63xx { uint64_t reserved_42_63:22; uint64_t en:1; uint64_t sel:1; uint64_t prog:8; uint64_t prbs:32; } cn63xx; struct cvmx_lmcx_char_ctl_cn63xx cn63xxp1; struct cvmx_lmcx_char_ctl_cn61xx cn66xx; struct cvmx_lmcx_char_ctl_cn61xx cn68xx; struct cvmx_lmcx_char_ctl_cn63xx cn68xxp1; struct cvmx_lmcx_char_ctl_cn70xx { uint64_t reserved_53_63:11; uint64_t dq_char_check_lock:1; uint64_t dq_char_check_enable:1; uint64_t dq_char_bit_sel:3; uint64_t dq_char_byte_sel:4; uint64_t dr:1; uint64_t skew_on:1; uint64_t en:1; uint64_t sel:1; uint64_t prog:8; uint64_t prbs:32; } cn70xx; struct cvmx_lmcx_char_ctl_cn70xx cn70xxp1; struct cvmx_lmcx_char_ctl_s cn73xx; struct cvmx_lmcx_char_ctl_s cn78xx; struct cvmx_lmcx_char_ctl_s cn78xxp1; struct cvmx_lmcx_char_ctl_cn61xx cnf71xx; struct cvmx_lmcx_char_ctl_s cnf75xx; }; /** * cvmx_lmc#_comp_ctl2 * * LMC_COMP_CTL2 = LMC Compensation control * */ union cvmx_lmcx_comp_ctl2 { u64 u64; struct cvmx_lmcx_comp_ctl2_s { uint64_t reserved_51_63:13; uint64_t rclk_char_mode:1; uint64_t reserved_40_49:10; uint64_t ptune_offset:4; uint64_t reserved_12_35:24; uint64_t cmd_ctl:4; uint64_t ck_ctl:4; uint64_t dqx_ctl:4; } s; struct cvmx_lmcx_comp_ctl2_cn61xx { uint64_t reserved_34_63:30; uint64_t ddr__ptune:4; uint64_t ddr__ntune:4; uint64_t m180:1; uint64_t byp:1; uint64_t ptune:4; uint64_t ntune:4; uint64_t rodt_ctl:4; uint64_t cmd_ctl:4; uint64_t ck_ctl:4; uint64_t dqx_ctl:4; } cn61xx; struct cvmx_lmcx_comp_ctl2_cn61xx cn63xx; struct cvmx_lmcx_comp_ctl2_cn61xx cn63xxp1; struct cvmx_lmcx_comp_ctl2_cn61xx cn66xx; struct cvmx_lmcx_comp_ctl2_cn61xx cn68xx; struct cvmx_lmcx_comp_ctl2_cn61xx cn68xxp1; struct cvmx_lmcx_comp_ctl2_cn70xx { uint64_t reserved_51_63:13; uint64_t rclk_char_mode:1; uint64_t ddr__ptune:5; uint64_t ddr__ntune:5; uint64_t ptune_offset:4; uint64_t ntune_offset:4; uint64_t m180:1; uint64_t byp:1; uint64_t ptune:5; uint64_t ntune:5; uint64_t rodt_ctl:4; uint64_t control_ctl:4; uint64_t cmd_ctl:4; uint64_t ck_ctl:4; uint64_t dqx_ctl:4; } cn70xx; struct cvmx_lmcx_comp_ctl2_cn70xx cn70xxp1; struct cvmx_lmcx_comp_ctl2_cn70xx cn73xx; struct cvmx_lmcx_comp_ctl2_cn70xx cn78xx; struct cvmx_lmcx_comp_ctl2_cn70xx cn78xxp1; struct cvmx_lmcx_comp_ctl2_cn61xx cnf71xx; struct cvmx_lmcx_comp_ctl2_cn70xx cnf75xx; }; /** * cvmx_lmc#_config * * This register controls certain parameters required for memory configuration. * Note the following: * * Priority order for hardware write operations to * LMC()_CONFIG/LMC()_FADR/LMC()_ECC_SYND: DED error > SEC error. * * The self-refresh entry sequence(s) power the DLL up/down (depending on * LMC()_MODEREG_PARAMS0[DLL]) when LMC()_CONFIG[SREF_WITH_DLL] is set. * * Prior to the self-refresh exit sequence, LMC()_MODEREG_PARAMS0 should * be reprogrammed * (if needed) to the appropriate values. * * See LMC initialization sequence for the LMC bringup sequence. */ union cvmx_lmcx_config { u64 u64; struct cvmx_lmcx_config_s { uint64_t lrdimm_ena:1; uint64_t bg2_enable:1; uint64_t mode_x4dev:1; uint64_t mode32b:1; uint64_t scrz:1; uint64_t early_unload_d1_r1:1; uint64_t early_unload_d1_r0:1; uint64_t early_unload_d0_r1:1; uint64_t early_unload_d0_r0:1; uint64_t init_status:4; uint64_t mirrmask:4; uint64_t rankmask:4; uint64_t rank_ena:1; uint64_t sref_with_dll:1; uint64_t early_dqx:1; uint64_t reserved_18_39:22; uint64_t reset:1; uint64_t ecc_adr:1; uint64_t forcewrite:4; uint64_t idlepower:3; uint64_t pbank_lsb:4; uint64_t row_lsb:3; uint64_t ecc_ena:1; uint64_t init_start:1; } s; struct cvmx_lmcx_config_cn61xx { uint64_t reserved_61_63:3; uint64_t mode32b:1; uint64_t scrz:1; uint64_t early_unload_d1_r1:1; uint64_t early_unload_d1_r0:1; uint64_t early_unload_d0_r1:1; uint64_t early_unload_d0_r0:1; uint64_t init_status:4; uint64_t mirrmask:4; uint64_t rankmask:4; uint64_t rank_ena:1; uint64_t sref_with_dll:1; uint64_t early_dqx:1; uint64_t sequence:3; uint64_t ref_zqcs_int:19; uint64_t reset:1; uint64_t ecc_adr:1; uint64_t forcewrite:4; uint64_t idlepower:3; uint64_t pbank_lsb:4; uint64_t row_lsb:3; uint64_t ecc_ena:1; uint64_t init_start:1; } cn61xx; struct cvmx_lmcx_config_cn63xx { uint64_t reserved_59_63:5; uint64_t early_unload_d1_r1:1; uint64_t early_unload_d1_r0:1; uint64_t early_unload_d0_r1:1; uint64_t early_unload_d0_r0:1; uint64_t init_status:4; uint64_t mirrmask:4; uint64_t rankmask:4; uint64_t rank_ena:1; uint64_t sref_with_dll:1; uint64_t early_dqx:1; uint64_t sequence:3; uint64_t ref_zqcs_int:19; uint64_t reset:1; uint64_t ecc_adr:1; uint64_t forcewrite:4; uint64_t idlepower:3; uint64_t pbank_lsb:4; uint64_t row_lsb:3; uint64_t ecc_ena:1; uint64_t init_start:1; } cn63xx; struct cvmx_lmcx_config_cn63xxp1 { uint64_t reserved_55_63:9; uint64_t init_status:4; uint64_t mirrmask:4; uint64_t rankmask:4; uint64_t rank_ena:1; uint64_t sref_with_dll:1; uint64_t early_dqx:1; uint64_t sequence:3; uint64_t ref_zqcs_int:19; uint64_t reset:1; uint64_t ecc_adr:1; uint64_t forcewrite:4; uint64_t idlepower:3; uint64_t pbank_lsb:4; uint64_t row_lsb:3; uint64_t ecc_ena:1; uint64_t init_start:1; } cn63xxp1; struct cvmx_lmcx_config_cn66xx { uint64_t reserved_60_63:4; uint64_t scrz:1; uint64_t early_unload_d1_r1:1; uint64_t early_unload_d1_r0:1; uint64_t early_unload_d0_r1:1; uint64_t early_unload_d0_r0:1; uint64_t init_status:4; uint64_t mirrmask:4; uint64_t rankmask:4; uint64_t rank_ena:1; uint64_t sref_with_dll:1; uint64_t early_dqx:1; uint64_t sequence:3; uint64_t ref_zqcs_int:19; uint64_t reset:1; uint64_t ecc_adr:1; uint64_t forcewrite:4; uint64_t idlepower:3; uint64_t pbank_lsb:4; uint64_t row_lsb:3; uint64_t ecc_ena:1; uint64_t init_start:1; } cn66xx; struct cvmx_lmcx_config_cn63xx cn68xx; struct cvmx_lmcx_config_cn63xx cn68xxp1; struct cvmx_lmcx_config_cn70xx { uint64_t reserved_63_63:1; uint64_t bg2_enable:1; uint64_t mode_x4dev:1; uint64_t mode32b:1; uint64_t scrz:1; uint64_t early_unload_d1_r1:1; uint64_t early_unload_d1_r0:1; uint64_t early_unload_d0_r1:1; uint64_t early_unload_d0_r0:1; uint64_t init_status:4; uint64_t mirrmask:4; uint64_t rankmask:4; uint64_t rank_ena:1; uint64_t sref_with_dll:1; uint64_t early_dqx:1; uint64_t ref_zqcs_int:22; uint64_t reset:1; uint64_t ecc_adr:1; uint64_t forcewrite:4; uint64_t idlepower:3; uint64_t pbank_lsb:4; uint64_t row_lsb:3; uint64_t ecc_ena:1; uint64_t reserved_0_0:1; } cn70xx; struct cvmx_lmcx_config_cn70xx cn70xxp1; struct cvmx_lmcx_config_cn73xx { uint64_t lrdimm_ena:1; uint64_t bg2_enable:1; uint64_t mode_x4dev:1; uint64_t mode32b:1; uint64_t scrz:1; uint64_t early_unload_d1_r1:1; uint64_t early_unload_d1_r0:1; uint64_t early_unload_d0_r1:1; uint64_t early_unload_d0_r0:1; uint64_t init_status:4; uint64_t mirrmask:4; uint64_t rankmask:4; uint64_t rank_ena:1; uint64_t sref_with_dll:1; uint64_t early_dqx:1; uint64_t ref_zqcs_int:22; uint64_t reset:1; uint64_t ecc_adr:1; uint64_t forcewrite:4; uint64_t idlepower:3; uint64_t pbank_lsb:4; uint64_t row_lsb:3; uint64_t ecc_ena:1; uint64_t reserved_0_0:1; } cn73xx; struct cvmx_lmcx_config_cn73xx cn78xx; struct cvmx_lmcx_config_cn73xx cn78xxp1; struct cvmx_lmcx_config_cn61xx cnf71xx; struct cvmx_lmcx_config_cn73xx cnf75xx; }; /** * cvmx_lmc#_control * * LMC_CONTROL = LMC Control * This register is an assortment of various control fields needed by the * memory controller */ union cvmx_lmcx_control { u64 u64; struct cvmx_lmcx_control_s { uint64_t scramble_ena:1; uint64_t thrcnt:12; uint64_t persub:8; uint64_t thrmax:4; uint64_t crm_cnt:5; uint64_t crm_thr:5; uint64_t crm_max:5; uint64_t rodt_bprch:1; uint64_t wodt_bprch:1; uint64_t bprch:2; uint64_t ext_zqcs_dis:1; uint64_t int_zqcs_dis:1; uint64_t auto_dclkdis:1; uint64_t xor_bank:1; uint64_t max_write_batch:4; uint64_t nxm_write_en:1; uint64_t elev_prio_dis:1; uint64_t inorder_wr:1; uint64_t inorder_rd:1; uint64_t throttle_wr:1; uint64_t throttle_rd:1; uint64_t fprch2:2; uint64_t pocas:1; uint64_t ddr2t:1; uint64_t bwcnt:1; uint64_t rdimm_ena:1; } s; struct cvmx_lmcx_control_s cn61xx; struct cvmx_lmcx_control_cn63xx { uint64_t reserved_24_63:40; uint64_t rodt_bprch:1; uint64_t wodt_bprch:1; uint64_t bprch:2; uint64_t ext_zqcs_dis:1; uint64_t int_zqcs_dis:1; uint64_t auto_dclkdis:1; uint64_t xor_bank:1; uint64_t max_write_batch:4; uint64_t nxm_write_en:1; uint64_t elev_prio_dis:1; uint64_t inorder_wr:1; uint64_t inorder_rd:1; uint64_t throttle_wr:1; uint64_t throttle_rd:1; uint64_t fprch2:2; uint64_t pocas:1; uint64_t ddr2t:1; uint64_t bwcnt:1; uint64_t rdimm_ena:1; } cn63xx; struct cvmx_lmcx_control_cn63xx cn63xxp1; struct cvmx_lmcx_control_cn66xx { uint64_t scramble_ena:1; uint64_t reserved_24_62:39; uint64_t rodt_bprch:1; uint64_t wodt_bprch:1; uint64_t bprch:2; uint64_t ext_zqcs_dis:1; uint64_t int_zqcs_dis:1; uint64_t auto_dclkdis:1; uint64_t xor_bank:1; uint64_t max_write_batch:4; uint64_t nxm_write_en:1; uint64_t elev_prio_dis:1; uint64_t inorder_wr:1; uint64_t inorder_rd:1; uint64_t throttle_wr:1; uint64_t throttle_rd:1; uint64_t fprch2:2; uint64_t pocas:1; uint64_t ddr2t:1; uint64_t bwcnt:1; uint64_t rdimm_ena:1; } cn66xx; struct cvmx_lmcx_control_cn68xx { uint64_t reserved_63_63:1; uint64_t thrcnt:12; uint64_t persub:8; uint64_t thrmax:4; uint64_t crm_cnt:5; uint64_t crm_thr:5; uint64_t crm_max:5; uint64_t rodt_bprch:1; uint64_t wodt_bprch:1; uint64_t bprch:2; uint64_t ext_zqcs_dis:1; uint64_t int_zqcs_dis:1; uint64_t auto_dclkdis:1; uint64_t xor_bank:1; uint64_t max_write_batch:4; uint64_t nxm_write_en:1; uint64_t elev_prio_dis:1; uint64_t inorder_wr:1; uint64_t inorder_rd:1; uint64_t throttle_wr:1; uint64_t throttle_rd:1; uint64_t fprch2:2; uint64_t pocas:1; uint64_t ddr2t:1; uint64_t bwcnt:1; uint64_t rdimm_ena:1; } cn68xx; struct cvmx_lmcx_control_cn68xx cn68xxp1; struct cvmx_lmcx_control_s cn70xx; struct cvmx_lmcx_control_s cn70xxp1; struct cvmx_lmcx_control_s cn73xx; struct cvmx_lmcx_control_s cn78xx; struct cvmx_lmcx_control_s cn78xxp1; struct cvmx_lmcx_control_cn66xx cnf71xx; struct cvmx_lmcx_control_s cnf75xx; }; /** * cvmx_lmc#_ctl * * LMC_CTL = LMC Control * This register is an assortment of various control fields needed by the * memory controller */ union cvmx_lmcx_ctl { u64 u64; struct cvmx_lmcx_ctl_s { uint64_t reserved_32_63:32; uint64_t ddr__nctl:4; uint64_t ddr__pctl:4; uint64_t slow_scf:1; uint64_t xor_bank:1; uint64_t max_write_batch:4; uint64_t pll_div2:1; uint64_t pll_bypass:1; uint64_t rdimm_ena:1; uint64_t r2r_slot:1; uint64_t inorder_mwf:1; uint64_t inorder_mrf:1; uint64_t reserved_10_11:2; uint64_t fprch2:1; uint64_t bprch:1; uint64_t sil_lat:2; uint64_t tskw:2; uint64_t qs_dic:2; uint64_t dic:2; } s; struct cvmx_lmcx_ctl_cn30xx { uint64_t reserved_32_63:32; uint64_t ddr__nctl:4; uint64_t ddr__pctl:4; uint64_t slow_scf:1; uint64_t xor_bank:1; uint64_t max_write_batch:4; uint64_t pll_div2:1; uint64_t pll_bypass:1; uint64_t rdimm_ena:1; uint64_t r2r_slot:1; uint64_t inorder_mwf:1; uint64_t inorder_mrf:1; uint64_t dreset:1; uint64_t mode32b:1; uint64_t fprch2:1; uint64_t bprch:1; uint64_t sil_lat:2; uint64_t tskw:2; uint64_t qs_dic:2; uint64_t dic:2; } cn30xx; struct cvmx_lmcx_ctl_cn30xx cn31xx; struct cvmx_lmcx_ctl_cn38xx { uint64_t reserved_32_63:32; uint64_t ddr__nctl:4; uint64_t ddr__pctl:4; uint64_t slow_scf:1; uint64_t xor_bank:1; uint64_t max_write_batch:4; uint64_t reserved_16_17:2; uint64_t rdimm_ena:1; uint64_t r2r_slot:1; uint64_t inorder_mwf:1; uint64_t inorder_mrf:1; uint64_t set_zero:1; uint64_t mode128b:1; uint64_t fprch2:1; uint64_t bprch:1; uint64_t sil_lat:2; uint64_t tskw:2; uint64_t qs_dic:2; uint64_t dic:2; } cn38xx; struct cvmx_lmcx_ctl_cn38xx cn38xxp2; struct cvmx_lmcx_ctl_cn50xx { uint64_t reserved_32_63:32; uint64_t ddr__nctl:4; uint64_t ddr__pctl:4; uint64_t slow_scf:1; uint64_t xor_bank:1; uint64_t max_write_batch:4; uint64_t reserved_17_17:1; uint64_t pll_bypass:1; uint64_t rdimm_ena:1; uint64_t r2r_slot:1; uint64_t inorder_mwf:1; uint64_t inorder_mrf:1; uint64_t dreset:1; uint64_t mode32b:1; uint64_t fprch2:1; uint64_t bprch:1; uint64_t sil_lat:2; uint64_t tskw:2; uint64_t qs_dic:2; uint64_t dic:2; } cn50xx; struct cvmx_lmcx_ctl_cn52xx { uint64_t reserved_32_63:32; uint64_t ddr__nctl:4; uint64_t ddr__pctl:4; uint64_t slow_scf:1; uint64_t xor_bank:1; uint64_t max_write_batch:4; uint64_t reserved_16_17:2; uint64_t rdimm_ena:1; uint64_t r2r_slot:1; uint64_t inorder_mwf:1; uint64_t inorder_mrf:1; uint64_t dreset:1; uint64_t mode32b:1; uint64_t fprch2:1; uint64_t bprch:1; uint64_t sil_lat:2; uint64_t tskw:2; uint64_t qs_dic:2; uint64_t dic:2; } cn52xx; struct cvmx_lmcx_ctl_cn52xx cn52xxp1; struct cvmx_lmcx_ctl_cn52xx cn56xx; struct cvmx_lmcx_ctl_cn52xx cn56xxp1; struct cvmx_lmcx_ctl_cn58xx { uint64_t reserved_32_63:32; uint64_t ddr__nctl:4; uint64_t ddr__pctl:4; uint64_t slow_scf:1; uint64_t xor_bank:1; uint64_t max_write_batch:4; uint64_t reserved_16_17:2; uint64_t rdimm_ena:1; uint64_t r2r_slot:1; uint64_t inorder_mwf:1; uint64_t inorder_mrf:1; uint64_t dreset:1; uint64_t mode128b:1; uint64_t fprch2:1; uint64_t bprch:1; uint64_t sil_lat:2; uint64_t tskw:2; uint64_t qs_dic:2; uint64_t dic:2; } cn58xx; struct cvmx_lmcx_ctl_cn58xx cn58xxp1; }; /** * cvmx_lmc#_ctl1 * * LMC_CTL1 = LMC Control1 * This register is an assortment of various control fields needed by the * memory controller */ union cvmx_lmcx_ctl1 { u64 u64; struct cvmx_lmcx_ctl1_s { uint64_t reserved_21_63:43; uint64_t ecc_adr:1; uint64_t forcewrite:4; uint64_t idlepower:3; uint64_t sequence:3; uint64_t sil_mode:1; uint64_t dcc_enable:1; uint64_t reserved_2_7:6; uint64_t data_layout:2; } s; struct cvmx_lmcx_ctl1_cn30xx { uint64_t reserved_2_63:62; uint64_t data_layout:2; } cn30xx; struct cvmx_lmcx_ctl1_cn50xx { uint64_t reserved_10_63:54; uint64_t sil_mode:1; uint64_t dcc_enable:1; uint64_t reserved_2_7:6; uint64_t data_layout:2; } cn50xx; struct cvmx_lmcx_ctl1_cn52xx { uint64_t reserved_21_63:43; uint64_t ecc_adr:1; uint64_t forcewrite:4; uint64_t idlepower:3; uint64_t sequence:3; uint64_t sil_mode:1; uint64_t dcc_enable:1; uint64_t reserved_0_7:8; } cn52xx; struct cvmx_lmcx_ctl1_cn52xx cn52xxp1; struct cvmx_lmcx_ctl1_cn52xx cn56xx; struct cvmx_lmcx_ctl1_cn52xx cn56xxp1; struct cvmx_lmcx_ctl1_cn58xx { uint64_t reserved_10_63:54; uint64_t sil_mode:1; uint64_t dcc_enable:1; uint64_t reserved_0_7:8; } cn58xx; struct cvmx_lmcx_ctl1_cn58xx cn58xxp1; }; /** * cvmx_lmc#_dbtrain_ctl * * Reserved. * */ union cvmx_lmcx_dbtrain_ctl { u64 u64; struct cvmx_lmcx_dbtrain_ctl_s { uint64_t reserved_63_63:1; uint64_t lfsr_pattern_sel:1; uint64_t cmd_count_ext:2; uint64_t db_output_impedance:3; uint64_t db_sel:1; uint64_t tccd_sel:1; uint64_t rw_train:1; uint64_t read_dq_count:7; uint64_t read_cmd_count:5; uint64_t write_ena:1; uint64_t activate:1; uint64_t prank:2; uint64_t lrank:3; uint64_t row_a:18; uint64_t bg:2; uint64_t ba:2; uint64_t column_a:13; } s; struct cvmx_lmcx_dbtrain_ctl_cn73xx { uint64_t reserved_60_63:4; uint64_t db_output_impedance:3; uint64_t db_sel:1; uint64_t tccd_sel:1; uint64_t rw_train:1; uint64_t read_dq_count:7; uint64_t read_cmd_count:5; uint64_t write_ena:1; uint64_t activate:1; uint64_t prank:2; uint64_t lrank:3; uint64_t row_a:18; uint64_t bg:2; uint64_t ba:2; uint64_t column_a:13; } cn73xx; struct cvmx_lmcx_dbtrain_ctl_s cn78xx; struct cvmx_lmcx_dbtrain_ctl_cnf75xx { uint64_t reserved_62_63:2; uint64_t cmd_count_ext:2; uint64_t db_output_impedance:3; uint64_t db_sel:1; uint64_t tccd_sel:1; uint64_t rw_train:1; uint64_t read_dq_count:7; uint64_t read_cmd_count:5; uint64_t write_ena:1; uint64_t activate:1; uint64_t prank:2; uint64_t lrank:3; uint64_t row_a:18; uint64_t bg:2; uint64_t ba:2; uint64_t column_a:13; } cnf75xx; }; /** * cvmx_lmc#_dclk_cnt * * LMC_DCLK_CNT = Performance Counters * */ union cvmx_lmcx_dclk_cnt { u64 u64; struct cvmx_lmcx_dclk_cnt_s { uint64_t dclkcnt:64; } s; struct cvmx_lmcx_dclk_cnt_s cn61xx; struct cvmx_lmcx_dclk_cnt_s cn63xx; struct cvmx_lmcx_dclk_cnt_s cn63xxp1; struct cvmx_lmcx_dclk_cnt_s cn66xx; struct cvmx_lmcx_dclk_cnt_s cn68xx; struct cvmx_lmcx_dclk_cnt_s cn68xxp1; struct cvmx_lmcx_dclk_cnt_s cn70xx; struct cvmx_lmcx_dclk_cnt_s cn70xxp1; struct cvmx_lmcx_dclk_cnt_s cn73xx; struct cvmx_lmcx_dclk_cnt_s cn78xx; struct cvmx_lmcx_dclk_cnt_s cn78xxp1; struct cvmx_lmcx_dclk_cnt_s cnf71xx; struct cvmx_lmcx_dclk_cnt_s cnf75xx; }; /** * cvmx_lmc#_dclk_cnt_hi * * LMC_DCLK_CNT_HI = Performance Counters * */ union cvmx_lmcx_dclk_cnt_hi { u64 u64; struct cvmx_lmcx_dclk_cnt_hi_s { uint64_t reserved_32_63:32; uint64_t dclkcnt_hi:32; } s; struct cvmx_lmcx_dclk_cnt_hi_s cn30xx; struct cvmx_lmcx_dclk_cnt_hi_s cn31xx; struct cvmx_lmcx_dclk_cnt_hi_s cn38xx; struct cvmx_lmcx_dclk_cnt_hi_s cn38xxp2; struct cvmx_lmcx_dclk_cnt_hi_s cn50xx; struct cvmx_lmcx_dclk_cnt_hi_s cn52xx; struct cvmx_lmcx_dclk_cnt_hi_s cn52xxp1; struct cvmx_lmcx_dclk_cnt_hi_s cn56xx; struct cvmx_lmcx_dclk_cnt_hi_s cn56xxp1; struct cvmx_lmcx_dclk_cnt_hi_s cn58xx; struct cvmx_lmcx_dclk_cnt_hi_s cn58xxp1; }; /** * cvmx_lmc#_dclk_cnt_lo * * LMC_DCLK_CNT_LO = Performance Counters * */ union cvmx_lmcx_dclk_cnt_lo { u64 u64; struct cvmx_lmcx_dclk_cnt_lo_s { uint64_t reserved_32_63:32; uint64_t dclkcnt_lo:32; } s; struct cvmx_lmcx_dclk_cnt_lo_s cn30xx; struct cvmx_lmcx_dclk_cnt_lo_s cn31xx; struct cvmx_lmcx_dclk_cnt_lo_s cn38xx; struct cvmx_lmcx_dclk_cnt_lo_s cn38xxp2; struct cvmx_lmcx_dclk_cnt_lo_s cn50xx; struct cvmx_lmcx_dclk_cnt_lo_s cn52xx; struct cvmx_lmcx_dclk_cnt_lo_s cn52xxp1; struct cvmx_lmcx_dclk_cnt_lo_s cn56xx; struct cvmx_lmcx_dclk_cnt_lo_s cn56xxp1; struct cvmx_lmcx_dclk_cnt_lo_s cn58xx; struct cvmx_lmcx_dclk_cnt_lo_s cn58xxp1; }; /** * cvmx_lmc#_dclk_ctl * * LMC_DCLK_CTL = LMC DCLK generation control * * * Notes: * This CSR is only relevant for LMC1. LMC0_DCLK_CTL is not used. * */ union cvmx_lmcx_dclk_ctl { u64 u64; struct cvmx_lmcx_dclk_ctl_s { uint64_t reserved_8_63:56; uint64_t off90_ena:1; uint64_t dclk90_byp:1; uint64_t dclk90_ld:1; uint64_t dclk90_vlu:5; } s; struct cvmx_lmcx_dclk_ctl_s cn56xx; struct cvmx_lmcx_dclk_ctl_s cn56xxp1; }; /** * cvmx_lmc#_ddr2_ctl * * LMC_DDR2_CTL = LMC DDR2 & DLL Control Register * */ union cvmx_lmcx_ddr2_ctl { u64 u64; struct cvmx_lmcx_ddr2_ctl_s { uint64_t reserved_32_63:32; uint64_t bank8:1; uint64_t burst8:1; uint64_t addlat:3; uint64_t pocas:1; uint64_t bwcnt:1; uint64_t twr:3; uint64_t silo_hc:1; uint64_t ddr_eof:4; uint64_t tfaw:5; uint64_t crip_mode:1; uint64_t ddr2t:1; uint64_t odt_ena:1; uint64_t qdll_ena:1; uint64_t dll90_vlu:5; uint64_t dll90_byp:1; uint64_t rdqs:1; uint64_t ddr2:1; } s; struct cvmx_lmcx_ddr2_ctl_cn30xx { uint64_t reserved_32_63:32; uint64_t bank8:1; uint64_t burst8:1; uint64_t addlat:3; uint64_t pocas:1; uint64_t bwcnt:1; uint64_t twr:3; uint64_t silo_hc:1; uint64_t ddr_eof:4; uint64_t tfaw:5; uint64_t crip_mode:1; uint64_t ddr2t:1; uint64_t odt_ena:1; uint64_t qdll_ena:1; uint64_t dll90_vlu:5; uint64_t dll90_byp:1; uint64_t reserved_1_1:1; uint64_t ddr2:1; } cn30xx; struct cvmx_lmcx_ddr2_ctl_cn30xx cn31xx; struct cvmx_lmcx_ddr2_ctl_s cn38xx; struct cvmx_lmcx_ddr2_ctl_s cn38xxp2; struct cvmx_lmcx_ddr2_ctl_s cn50xx; struct cvmx_lmcx_ddr2_ctl_s cn52xx; struct cvmx_lmcx_ddr2_ctl_s cn52xxp1; struct cvmx_lmcx_ddr2_ctl_s cn56xx; struct cvmx_lmcx_ddr2_ctl_s cn56xxp1; struct cvmx_lmcx_ddr2_ctl_s cn58xx; struct cvmx_lmcx_ddr2_ctl_s cn58xxp1; }; /** * cvmx_lmc#_ddr4_dimm_ctl * * Bits 0-21 of this register are used only when LMC()_CONTROL[RDIMM_ENA] = 1. * * During an RCW initialization sequence, bits 0-21 control LMC's write * operations to the extended DDR4 control words in the JEDEC standard * registering clock driver on an RDIMM. */ union cvmx_lmcx_ddr4_dimm_ctl { u64 u64; struct cvmx_lmcx_ddr4_dimm_ctl_s { uint64_t reserved_28_63:36; uint64_t rank_timing_enable:1; uint64_t bodt_trans_mode:1; uint64_t trans_mode_ena:1; uint64_t read_preamble_mode:1; uint64_t buff_config_da3:1; uint64_t mpr_over_ena:1; uint64_t ddr4_dimm1_wmask:11; uint64_t ddr4_dimm0_wmask:11; } s; struct cvmx_lmcx_ddr4_dimm_ctl_cn70xx { uint64_t reserved_22_63:42; uint64_t ddr4_dimm1_wmask:11; uint64_t ddr4_dimm0_wmask:11; } cn70xx; struct cvmx_lmcx_ddr4_dimm_ctl_cn70xx cn70xxp1; struct cvmx_lmcx_ddr4_dimm_ctl_s cn73xx; struct cvmx_lmcx_ddr4_dimm_ctl_s cn78xx; struct cvmx_lmcx_ddr4_dimm_ctl_s cn78xxp1; struct cvmx_lmcx_ddr4_dimm_ctl_s cnf75xx; }; /** * cvmx_lmc#_ddr_pll_ctl * * This register controls the DDR_CK frequency. For details, refer to CK * speed programming. See LMC initialization sequence for the initialization * sequence. * DDR PLL bringup sequence: * * 1. Write [CLKF], [CLKR], [DDR_PS_EN]. * * 2. Wait 128 ref clock cycles (7680 core-clock cycles). * * 3. Write 1 to [RESET_N]. * * 4. Wait 1152 ref clocks (1152*16 core-clock cycles). * * 5. Write 0 to [DDR_DIV_RESET]. * * 6. Wait 10 ref clock cycles (160 core-clock cycles) before bringing up * the DDR interface. */ union cvmx_lmcx_ddr_pll_ctl { u64 u64; struct cvmx_lmcx_ddr_pll_ctl_s { uint64_t reserved_45_63:19; uint64_t dclk_alt_refclk_sel:1; uint64_t bwadj:12; uint64_t dclk_invert:1; uint64_t phy_dcok:1; uint64_t ddr4_mode:1; uint64_t pll_fbslip:1; uint64_t pll_lock:1; uint64_t reserved_18_26:9; uint64_t diffamp:4; uint64_t cps:3; uint64_t reserved_8_10:3; uint64_t reset_n:1; uint64_t clkf:7; } s; struct cvmx_lmcx_ddr_pll_ctl_cn61xx { uint64_t reserved_27_63:37; uint64_t jtg_test_mode:1; uint64_t dfm_div_reset:1; uint64_t dfm_ps_en:3; uint64_t ddr_div_reset:1; uint64_t ddr_ps_en:3; uint64_t diffamp:4; uint64_t cps:3; uint64_t cpb:3; uint64_t reset_n:1; uint64_t clkf:7; } cn61xx; struct cvmx_lmcx_ddr_pll_ctl_cn61xx cn63xx; struct cvmx_lmcx_ddr_pll_ctl_cn61xx cn63xxp1; struct cvmx_lmcx_ddr_pll_ctl_cn61xx cn66xx; struct cvmx_lmcx_ddr_pll_ctl_cn61xx cn68xx; struct cvmx_lmcx_ddr_pll_ctl_cn61xx cn68xxp1; struct cvmx_lmcx_ddr_pll_ctl_cn70xx { uint64_t reserved_31_63:33; uint64_t phy_dcok:1; uint64_t ddr4_mode:1; uint64_t pll_fbslip:1; uint64_t pll_lock:1; uint64_t pll_rfslip:1; uint64_t clkr:2; uint64_t jtg_test_mode:1; uint64_t ddr_div_reset:1; uint64_t ddr_ps_en:4; uint64_t reserved_8_17:10; uint64_t reset_n:1; uint64_t clkf:7; } cn70xx; struct cvmx_lmcx_ddr_pll_ctl_cn70xx cn70xxp1; struct cvmx_lmcx_ddr_pll_ctl_cn73xx { uint64_t reserved_45_63:19; uint64_t dclk_alt_refclk_sel:1; uint64_t bwadj:12; uint64_t dclk_invert:1; uint64_t phy_dcok:1; uint64_t ddr4_mode:1; uint64_t pll_fbslip:1; uint64_t pll_lock:1; uint64_t pll_rfslip:1; uint64_t clkr:2; uint64_t jtg_test_mode:1; uint64_t ddr_div_reset:1; uint64_t ddr_ps_en:4; uint64_t reserved_9_17:9; uint64_t clkf_ext:1; uint64_t reset_n:1; uint64_t clkf:7; } cn73xx; struct cvmx_lmcx_ddr_pll_ctl_cn73xx cn78xx; struct cvmx_lmcx_ddr_pll_ctl_cn73xx cn78xxp1; struct cvmx_lmcx_ddr_pll_ctl_cn61xx cnf71xx; struct cvmx_lmcx_ddr_pll_ctl_cn73xx cnf75xx; }; /** * cvmx_lmc#_delay_cfg * * LMC_DELAY_CFG = Open-loop delay line settings * * * Notes: * The DQ bits add OUTGOING delay only to dq, dqs_[p,n], cb, cbs_[p,n], dqm. * Delay is approximately 50-80ps per setting depending on process/voltage. * There is no need to add incoming delay since by default all strobe bits * are delayed internally by 90 degrees (as was always the case in previous * passes and past chips. * * The CMD add delay to all command bits DDR_RAS, DDR_CAS, DDR_A<15:0>, * DDR_BA<2:0>, DDR_n_CS<1:0>_L, DDR_WE, DDR_CKE and DDR_ODT_<7:0>. * Again, delay is 50-80ps per tap. * * The CLK bits add delay to all clock signals DDR_CK_<5:0>_P and * DDR_CK_<5:0>_N. Again, delay is 50-80ps per tap. * * The usage scenario is the following: There is too much delay on command * signals and setup on command is not met. The user can then delay the * clock until setup is met. * * At the same time though, dq/dqs should be delayed because there is also * a DDR spec tying dqs with clock. If clock is too much delayed with * respect to dqs, writes will start to fail. * * This scheme should eliminate the board need of adding routing delay to * clock signals to make high frequencies work. */ union cvmx_lmcx_delay_cfg { u64 u64; struct cvmx_lmcx_delay_cfg_s { uint64_t reserved_15_63:49; uint64_t dq:5; uint64_t cmd:5; uint64_t clk:5; } s; struct cvmx_lmcx_delay_cfg_s cn30xx; struct cvmx_lmcx_delay_cfg_cn38xx { uint64_t reserved_14_63:50; uint64_t dq:4; uint64_t reserved_9_9:1; uint64_t cmd:4; uint64_t reserved_4_4:1; uint64_t clk:4; } cn38xx; struct cvmx_lmcx_delay_cfg_cn38xx cn50xx; struct cvmx_lmcx_delay_cfg_cn38xx cn52xx; struct cvmx_lmcx_delay_cfg_cn38xx cn52xxp1; struct cvmx_lmcx_delay_cfg_cn38xx cn56xx; struct cvmx_lmcx_delay_cfg_cn38xx cn56xxp1; struct cvmx_lmcx_delay_cfg_cn38xx cn58xx; struct cvmx_lmcx_delay_cfg_cn38xx cn58xxp1; }; /** * cvmx_lmc#_dimm#_ddr4_params0 * * This register contains values to be programmed into the extra DDR4 control * words in the corresponding (registered) DIMM. These are control words * RC1x through RC8x. */ union cvmx_lmcx_dimmx_ddr4_params0 { u64 u64; struct cvmx_lmcx_dimmx_ddr4_params0_s { uint64_t rc8x:8; uint64_t rc7x:8; uint64_t rc6x:8; uint64_t rc5x:8; uint64_t rc4x:8; uint64_t rc3x:8; uint64_t rc2x:8; uint64_t rc1x:8; } s; struct cvmx_lmcx_dimmx_ddr4_params0_s cn70xx; struct cvmx_lmcx_dimmx_ddr4_params0_s cn70xxp1; struct cvmx_lmcx_dimmx_ddr4_params0_s cn73xx; struct cvmx_lmcx_dimmx_ddr4_params0_s cn78xx; struct cvmx_lmcx_dimmx_ddr4_params0_s cn78xxp1; struct cvmx_lmcx_dimmx_ddr4_params0_s cnf75xx; }; /** * cvmx_lmc#_dimm#_ddr4_params1 * * This register contains values to be programmed into the extra DDR4 control * words in the corresponding (registered) DIMM. These are control words * RC9x through RCBx. */ union cvmx_lmcx_dimmx_ddr4_params1 { u64 u64; struct cvmx_lmcx_dimmx_ddr4_params1_s { uint64_t reserved_24_63:40; uint64_t rcbx:8; uint64_t rcax:8; uint64_t rc9x:8; } s; struct cvmx_lmcx_dimmx_ddr4_params1_s cn70xx; struct cvmx_lmcx_dimmx_ddr4_params1_s cn70xxp1; struct cvmx_lmcx_dimmx_ddr4_params1_s cn73xx; struct cvmx_lmcx_dimmx_ddr4_params1_s cn78xx; struct cvmx_lmcx_dimmx_ddr4_params1_s cn78xxp1; struct cvmx_lmcx_dimmx_ddr4_params1_s cnf75xx; }; /** * cvmx_lmc#_dimm#_params * * This register contains values to be programmed into each control word in * the corresponding (registered) DIMM. The control words allow optimization * of the device properties for different raw card designs. Note that LMC * only uses this CSR when LMC()_CONTROL[RDIMM_ENA]=1. During a power-up/init * sequence, LMC writes these fields into the control words in the JEDEC * standard DDR3 SSTE32882 registering clock driver or DDR4 Register * DDR4RCD01 on an RDIMM when corresponding LMC()_DIMM_CTL[DIMM*_WMASK] * bits are set. */ union cvmx_lmcx_dimmx_params { u64 u64; struct cvmx_lmcx_dimmx_params_s { uint64_t rc15:4; uint64_t rc14:4; uint64_t rc13:4; uint64_t rc12:4; uint64_t rc11:4; uint64_t rc10:4; uint64_t rc9:4; uint64_t rc8:4; uint64_t rc7:4; uint64_t rc6:4; uint64_t rc5:4; uint64_t rc4:4; uint64_t rc3:4; uint64_t rc2:4; uint64_t rc1:4; uint64_t rc0:4; } s; struct cvmx_lmcx_dimmx_params_s cn61xx; struct cvmx_lmcx_dimmx_params_s cn63xx; struct cvmx_lmcx_dimmx_params_s cn63xxp1; struct cvmx_lmcx_dimmx_params_s cn66xx; struct cvmx_lmcx_dimmx_params_s cn68xx; struct cvmx_lmcx_dimmx_params_s cn68xxp1; struct cvmx_lmcx_dimmx_params_s cn70xx; struct cvmx_lmcx_dimmx_params_s cn70xxp1; struct cvmx_lmcx_dimmx_params_s cn73xx; struct cvmx_lmcx_dimmx_params_s cn78xx; struct cvmx_lmcx_dimmx_params_s cn78xxp1; struct cvmx_lmcx_dimmx_params_s cnf71xx; struct cvmx_lmcx_dimmx_params_s cnf75xx; }; /** * cvmx_lmc#_dimm_ctl * * Note that this CSR is only used when LMC()_CONTROL[RDIMM_ENA] = 1. During * a power-up/init sequence, this CSR controls LMC's write operations to the * control words in the JEDEC standard DDR3 SSTE32882 registering clock * driver or DDR4 Register DDR4RCD01 on an RDIMM. */ union cvmx_lmcx_dimm_ctl { u64 u64; struct cvmx_lmcx_dimm_ctl_s { uint64_t reserved_46_63:18; uint64_t parity:1; uint64_t tcws:13; uint64_t dimm1_wmask:16; uint64_t dimm0_wmask:16; } s; struct cvmx_lmcx_dimm_ctl_s cn61xx; struct cvmx_lmcx_dimm_ctl_s cn63xx; struct cvmx_lmcx_dimm_ctl_s cn63xxp1; struct cvmx_lmcx_dimm_ctl_s cn66xx; struct cvmx_lmcx_dimm_ctl_s cn68xx; struct cvmx_lmcx_dimm_ctl_s cn68xxp1; struct cvmx_lmcx_dimm_ctl_s cn70xx; struct cvmx_lmcx_dimm_ctl_s cn70xxp1; struct cvmx_lmcx_dimm_ctl_s cn73xx; struct cvmx_lmcx_dimm_ctl_s cn78xx; struct cvmx_lmcx_dimm_ctl_s cn78xxp1; struct cvmx_lmcx_dimm_ctl_s cnf71xx; struct cvmx_lmcx_dimm_ctl_s cnf75xx; }; /** * cvmx_lmc#_dll_ctl * * LMC_DLL_CTL = LMC DLL control and DCLK reset * */ union cvmx_lmcx_dll_ctl { u64 u64; struct cvmx_lmcx_dll_ctl_s { uint64_t reserved_8_63:56; uint64_t dreset:1; uint64_t dll90_byp:1; uint64_t dll90_ena:1; uint64_t dll90_vlu:5; } s; struct cvmx_lmcx_dll_ctl_s cn52xx; struct cvmx_lmcx_dll_ctl_s cn52xxp1; struct cvmx_lmcx_dll_ctl_s cn56xx; struct cvmx_lmcx_dll_ctl_s cn56xxp1; }; /** * cvmx_lmc#_dll_ctl2 * * See LMC initialization sequence for the initialization sequence. * */ union cvmx_lmcx_dll_ctl2 { u64 u64; struct cvmx_lmcx_dll_ctl2_s { uint64_t reserved_0_63:64; } s; struct cvmx_lmcx_dll_ctl2_cn61xx { uint64_t reserved_16_63:48; uint64_t intf_en:1; uint64_t dll_bringup:1; uint64_t dreset:1; uint64_t quad_dll_ena:1; uint64_t byp_sel:4; uint64_t byp_setting:8; } cn61xx; struct cvmx_lmcx_dll_ctl2_cn63xx { uint64_t reserved_15_63:49; uint64_t dll_bringup:1; uint64_t dreset:1; uint64_t quad_dll_ena:1; uint64_t byp_sel:4; uint64_t byp_setting:8; } cn63xx; struct cvmx_lmcx_dll_ctl2_cn63xx cn63xxp1; struct cvmx_lmcx_dll_ctl2_cn63xx cn66xx; struct cvmx_lmcx_dll_ctl2_cn61xx cn68xx; struct cvmx_lmcx_dll_ctl2_cn61xx cn68xxp1; struct cvmx_lmcx_dll_ctl2_cn70xx { uint64_t reserved_17_63:47; uint64_t intf_en:1; uint64_t dll_bringup:1; uint64_t dreset:1; uint64_t quad_dll_ena:1; uint64_t byp_sel:4; uint64_t byp_setting:9; } cn70xx; struct cvmx_lmcx_dll_ctl2_cn70xx cn70xxp1; struct cvmx_lmcx_dll_ctl2_cn70xx cn73xx; struct cvmx_lmcx_dll_ctl2_cn70xx cn78xx; struct cvmx_lmcx_dll_ctl2_cn70xx cn78xxp1; struct cvmx_lmcx_dll_ctl2_cn61xx cnf71xx; struct cvmx_lmcx_dll_ctl2_cn70xx cnf75xx; }; /** * cvmx_lmc#_dll_ctl3 * * LMC_DLL_CTL3 = LMC DLL control and DCLK reset * */ union cvmx_lmcx_dll_ctl3 { u64 u64; struct cvmx_lmcx_dll_ctl3_s { uint64_t reserved_50_63:14; uint64_t wr_deskew_ena:1; uint64_t wr_deskew_ld:1; uint64_t bit_select:4; uint64_t reserved_0_43:44; } s; struct cvmx_lmcx_dll_ctl3_cn61xx { uint64_t reserved_41_63:23; uint64_t dclk90_fwd:1; uint64_t ddr_90_dly_byp:1; uint64_t dclk90_recal_dis:1; uint64_t dclk90_byp_sel:1; uint64_t dclk90_byp_setting:8; uint64_t dll_fast:1; uint64_t dll90_setting:8; uint64_t fine_tune_mode:1; uint64_t dll_mode:1; uint64_t dll90_byte_sel:4; uint64_t offset_ena:1; uint64_t load_offset:1; uint64_t mode_sel:2; uint64_t byte_sel:4; uint64_t offset:6; } cn61xx; struct cvmx_lmcx_dll_ctl3_cn63xx { uint64_t reserved_29_63:35; uint64_t dll_fast:1; uint64_t dll90_setting:8; uint64_t fine_tune_mode:1; uint64_t dll_mode:1; uint64_t dll90_byte_sel:4; uint64_t offset_ena:1; uint64_t load_offset:1; uint64_t mode_sel:2; uint64_t byte_sel:4; uint64_t offset:6; } cn63xx; struct cvmx_lmcx_dll_ctl3_cn63xx cn63xxp1; struct cvmx_lmcx_dll_ctl3_cn63xx cn66xx; struct cvmx_lmcx_dll_ctl3_cn61xx cn68xx; struct cvmx_lmcx_dll_ctl3_cn61xx cn68xxp1; struct cvmx_lmcx_dll_ctl3_cn70xx { uint64_t reserved_44_63:20; uint64_t dclk90_fwd:1; uint64_t ddr_90_dly_byp:1; uint64_t dclk90_recal_dis:1; uint64_t dclk90_byp_sel:1; uint64_t dclk90_byp_setting:9; uint64_t dll_fast:1; uint64_t dll90_setting:9; uint64_t fine_tune_mode:1; uint64_t dll_mode:1; uint64_t dll90_byte_sel:4; uint64_t offset_ena:1; uint64_t load_offset:1; uint64_t mode_sel:2; uint64_t byte_sel:4; uint64_t offset:7; } cn70xx; struct cvmx_lmcx_dll_ctl3_cn70xx cn70xxp1; struct cvmx_lmcx_dll_ctl3_cn73xx { uint64_t reserved_50_63:14; uint64_t wr_deskew_ena:1; uint64_t wr_deskew_ld:1; uint64_t bit_select:4; uint64_t dclk90_fwd:1; uint64_t ddr_90_dly_byp:1; uint64_t dclk90_recal_dis:1; uint64_t dclk90_byp_sel:1; uint64_t dclk90_byp_setting:9; uint64_t dll_fast:1; uint64_t dll90_setting:9; uint64_t fine_tune_mode:1; uint64_t dll_mode:1; uint64_t dll90_byte_sel:4; uint64_t offset_ena:1; uint64_t load_offset:1; uint64_t mode_sel:2; uint64_t byte_sel:4; uint64_t offset:7; } cn73xx; struct cvmx_lmcx_dll_ctl3_cn73xx cn78xx; struct cvmx_lmcx_dll_ctl3_cn73xx cn78xxp1; struct cvmx_lmcx_dll_ctl3_cn61xx cnf71xx; struct cvmx_lmcx_dll_ctl3_cn73xx cnf75xx; }; /** * cvmx_lmc#_dual_memcfg * * This register controls certain parameters of dual-memory configuration. * * This register enables the design to have two separate memory * configurations, selected dynamically by the reference address. Note * however, that both configurations share LMC()_CONTROL[XOR_BANK], * LMC()_CONFIG [PBANK_LSB], LMC()_CONFIG[RANK_ENA], and all timing parameters. * * In this description: * * config0 refers to the normal memory configuration that is defined by the * LMC()_CONFIG[ROW_LSB] parameter * * config1 refers to the dual (or second) memory configuration that is * defined by this register. */ union cvmx_lmcx_dual_memcfg { u64 u64; struct cvmx_lmcx_dual_memcfg_s { uint64_t reserved_20_63:44; uint64_t bank8:1; uint64_t row_lsb:3; uint64_t reserved_8_15:8; uint64_t cs_mask:8; } s; struct cvmx_lmcx_dual_memcfg_s cn50xx; struct cvmx_lmcx_dual_memcfg_s cn52xx; struct cvmx_lmcx_dual_memcfg_s cn52xxp1; struct cvmx_lmcx_dual_memcfg_s cn56xx; struct cvmx_lmcx_dual_memcfg_s cn56xxp1; struct cvmx_lmcx_dual_memcfg_s cn58xx; struct cvmx_lmcx_dual_memcfg_s cn58xxp1; struct cvmx_lmcx_dual_memcfg_cn61xx { uint64_t reserved_19_63:45; uint64_t row_lsb:3; uint64_t reserved_8_15:8; uint64_t cs_mask:8; } cn61xx; struct cvmx_lmcx_dual_memcfg_cn61xx cn63xx; struct cvmx_lmcx_dual_memcfg_cn61xx cn63xxp1; struct cvmx_lmcx_dual_memcfg_cn61xx cn66xx; struct cvmx_lmcx_dual_memcfg_cn61xx cn68xx; struct cvmx_lmcx_dual_memcfg_cn61xx cn68xxp1; struct cvmx_lmcx_dual_memcfg_cn70xx { uint64_t reserved_19_63:45; uint64_t row_lsb:3; uint64_t reserved_4_15:12; uint64_t cs_mask:4; } cn70xx; struct cvmx_lmcx_dual_memcfg_cn70xx cn70xxp1; struct cvmx_lmcx_dual_memcfg_cn70xx cn73xx; struct cvmx_lmcx_dual_memcfg_cn70xx cn78xx; struct cvmx_lmcx_dual_memcfg_cn70xx cn78xxp1; struct cvmx_lmcx_dual_memcfg_cn61xx cnf71xx; struct cvmx_lmcx_dual_memcfg_cn70xx cnf75xx; }; /** * cvmx_lmc#_ecc_parity_test * * This register has bits to control the generation of ECC and command * address parity errors. ECC error is generated by enabling * [CA_PARITY_CORRUPT_ENA] and selecting any of the [ECC_CORRUPT_IDX] * index of the dataword from the cacheline to be corrupted. * User needs to select which bit of the 128-bit dataword to corrupt by * asserting any of the CHAR_MASK0 and CHAR_MASK2 bits. (CHAR_MASK0 and * CHAR_MASK2 corresponds to the lower and upper 64-bit signal that can * corrupt any individual bit of the data). * * Command address parity error is generated by enabling * [CA_PARITY_CORRUPT_ENA] and selecting the DDR command that the parity * is to be corrupted with through [CA_PARITY_SEL]. */ union cvmx_lmcx_ecc_parity_test { u64 u64; struct cvmx_lmcx_ecc_parity_test_s { uint64_t reserved_12_63:52; uint64_t ecc_corrupt_ena:1; uint64_t ecc_corrupt_idx:3; uint64_t reserved_6_7:2; uint64_t ca_parity_corrupt_ena:1; uint64_t ca_parity_sel:5; } s; struct cvmx_lmcx_ecc_parity_test_s cn73xx; struct cvmx_lmcx_ecc_parity_test_s cn78xx; struct cvmx_lmcx_ecc_parity_test_s cn78xxp1; struct cvmx_lmcx_ecc_parity_test_s cnf75xx; }; /** * cvmx_lmc#_ecc_synd * * LMC_ECC_SYND = MRD ECC Syndromes * */ union cvmx_lmcx_ecc_synd { u64 u64; struct cvmx_lmcx_ecc_synd_s { uint64_t reserved_32_63:32; uint64_t mrdsyn3:8; uint64_t mrdsyn2:8; uint64_t mrdsyn1:8; uint64_t mrdsyn0:8; } s; struct cvmx_lmcx_ecc_synd_s cn30xx; struct cvmx_lmcx_ecc_synd_s cn31xx; struct cvmx_lmcx_ecc_synd_s cn38xx; struct cvmx_lmcx_ecc_synd_s cn38xxp2; struct cvmx_lmcx_ecc_synd_s cn50xx; struct cvmx_lmcx_ecc_synd_s cn52xx; struct cvmx_lmcx_ecc_synd_s cn52xxp1; struct cvmx_lmcx_ecc_synd_s cn56xx; struct cvmx_lmcx_ecc_synd_s cn56xxp1; struct cvmx_lmcx_ecc_synd_s cn58xx; struct cvmx_lmcx_ecc_synd_s cn58xxp1; struct cvmx_lmcx_ecc_synd_s cn61xx; struct cvmx_lmcx_ecc_synd_s cn63xx; struct cvmx_lmcx_ecc_synd_s cn63xxp1; struct cvmx_lmcx_ecc_synd_s cn66xx; struct cvmx_lmcx_ecc_synd_s cn68xx; struct cvmx_lmcx_ecc_synd_s cn68xxp1; struct cvmx_lmcx_ecc_synd_s cn70xx; struct cvmx_lmcx_ecc_synd_s cn70xxp1; struct cvmx_lmcx_ecc_synd_s cn73xx; struct cvmx_lmcx_ecc_synd_s cn78xx; struct cvmx_lmcx_ecc_synd_s cn78xxp1; struct cvmx_lmcx_ecc_synd_s cnf71xx; struct cvmx_lmcx_ecc_synd_s cnf75xx; }; /** * cvmx_lmc#_ext_config * * This register has additional configuration and control bits for the LMC. * */ union cvmx_lmcx_ext_config { u64 u64; struct cvmx_lmcx_ext_config_s { uint64_t reserved_61_63:3; uint64_t bc4_dqs_ena:1; uint64_t ref_block:1; uint64_t mrs_side:1; uint64_t mrs_one_side:1; uint64_t mrs_bside_invert_disable:1; uint64_t dimm_sel_invert_off:1; uint64_t dimm_sel_force_invert:1; uint64_t coalesce_address_mode:1; uint64_t dimm1_cid:2; uint64_t dimm0_cid:2; uint64_t rcd_parity_check:1; uint64_t reserved_46_47:2; uint64_t error_alert_n_sample:1; uint64_t ea_int_polarity:1; uint64_t reserved_43_43:1; uint64_t par_addr_mask:3; uint64_t reserved_38_39:2; uint64_t mrs_cmd_override:1; uint64_t mrs_cmd_select:1; uint64_t reserved_33_35:3; uint64_t invert_data:1; uint64_t reserved_30_31:2; uint64_t cmd_rti:1; uint64_t cal_ena:1; uint64_t reserved_27_27:1; uint64_t par_include_a17:1; uint64_t par_include_bg1:1; uint64_t gen_par:1; uint64_t reserved_21_23:3; uint64_t vrefint_seq_deskew:1; uint64_t read_ena_bprch:1; uint64_t read_ena_fprch:1; uint64_t slot_ctl_reset_force:1; uint64_t ref_int_lsbs:9; uint64_t drive_ena_bprch:1; uint64_t drive_ena_fprch:1; uint64_t dlcram_flip_synd:2; uint64_t dlcram_cor_dis:1; uint64_t dlc_nxm_rd:1; uint64_t l2c_nxm_rd:1; uint64_t l2c_nxm_wr:1; } s; struct cvmx_lmcx_ext_config_cn70xx { uint64_t reserved_21_63:43; uint64_t vrefint_seq_deskew:1; uint64_t read_ena_bprch:1; uint64_t read_ena_fprch:1; uint64_t slot_ctl_reset_force:1; uint64_t ref_int_lsbs:9; uint64_t drive_ena_bprch:1; uint64_t drive_ena_fprch:1; uint64_t dlcram_flip_synd:2; uint64_t dlcram_cor_dis:1; uint64_t dlc_nxm_rd:1; uint64_t l2c_nxm_rd:1; uint64_t l2c_nxm_wr:1; } cn70xx; struct cvmx_lmcx_ext_config_cn70xx cn70xxp1; struct cvmx_lmcx_ext_config_cn73xx { uint64_t reserved_60_63:4; uint64_t ref_block:1; uint64_t mrs_side:1; uint64_t mrs_one_side:1; uint64_t mrs_bside_invert_disable:1; uint64_t dimm_sel_invert_off:1; uint64_t dimm_sel_force_invert:1; uint64_t coalesce_address_mode:1; uint64_t dimm1_cid:2; uint64_t dimm0_cid:2; uint64_t rcd_parity_check:1; uint64_t reserved_46_47:2; uint64_t error_alert_n_sample:1; uint64_t ea_int_polarity:1; uint64_t reserved_43_43:1; uint64_t par_addr_mask:3; uint64_t reserved_38_39:2; uint64_t mrs_cmd_override:1; uint64_t mrs_cmd_select:1; uint64_t reserved_33_35:3; uint64_t invert_data:1; uint64_t reserved_30_31:2; uint64_t cmd_rti:1; uint64_t cal_ena:1; uint64_t reserved_27_27:1; uint64_t par_include_a17:1; uint64_t par_include_bg1:1; uint64_t gen_par:1; uint64_t reserved_21_23:3; uint64_t vrefint_seq_deskew:1; uint64_t read_ena_bprch:1; uint64_t read_ena_fprch:1; uint64_t slot_ctl_reset_force:1; uint64_t ref_int_lsbs:9; uint64_t drive_ena_bprch:1; uint64_t drive_ena_fprch:1; uint64_t dlcram_flip_synd:2; uint64_t dlcram_cor_dis:1; uint64_t dlc_nxm_rd:1; uint64_t l2c_nxm_rd:1; uint64_t l2c_nxm_wr:1; } cn73xx; struct cvmx_lmcx_ext_config_s cn78xx; struct cvmx_lmcx_ext_config_s cn78xxp1; struct cvmx_lmcx_ext_config_cn73xx cnf75xx; }; /** * cvmx_lmc#_ext_config2 * * This register has additional configuration and control bits for the LMC. * */ union cvmx_lmcx_ext_config2 { u64 u64; struct cvmx_lmcx_ext_config2_s { uint64_t reserved_27_63:37; uint64_t sref_auto_idle_thres:5; uint64_t sref_auto_enable:1; uint64_t delay_unload_r3:1; uint64_t delay_unload_r2:1; uint64_t delay_unload_r1:1; uint64_t delay_unload_r0:1; uint64_t early_dqx2:1; uint64_t xor_bank_sel:4; uint64_t reserved_10_11:2; uint64_t row_col_switch:1; uint64_t trr_on:1; uint64_t mac:3; uint64_t macram_scrub_done:1; uint64_t macram_scrub:1; uint64_t macram_flip_synd:2; uint64_t macram_cor_dis:1; } s; struct cvmx_lmcx_ext_config2_cn73xx { uint64_t reserved_10_63:54; uint64_t row_col_switch:1; uint64_t trr_on:1; uint64_t mac:3; uint64_t macram_scrub_done:1; uint64_t macram_scrub:1; uint64_t macram_flip_synd:2; uint64_t macram_cor_dis:1; } cn73xx; struct cvmx_lmcx_ext_config2_s cn78xx; struct cvmx_lmcx_ext_config2_cnf75xx { uint64_t reserved_21_63:43; uint64_t delay_unload_r3:1; uint64_t delay_unload_r2:1; uint64_t delay_unload_r1:1; uint64_t delay_unload_r0:1; uint64_t early_dqx2:1; uint64_t xor_bank_sel:4; uint64_t reserved_10_11:2; uint64_t row_col_switch:1; uint64_t trr_on:1; uint64_t mac:3; uint64_t macram_scrub_done:1; uint64_t macram_scrub:1; uint64_t macram_flip_synd:2; uint64_t macram_cor_dis:1; } cnf75xx; }; /** * cvmx_lmc#_fadr * * This register only captures the first transaction with ECC errors. A DED * error can over-write this register with its failing addresses if the * first error was a SEC. If you write LMC()_INT -> SEC_ERR/DED_ERR, it * clears the error bits and captures the next failing address. If FDIMM * is 1, that means the error is in the high DIMM. LMC()_FADR captures the * failing pre-scrambled address location (split into DIMM, bunk, bank, etc). * If scrambling is off, then LMC()_FADR will also capture the failing * physical location in the DRAM parts. LMC()_SCRAMBLED_FADR captures the * actual failing address location in the physical DRAM parts, i.e., * If scrambling is on, LMC()_SCRAMBLED_FADR contains the failing physical * location in the DRAM parts (split into DIMM, bunk, bank, etc.) * If scrambling is off, the pre-scramble and post-scramble addresses are * the same; and so the contents of LMC()_SCRAMBLED_FADR match the contents * of LMC()_FADR. */ union cvmx_lmcx_fadr { u64 u64; struct cvmx_lmcx_fadr_s { uint64_t reserved_43_63:21; uint64_t fcid:3; uint64_t fill_order:2; uint64_t reserved_0_37:38; } s; struct cvmx_lmcx_fadr_cn30xx { uint64_t reserved_32_63:32; uint64_t fdimm:2; uint64_t fbunk:1; uint64_t fbank:3; uint64_t frow:14; uint64_t fcol:12; } cn30xx; struct cvmx_lmcx_fadr_cn30xx cn31xx; struct cvmx_lmcx_fadr_cn30xx cn38xx; struct cvmx_lmcx_fadr_cn30xx cn38xxp2; struct cvmx_lmcx_fadr_cn30xx cn50xx; struct cvmx_lmcx_fadr_cn30xx cn52xx; struct cvmx_lmcx_fadr_cn30xx cn52xxp1; struct cvmx_lmcx_fadr_cn30xx cn56xx; struct cvmx_lmcx_fadr_cn30xx cn56xxp1; struct cvmx_lmcx_fadr_cn30xx cn58xx; struct cvmx_lmcx_fadr_cn30xx cn58xxp1; struct cvmx_lmcx_fadr_cn61xx { uint64_t reserved_36_63:28; uint64_t fdimm:2; uint64_t fbunk:1; uint64_t fbank:3; uint64_t frow:16; uint64_t fcol:14; } cn61xx; struct cvmx_lmcx_fadr_cn61xx cn63xx; struct cvmx_lmcx_fadr_cn61xx cn63xxp1; struct cvmx_lmcx_fadr_cn61xx cn66xx; struct cvmx_lmcx_fadr_cn61xx cn68xx; struct cvmx_lmcx_fadr_cn61xx cn68xxp1; struct cvmx_lmcx_fadr_cn70xx { uint64_t reserved_40_63:24; uint64_t fill_order:2; uint64_t fdimm:1; uint64_t fbunk:1; uint64_t fbank:4; uint64_t frow:18; uint64_t fcol:14; } cn70xx; struct cvmx_lmcx_fadr_cn70xx cn70xxp1; struct cvmx_lmcx_fadr_cn73xx { uint64_t reserved_43_63:21; uint64_t fcid:3; uint64_t fill_order:2; uint64_t fdimm:1; uint64_t fbunk:1; uint64_t fbank:4; uint64_t frow:18; uint64_t fcol:14; } cn73xx; struct cvmx_lmcx_fadr_cn73xx cn78xx; struct cvmx_lmcx_fadr_cn73xx cn78xxp1; struct cvmx_lmcx_fadr_cn61xx cnf71xx; struct cvmx_lmcx_fadr_cn73xx cnf75xx; }; /** * cvmx_lmc#_general_purpose0 */ union cvmx_lmcx_general_purpose0 { u64 u64; struct cvmx_lmcx_general_purpose0_s { uint64_t data:64; } s; struct cvmx_lmcx_general_purpose0_s cn73xx; struct cvmx_lmcx_general_purpose0_s cn78xx; struct cvmx_lmcx_general_purpose0_s cnf75xx; }; /** * cvmx_lmc#_general_purpose1 */ union cvmx_lmcx_general_purpose1 { u64 u64; struct cvmx_lmcx_general_purpose1_s { uint64_t data:64; } s; struct cvmx_lmcx_general_purpose1_s cn73xx; struct cvmx_lmcx_general_purpose1_s cn78xx; struct cvmx_lmcx_general_purpose1_s cnf75xx; }; /** * cvmx_lmc#_general_purpose2 */ union cvmx_lmcx_general_purpose2 { u64 u64; struct cvmx_lmcx_general_purpose2_s { uint64_t reserved_16_63:48; uint64_t data:16; } s; struct cvmx_lmcx_general_purpose2_s cn73xx; struct cvmx_lmcx_general_purpose2_s cn78xx; struct cvmx_lmcx_general_purpose2_s cnf75xx; }; /** * cvmx_lmc#_ifb_cnt * * LMC_IFB_CNT = Performance Counters * */ union cvmx_lmcx_ifb_cnt { u64 u64; struct cvmx_lmcx_ifb_cnt_s { uint64_t ifbcnt:64; } s; struct cvmx_lmcx_ifb_cnt_s cn61xx; struct cvmx_lmcx_ifb_cnt_s cn63xx; struct cvmx_lmcx_ifb_cnt_s cn63xxp1; struct cvmx_lmcx_ifb_cnt_s cn66xx; struct cvmx_lmcx_ifb_cnt_s cn68xx; struct cvmx_lmcx_ifb_cnt_s cn68xxp1; struct cvmx_lmcx_ifb_cnt_s cn70xx; struct cvmx_lmcx_ifb_cnt_s cn70xxp1; struct cvmx_lmcx_ifb_cnt_s cn73xx; struct cvmx_lmcx_ifb_cnt_s cn78xx; struct cvmx_lmcx_ifb_cnt_s cn78xxp1; struct cvmx_lmcx_ifb_cnt_s cnf71xx; struct cvmx_lmcx_ifb_cnt_s cnf75xx; }; /** * cvmx_lmc#_ifb_cnt_hi * * LMC_IFB_CNT_HI = Performance Counters * */ union cvmx_lmcx_ifb_cnt_hi { u64 u64; struct cvmx_lmcx_ifb_cnt_hi_s { uint64_t reserved_32_63:32; uint64_t ifbcnt_hi:32; } s; struct cvmx_lmcx_ifb_cnt_hi_s cn30xx; struct cvmx_lmcx_ifb_cnt_hi_s cn31xx; struct cvmx_lmcx_ifb_cnt_hi_s cn38xx; struct cvmx_lmcx_ifb_cnt_hi_s cn38xxp2; struct cvmx_lmcx_ifb_cnt_hi_s cn50xx; struct cvmx_lmcx_ifb_cnt_hi_s cn52xx; struct cvmx_lmcx_ifb_cnt_hi_s cn52xxp1; struct cvmx_lmcx_ifb_cnt_hi_s cn56xx; struct cvmx_lmcx_ifb_cnt_hi_s cn56xxp1; struct cvmx_lmcx_ifb_cnt_hi_s cn58xx; struct cvmx_lmcx_ifb_cnt_hi_s cn58xxp1; }; /** * cvmx_lmc#_ifb_cnt_lo * * LMC_IFB_CNT_LO = Performance Counters * */ union cvmx_lmcx_ifb_cnt_lo { u64 u64; struct cvmx_lmcx_ifb_cnt_lo_s { uint64_t reserved_32_63:32; uint64_t ifbcnt_lo:32; } s; struct cvmx_lmcx_ifb_cnt_lo_s cn30xx; struct cvmx_lmcx_ifb_cnt_lo_s cn31xx; struct cvmx_lmcx_ifb_cnt_lo_s cn38xx; struct cvmx_lmcx_ifb_cnt_lo_s cn38xxp2; struct cvmx_lmcx_ifb_cnt_lo_s cn50xx; struct cvmx_lmcx_ifb_cnt_lo_s cn52xx; struct cvmx_lmcx_ifb_cnt_lo_s cn52xxp1; struct cvmx_lmcx_ifb_cnt_lo_s cn56xx; struct cvmx_lmcx_ifb_cnt_lo_s cn56xxp1; struct cvmx_lmcx_ifb_cnt_lo_s cn58xx; struct cvmx_lmcx_ifb_cnt_lo_s cn58xxp1; }; /** * cvmx_lmc#_int * * This register contains the different interrupt-summary bits of the LMC. * */ union cvmx_lmcx_int { u64 u64; struct cvmx_lmcx_int_s { uint64_t reserved_14_63:50; uint64_t macram_ded_err:1; uint64_t macram_sec_err:1; uint64_t ddr_err:1; uint64_t dlcram_ded_err:1; uint64_t dlcram_sec_err:1; uint64_t ded_err:4; uint64_t sec_err:4; uint64_t nxm_wr_err:1; } s; struct cvmx_lmcx_int_cn61xx { uint64_t reserved_9_63:55; uint64_t ded_err:4; uint64_t sec_err:4; uint64_t nxm_wr_err:1; } cn61xx; struct cvmx_lmcx_int_cn61xx cn63xx; struct cvmx_lmcx_int_cn61xx cn63xxp1; struct cvmx_lmcx_int_cn61xx cn66xx; struct cvmx_lmcx_int_cn61xx cn68xx; struct cvmx_lmcx_int_cn61xx cn68xxp1; struct cvmx_lmcx_int_cn70xx { uint64_t reserved_12_63:52; uint64_t ddr_err:1; uint64_t dlcram_ded_err:1; uint64_t dlcram_sec_err:1; uint64_t ded_err:4; uint64_t sec_err:4; uint64_t nxm_wr_err:1; } cn70xx; struct cvmx_lmcx_int_cn70xx cn70xxp1; struct cvmx_lmcx_int_s cn73xx; struct cvmx_lmcx_int_s cn78xx; struct cvmx_lmcx_int_s cn78xxp1; struct cvmx_lmcx_int_cn61xx cnf71xx; struct cvmx_lmcx_int_s cnf75xx; }; /** * cvmx_lmc#_int_en * * Unused CSR in O75. * */ union cvmx_lmcx_int_en { u64 u64; struct cvmx_lmcx_int_en_s { uint64_t reserved_6_63:58; uint64_t ddr_error_alert_ena:1; uint64_t dlcram_ded_ena:1; uint64_t dlcram_sec_ena:1; uint64_t intr_ded_ena:1; uint64_t intr_sec_ena:1; uint64_t intr_nxm_wr_ena:1; } s; struct cvmx_lmcx_int_en_cn61xx { uint64_t reserved_3_63:61; uint64_t intr_ded_ena:1; uint64_t intr_sec_ena:1; uint64_t intr_nxm_wr_ena:1; } cn61xx; struct cvmx_lmcx_int_en_cn61xx cn63xx; struct cvmx_lmcx_int_en_cn61xx cn63xxp1; struct cvmx_lmcx_int_en_cn61xx cn66xx; struct cvmx_lmcx_int_en_cn61xx cn68xx; struct cvmx_lmcx_int_en_cn61xx cn68xxp1; struct cvmx_lmcx_int_en_s cn70xx; struct cvmx_lmcx_int_en_s cn70xxp1; struct cvmx_lmcx_int_en_s cn73xx; struct cvmx_lmcx_int_en_s cn78xx; struct cvmx_lmcx_int_en_s cn78xxp1; struct cvmx_lmcx_int_en_cn61xx cnf71xx; struct cvmx_lmcx_int_en_s cnf75xx; }; /** * cvmx_lmc#_lane#_crc_swiz * * This register contains the CRC bit swizzle for even and odd ranks. * */ union cvmx_lmcx_lanex_crc_swiz { u64 u64; struct cvmx_lmcx_lanex_crc_swiz_s { uint64_t reserved_56_63:8; uint64_t r1_swiz7:3; uint64_t r1_swiz6:3; uint64_t r1_swiz5:3; uint64_t r1_swiz4:3; uint64_t r1_swiz3:3; uint64_t r1_swiz2:3; uint64_t r1_swiz1:3; uint64_t r1_swiz0:3; uint64_t reserved_24_31:8; uint64_t r0_swiz7:3; uint64_t r0_swiz6:3; uint64_t r0_swiz5:3; uint64_t r0_swiz4:3; uint64_t r0_swiz3:3; uint64_t r0_swiz2:3; uint64_t r0_swiz1:3; uint64_t r0_swiz0:3; } s; struct cvmx_lmcx_lanex_crc_swiz_s cn73xx; struct cvmx_lmcx_lanex_crc_swiz_s cn78xx; struct cvmx_lmcx_lanex_crc_swiz_s cn78xxp1; struct cvmx_lmcx_lanex_crc_swiz_s cnf75xx; }; /** * cvmx_lmc#_mem_cfg0 * * Specify the RSL base addresses for the block * * LMC_MEM_CFG0 = LMC Memory Configuration Register0 * * This register controls certain parameters of Memory Configuration */ union cvmx_lmcx_mem_cfg0 { u64 u64; struct cvmx_lmcx_mem_cfg0_s { uint64_t reserved_32_63:32; uint64_t reset:1; uint64_t silo_qc:1; uint64_t bunk_ena:1; uint64_t ded_err:4; uint64_t sec_err:4; uint64_t intr_ded_ena:1; uint64_t intr_sec_ena:1; uint64_t tcl:4; uint64_t ref_int:6; uint64_t pbank_lsb:4; uint64_t row_lsb:3; uint64_t ecc_ena:1; uint64_t init_start:1; } s; struct cvmx_lmcx_mem_cfg0_s cn30xx; struct cvmx_lmcx_mem_cfg0_s cn31xx; struct cvmx_lmcx_mem_cfg0_s cn38xx; struct cvmx_lmcx_mem_cfg0_s cn38xxp2; struct cvmx_lmcx_mem_cfg0_s cn50xx; struct cvmx_lmcx_mem_cfg0_s cn52xx; struct cvmx_lmcx_mem_cfg0_s cn52xxp1; struct cvmx_lmcx_mem_cfg0_s cn56xx; struct cvmx_lmcx_mem_cfg0_s cn56xxp1; struct cvmx_lmcx_mem_cfg0_s cn58xx; struct cvmx_lmcx_mem_cfg0_s cn58xxp1; }; /** * cvmx_lmc#_mem_cfg1 * * LMC_MEM_CFG1 = LMC Memory Configuration Register1 * * This register controls the External Memory Configuration Timing Parameters. * Please refer to the appropriate DDR part spec from your memory vendor for * the various values in this CSR. The details of each of these timing * parameters can be found in the JEDEC spec or the vendor spec of the * memory parts. */ union cvmx_lmcx_mem_cfg1 { u64 u64; struct cvmx_lmcx_mem_cfg1_s { uint64_t reserved_32_63:32; uint64_t comp_bypass:1; uint64_t trrd:3; uint64_t caslat:3; uint64_t tmrd:3; uint64_t trfc:5; uint64_t trp:4; uint64_t twtr:4; uint64_t trcd:4; uint64_t tras:5; } s; struct cvmx_lmcx_mem_cfg1_s cn30xx; struct cvmx_lmcx_mem_cfg1_s cn31xx; struct cvmx_lmcx_mem_cfg1_cn38xx { uint64_t reserved_31_63:33; uint64_t trrd:3; uint64_t caslat:3; uint64_t tmrd:3; uint64_t trfc:5; uint64_t trp:4; uint64_t twtr:4; uint64_t trcd:4; uint64_t tras:5; } cn38xx; struct cvmx_lmcx_mem_cfg1_cn38xx cn38xxp2; struct cvmx_lmcx_mem_cfg1_s cn50xx; struct cvmx_lmcx_mem_cfg1_cn38xx cn52xx; struct cvmx_lmcx_mem_cfg1_cn38xx cn52xxp1; struct cvmx_lmcx_mem_cfg1_cn38xx cn56xx; struct cvmx_lmcx_mem_cfg1_cn38xx cn56xxp1; struct cvmx_lmcx_mem_cfg1_cn38xx cn58xx; struct cvmx_lmcx_mem_cfg1_cn38xx cn58xxp1; }; /** * cvmx_lmc#_modereg_params0 * * These parameters are written into the DDR3/DDR4 MR0, MR1, MR2 and MR3 * registers. * */ union cvmx_lmcx_modereg_params0 { u64 u64; struct cvmx_lmcx_modereg_params0_s { uint64_t reserved_28_63:36; uint64_t wrp_ext:1; uint64_t cl_ext:1; uint64_t al_ext:1; uint64_t ppd:1; uint64_t wrp:3; uint64_t dllr:1; uint64_t tm:1; uint64_t rbt:1; uint64_t cl:4; uint64_t bl:2; uint64_t qoff:1; uint64_t tdqs:1; uint64_t wlev:1; uint64_t al:2; uint64_t dll:1; uint64_t mpr:1; uint64_t mprloc:2; uint64_t cwl:3; } s; struct cvmx_lmcx_modereg_params0_cn61xx { uint64_t reserved_25_63:39; uint64_t ppd:1; uint64_t wrp:3; uint64_t dllr:1; uint64_t tm:1; uint64_t rbt:1; uint64_t cl:4; uint64_t bl:2; uint64_t qoff:1; uint64_t tdqs:1; uint64_t wlev:1; uint64_t al:2; uint64_t dll:1; uint64_t mpr:1; uint64_t mprloc:2; uint64_t cwl:3; } cn61xx; struct cvmx_lmcx_modereg_params0_cn61xx cn63xx; struct cvmx_lmcx_modereg_params0_cn61xx cn63xxp1; struct cvmx_lmcx_modereg_params0_cn61xx cn66xx; struct cvmx_lmcx_modereg_params0_cn61xx cn68xx; struct cvmx_lmcx_modereg_params0_cn61xx cn68xxp1; struct cvmx_lmcx_modereg_params0_cn61xx cn70xx; struct cvmx_lmcx_modereg_params0_cn61xx cn70xxp1; struct cvmx_lmcx_modereg_params0_s cn73xx; struct cvmx_lmcx_modereg_params0_s cn78xx; struct cvmx_lmcx_modereg_params0_s cn78xxp1; struct cvmx_lmcx_modereg_params0_cn61xx cnf71xx; struct cvmx_lmcx_modereg_params0_s cnf75xx; }; /** * cvmx_lmc#_modereg_params1 * * These parameters are written into the DDR3 MR0, MR1, MR2 and MR3 registers. * */ union cvmx_lmcx_modereg_params1 { u64 u64; struct cvmx_lmcx_modereg_params1_s { uint64_t reserved_55_63:9; uint64_t rtt_wr_11_ext:1; uint64_t rtt_wr_10_ext:1; uint64_t rtt_wr_01_ext:1; uint64_t rtt_wr_00_ext:1; uint64_t db_output_impedance:3; uint64_t rtt_nom_11:3; uint64_t dic_11:2; uint64_t rtt_wr_11:2; uint64_t srt_11:1; uint64_t asr_11:1; uint64_t pasr_11:3; uint64_t rtt_nom_10:3; uint64_t dic_10:2; uint64_t rtt_wr_10:2; uint64_t srt_10:1; uint64_t asr_10:1; uint64_t pasr_10:3; uint64_t rtt_nom_01:3; uint64_t dic_01:2; uint64_t rtt_wr_01:2; uint64_t srt_01:1; uint64_t asr_01:1; uint64_t pasr_01:3; uint64_t rtt_nom_00:3; uint64_t dic_00:2; uint64_t rtt_wr_00:2; uint64_t srt_00:1; uint64_t asr_00:1; uint64_t pasr_00:3; } s; struct cvmx_lmcx_modereg_params1_cn61xx { uint64_t reserved_48_63:16; uint64_t rtt_nom_11:3; uint64_t dic_11:2; uint64_t rtt_wr_11:2; uint64_t srt_11:1; uint64_t asr_11:1; uint64_t pasr_11:3; uint64_t rtt_nom_10:3; uint64_t dic_10:2; uint64_t rtt_wr_10:2; uint64_t srt_10:1; uint64_t asr_10:1; uint64_t pasr_10:3; uint64_t rtt_nom_01:3; uint64_t dic_01:2; uint64_t rtt_wr_01:2; uint64_t srt_01:1; uint64_t asr_01:1; uint64_t pasr_01:3; uint64_t rtt_nom_00:3; uint64_t dic_00:2; uint64_t rtt_wr_00:2; uint64_t srt_00:1; uint64_t asr_00:1; uint64_t pasr_00:3; } cn61xx; struct cvmx_lmcx_modereg_params1_cn61xx cn63xx; struct cvmx_lmcx_modereg_params1_cn61xx cn63xxp1; struct cvmx_lmcx_modereg_params1_cn61xx cn66xx; struct cvmx_lmcx_modereg_params1_cn61xx cn68xx; struct cvmx_lmcx_modereg_params1_cn61xx cn68xxp1; struct cvmx_lmcx_modereg_params1_cn61xx cn70xx; struct cvmx_lmcx_modereg_params1_cn61xx cn70xxp1; struct cvmx_lmcx_modereg_params1_s cn73xx; struct cvmx_lmcx_modereg_params1_s cn78xx; struct cvmx_lmcx_modereg_params1_s cn78xxp1; struct cvmx_lmcx_modereg_params1_cn61xx cnf71xx; struct cvmx_lmcx_modereg_params1_s cnf75xx; }; /** * cvmx_lmc#_modereg_params2 * * These parameters are written into the DDR4 mode registers. * */ union cvmx_lmcx_modereg_params2 { u64 u64; struct cvmx_lmcx_modereg_params2_s { uint64_t reserved_41_63:23; uint64_t vrefdq_train_en:1; uint64_t vref_range_11:1; uint64_t vref_value_11:6; uint64_t rtt_park_11:3; uint64_t vref_range_10:1; uint64_t vref_value_10:6; uint64_t rtt_park_10:3; uint64_t vref_range_01:1; uint64_t vref_value_01:6; uint64_t rtt_park_01:3; uint64_t vref_range_00:1; uint64_t vref_value_00:6; uint64_t rtt_park_00:3; } s; struct cvmx_lmcx_modereg_params2_s cn70xx; struct cvmx_lmcx_modereg_params2_cn70xxp1 { uint64_t reserved_40_63:24; uint64_t vref_range_11:1; uint64_t vref_value_11:6; uint64_t rtt_park_11:3; uint64_t vref_range_10:1; uint64_t vref_value_10:6; uint64_t rtt_park_10:3; uint64_t vref_range_01:1; uint64_t vref_value_01:6; uint64_t rtt_park_01:3; uint64_t vref_range_00:1; uint64_t vref_value_00:6; uint64_t rtt_park_00:3; } cn70xxp1; struct cvmx_lmcx_modereg_params2_s cn73xx; struct cvmx_lmcx_modereg_params2_s cn78xx; struct cvmx_lmcx_modereg_params2_s cn78xxp1; struct cvmx_lmcx_modereg_params2_s cnf75xx; }; /** * cvmx_lmc#_modereg_params3 * * These parameters are written into the DDR4 mode registers. * */ union cvmx_lmcx_modereg_params3 { u64 u64; struct cvmx_lmcx_modereg_params3_s { uint64_t reserved_39_63:25; uint64_t xrank_add_tccd_l:3; uint64_t xrank_add_tccd_s:3; uint64_t mpr_fmt:2; uint64_t wr_cmd_lat:2; uint64_t fgrm:3; uint64_t temp_sense:1; uint64_t pda:1; uint64_t gd:1; uint64_t crc:1; uint64_t lpasr:2; uint64_t tccd_l:3; uint64_t rd_dbi:1; uint64_t wr_dbi:1; uint64_t dm:1; uint64_t ca_par_pers:1; uint64_t odt_pd:1; uint64_t par_lat_mode:3; uint64_t wr_preamble:1; uint64_t rd_preamble:1; uint64_t sre_abort:1; uint64_t cal:3; uint64_t vref_mon:1; uint64_t tc_ref:1; uint64_t max_pd:1; } s; struct cvmx_lmcx_modereg_params3_cn70xx { uint64_t reserved_33_63:31; uint64_t mpr_fmt:2; uint64_t wr_cmd_lat:2; uint64_t fgrm:3; uint64_t temp_sense:1; uint64_t pda:1; uint64_t gd:1; uint64_t crc:1; uint64_t lpasr:2; uint64_t tccd_l:3; uint64_t rd_dbi:1; uint64_t wr_dbi:1; uint64_t dm:1; uint64_t ca_par_pers:1; uint64_t odt_pd:1; uint64_t par_lat_mode:3; uint64_t wr_preamble:1; uint64_t rd_preamble:1; uint64_t sre_abort:1; uint64_t cal:3; uint64_t vref_mon:1; uint64_t tc_ref:1; uint64_t max_pd:1; } cn70xx; struct cvmx_lmcx_modereg_params3_cn70xx cn70xxp1; struct cvmx_lmcx_modereg_params3_s cn73xx; struct cvmx_lmcx_modereg_params3_s cn78xx; struct cvmx_lmcx_modereg_params3_s cn78xxp1; struct cvmx_lmcx_modereg_params3_s cnf75xx; }; /** * cvmx_lmc#_mpr_data0 * * This register provides bits <63:0> of MPR data register. * */ union cvmx_lmcx_mpr_data0 { u64 u64; struct cvmx_lmcx_mpr_data0_s { uint64_t mpr_data:64; } s; struct cvmx_lmcx_mpr_data0_s cn70xx; struct cvmx_lmcx_mpr_data0_s cn70xxp1; struct cvmx_lmcx_mpr_data0_s cn73xx; struct cvmx_lmcx_mpr_data0_s cn78xx; struct cvmx_lmcx_mpr_data0_s cn78xxp1; struct cvmx_lmcx_mpr_data0_s cnf75xx; }; /** * cvmx_lmc#_mpr_data1 * * This register provides bits <127:64> of MPR data register. * */ union cvmx_lmcx_mpr_data1 { u64 u64; struct cvmx_lmcx_mpr_data1_s { uint64_t mpr_data:64; } s; struct cvmx_lmcx_mpr_data1_s cn70xx; struct cvmx_lmcx_mpr_data1_s cn70xxp1; struct cvmx_lmcx_mpr_data1_s cn73xx; struct cvmx_lmcx_mpr_data1_s cn78xx; struct cvmx_lmcx_mpr_data1_s cn78xxp1; struct cvmx_lmcx_mpr_data1_s cnf75xx; }; /** * cvmx_lmc#_mpr_data2 * * This register provides bits <143:128> of MPR data register. * */ union cvmx_lmcx_mpr_data2 { u64 u64; struct cvmx_lmcx_mpr_data2_s { uint64_t reserved_16_63:48; uint64_t mpr_data:16; } s; struct cvmx_lmcx_mpr_data2_s cn70xx; struct cvmx_lmcx_mpr_data2_s cn70xxp1; struct cvmx_lmcx_mpr_data2_s cn73xx; struct cvmx_lmcx_mpr_data2_s cn78xx; struct cvmx_lmcx_mpr_data2_s cn78xxp1; struct cvmx_lmcx_mpr_data2_s cnf75xx; }; /** * cvmx_lmc#_mr_mpr_ctl * * This register provides the control functions when programming the MPR * of DDR4 DRAMs. * */ union cvmx_lmcx_mr_mpr_ctl { u64 u64; struct cvmx_lmcx_mr_mpr_ctl_s { uint64_t reserved_61_63:3; uint64_t mr_wr_secure_key_ena:1; uint64_t pba_func_space:3; uint64_t mr_wr_bg1:1; uint64_t mpr_sample_dq_enable:1; uint64_t pda_early_dqx:1; uint64_t mr_wr_pba_enable:1; uint64_t mr_wr_use_default_value:1; uint64_t mpr_whole_byte_enable:1; uint64_t mpr_byte_select:4; uint64_t mpr_bit_select:2; uint64_t mpr_wr:1; uint64_t mpr_loc:2; uint64_t mr_wr_pda_enable:1; uint64_t mr_wr_pda_mask:18; uint64_t mr_wr_rank:2; uint64_t mr_wr_sel:3; uint64_t mr_wr_addr:18; } s; struct cvmx_lmcx_mr_mpr_ctl_cn70xx { uint64_t reserved_52_63:12; uint64_t mpr_whole_byte_enable:1; uint64_t mpr_byte_select:4; uint64_t mpr_bit_select:2; uint64_t mpr_wr:1; uint64_t mpr_loc:2; uint64_t mr_wr_pda_enable:1; uint64_t mr_wr_pda_mask:18; uint64_t mr_wr_rank:2; uint64_t mr_wr_sel:3; uint64_t mr_wr_addr:18; } cn70xx; struct cvmx_lmcx_mr_mpr_ctl_cn70xx cn70xxp1; struct cvmx_lmcx_mr_mpr_ctl_s cn73xx; struct cvmx_lmcx_mr_mpr_ctl_s cn78xx; struct cvmx_lmcx_mr_mpr_ctl_s cn78xxp1; struct cvmx_lmcx_mr_mpr_ctl_s cnf75xx; }; /** * cvmx_lmc#_ns_ctl * * This register contains control parameters for handling nonsecure accesses. * */ union cvmx_lmcx_ns_ctl { u64 u64; struct cvmx_lmcx_ns_ctl_s { uint64_t reserved_26_63:38; uint64_t ns_scramble_dis:1; uint64_t reserved_18_24:7; uint64_t adr_offset:18; } s; struct cvmx_lmcx_ns_ctl_s cn73xx; struct cvmx_lmcx_ns_ctl_s cn78xx; struct cvmx_lmcx_ns_ctl_s cnf75xx; }; /** * cvmx_lmc#_nxm * * Following is the decoding for mem_msb/rank: * 0x0: mem_msb = mem_adr[25]. * 0x1: mem_msb = mem_adr[26]. * 0x2: mem_msb = mem_adr[27]. * 0x3: mem_msb = mem_adr[28]. * 0x4: mem_msb = mem_adr[29]. * 0x5: mem_msb = mem_adr[30]. * 0x6: mem_msb = mem_adr[31]. * 0x7: mem_msb = mem_adr[32]. * 0x8: mem_msb = mem_adr[33]. * 0x9: mem_msb = mem_adr[34]. * 0xA: mem_msb = mem_adr[35]. * 0xB: mem_msb = mem_adr[36]. * 0xC-0xF = Reserved. * * For example, for a DIMM made of Samsung's K4B1G0846C-ZCF7 1Gb * (16M * 8 bit * 8 bank) parts, the column address width = 10; so with * 10b of col, 3b of bus, 3b of bank, row_lsb = 16. * Therefore, row = mem_adr[29:16] and mem_msb = 4. * * Note also that addresses greater than the max defined space (pbank_msb) * are also treated as NXM accesses. */ union cvmx_lmcx_nxm { u64 u64; struct cvmx_lmcx_nxm_s { uint64_t reserved_40_63:24; uint64_t mem_msb_d3_r1:4; uint64_t mem_msb_d3_r0:4; uint64_t mem_msb_d2_r1:4; uint64_t mem_msb_d2_r0:4; uint64_t mem_msb_d1_r1:4; uint64_t mem_msb_d1_r0:4; uint64_t mem_msb_d0_r1:4; uint64_t mem_msb_d0_r0:4; uint64_t cs_mask:8; } s; struct cvmx_lmcx_nxm_cn52xx { uint64_t reserved_8_63:56; uint64_t cs_mask:8; } cn52xx; struct cvmx_lmcx_nxm_cn52xx cn56xx; struct cvmx_lmcx_nxm_cn52xx cn58xx; struct cvmx_lmcx_nxm_s cn61xx; struct cvmx_lmcx_nxm_s cn63xx; struct cvmx_lmcx_nxm_s cn63xxp1; struct cvmx_lmcx_nxm_s cn66xx; struct cvmx_lmcx_nxm_s cn68xx; struct cvmx_lmcx_nxm_s cn68xxp1; struct cvmx_lmcx_nxm_cn70xx { uint64_t reserved_24_63:40; uint64_t mem_msb_d1_r1:4; uint64_t mem_msb_d1_r0:4; uint64_t mem_msb_d0_r1:4; uint64_t mem_msb_d0_r0:4; uint64_t reserved_4_7:4; uint64_t cs_mask:4; } cn70xx; struct cvmx_lmcx_nxm_cn70xx cn70xxp1; struct cvmx_lmcx_nxm_cn70xx cn73xx; struct cvmx_lmcx_nxm_cn70xx cn78xx; struct cvmx_lmcx_nxm_cn70xx cn78xxp1; struct cvmx_lmcx_nxm_s cnf71xx; struct cvmx_lmcx_nxm_cn70xx cnf75xx; }; /** * cvmx_lmc#_nxm_fadr * * This register captures only the first transaction with a NXM error while * an interrupt is pending, and only captures a subsequent event once the * interrupt is cleared by writing a one to LMC()_INT[NXM_ERR]. It captures * the actual L2C-LMC address provided to the LMC that caused the NXM error. * A read or write NXM error is captured only if enabled using the NXM * event enables. */ union cvmx_lmcx_nxm_fadr { u64 u64; struct cvmx_lmcx_nxm_fadr_s { uint64_t reserved_40_63:24; uint64_t nxm_faddr_ext:1; uint64_t nxm_src:1; uint64_t nxm_type:1; uint64_t nxm_faddr:37; } s; struct cvmx_lmcx_nxm_fadr_cn70xx { uint64_t reserved_39_63:25; uint64_t nxm_src:1; uint64_t nxm_type:1; uint64_t nxm_faddr:37; } cn70xx; struct cvmx_lmcx_nxm_fadr_cn70xx cn70xxp1; struct cvmx_lmcx_nxm_fadr_s cn73xx; struct cvmx_lmcx_nxm_fadr_s cn78xx; struct cvmx_lmcx_nxm_fadr_s cn78xxp1; struct cvmx_lmcx_nxm_fadr_s cnf75xx; }; /** * cvmx_lmc#_ops_cnt * * LMC_OPS_CNT = Performance Counters * */ union cvmx_lmcx_ops_cnt { u64 u64; struct cvmx_lmcx_ops_cnt_s { uint64_t opscnt:64; } s; struct cvmx_lmcx_ops_cnt_s cn61xx; struct cvmx_lmcx_ops_cnt_s cn63xx; struct cvmx_lmcx_ops_cnt_s cn63xxp1; struct cvmx_lmcx_ops_cnt_s cn66xx; struct cvmx_lmcx_ops_cnt_s cn68xx; struct cvmx_lmcx_ops_cnt_s cn68xxp1; struct cvmx_lmcx_ops_cnt_s cn70xx; struct cvmx_lmcx_ops_cnt_s cn70xxp1; struct cvmx_lmcx_ops_cnt_s cn73xx; struct cvmx_lmcx_ops_cnt_s cn78xx; struct cvmx_lmcx_ops_cnt_s cn78xxp1; struct cvmx_lmcx_ops_cnt_s cnf71xx; struct cvmx_lmcx_ops_cnt_s cnf75xx; }; /** * cvmx_lmc#_ops_cnt_hi * * LMC_OPS_CNT_HI = Performance Counters * */ union cvmx_lmcx_ops_cnt_hi { u64 u64; struct cvmx_lmcx_ops_cnt_hi_s { uint64_t reserved_32_63:32; uint64_t opscnt_hi:32; } s; struct cvmx_lmcx_ops_cnt_hi_s cn30xx; struct cvmx_lmcx_ops_cnt_hi_s cn31xx; struct cvmx_lmcx_ops_cnt_hi_s cn38xx; struct cvmx_lmcx_ops_cnt_hi_s cn38xxp2; struct cvmx_lmcx_ops_cnt_hi_s cn50xx; struct cvmx_lmcx_ops_cnt_hi_s cn52xx; struct cvmx_lmcx_ops_cnt_hi_s cn52xxp1; struct cvmx_lmcx_ops_cnt_hi_s cn56xx; struct cvmx_lmcx_ops_cnt_hi_s cn56xxp1; struct cvmx_lmcx_ops_cnt_hi_s cn58xx; struct cvmx_lmcx_ops_cnt_hi_s cn58xxp1; }; /** * cvmx_lmc#_ops_cnt_lo * * LMC_OPS_CNT_LO = Performance Counters * */ union cvmx_lmcx_ops_cnt_lo { u64 u64; struct cvmx_lmcx_ops_cnt_lo_s { uint64_t reserved_32_63:32; uint64_t opscnt_lo:32; } s; struct cvmx_lmcx_ops_cnt_lo_s cn30xx; struct cvmx_lmcx_ops_cnt_lo_s cn31xx; struct cvmx_lmcx_ops_cnt_lo_s cn38xx; struct cvmx_lmcx_ops_cnt_lo_s cn38xxp2; struct cvmx_lmcx_ops_cnt_lo_s cn50xx; struct cvmx_lmcx_ops_cnt_lo_s cn52xx; struct cvmx_lmcx_ops_cnt_lo_s cn52xxp1; struct cvmx_lmcx_ops_cnt_lo_s cn56xx; struct cvmx_lmcx_ops_cnt_lo_s cn56xxp1; struct cvmx_lmcx_ops_cnt_lo_s cn58xx; struct cvmx_lmcx_ops_cnt_lo_s cn58xxp1; }; /** * cvmx_lmc#_phy_ctl * * LMC_PHY_CTL = LMC PHY Control * */ union cvmx_lmcx_phy_ctl { u64 u64; struct cvmx_lmcx_phy_ctl_s { uint64_t reserved_61_63:3; uint64_t dsk_dbg_load_dis:1; uint64_t dsk_dbg_overwrt_ena:1; uint64_t dsk_dbg_wr_mode:1; uint64_t data_rate_loopback:1; uint64_t dq_shallow_loopback:1; uint64_t dm_disable:1; uint64_t c1_sel:2; uint64_t c0_sel:2; uint64_t phy_reset:1; uint64_t dsk_dbg_rd_complete:1; uint64_t dsk_dbg_rd_data:10; uint64_t dsk_dbg_rd_start:1; uint64_t dsk_dbg_clk_scaler:2; uint64_t dsk_dbg_offset:2; uint64_t dsk_dbg_num_bits_sel:1; uint64_t dsk_dbg_byte_sel:4; uint64_t dsk_dbg_bit_sel:4; uint64_t dbi_mode_ena:1; uint64_t ddr_error_n_ena:1; uint64_t ref_pin_on:1; uint64_t dac_on:1; uint64_t int_pad_loopback_ena:1; uint64_t int_phy_loopback_ena:1; uint64_t phy_dsk_reset:1; uint64_t phy_dsk_byp:1; uint64_t phy_pwr_save_disable:1; uint64_t ten:1; uint64_t rx_always_on:1; uint64_t lv_mode:1; uint64_t ck_tune1:1; uint64_t ck_dlyout1:4; uint64_t ck_tune0:1; uint64_t ck_dlyout0:4; uint64_t loopback:1; uint64_t loopback_pos:1; uint64_t ts_stagger:1; } s; struct cvmx_lmcx_phy_ctl_cn61xx { uint64_t reserved_15_63:49; uint64_t rx_always_on:1; uint64_t lv_mode:1; uint64_t ck_tune1:1; uint64_t ck_dlyout1:4; uint64_t ck_tune0:1; uint64_t ck_dlyout0:4; uint64_t loopback:1; uint64_t loopback_pos:1; uint64_t ts_stagger:1; } cn61xx; struct cvmx_lmcx_phy_ctl_cn61xx cn63xx; struct cvmx_lmcx_phy_ctl_cn63xxp1 { uint64_t reserved_14_63:50; uint64_t lv_mode:1; uint64_t ck_tune1:1; uint64_t ck_dlyout1:4; uint64_t ck_tune0:1; uint64_t ck_dlyout0:4; uint64_t loopback:1; uint64_t loopback_pos:1; uint64_t ts_stagger:1; } cn63xxp1; struct cvmx_lmcx_phy_ctl_cn61xx cn66xx; struct cvmx_lmcx_phy_ctl_cn61xx cn68xx; struct cvmx_lmcx_phy_ctl_cn61xx cn68xxp1; struct cvmx_lmcx_phy_ctl_cn70xx { uint64_t reserved_51_63:13; uint64_t phy_reset:1; uint64_t dsk_dbg_rd_complete:1; uint64_t dsk_dbg_rd_data:10; uint64_t dsk_dbg_rd_start:1; uint64_t dsk_dbg_clk_scaler:2; uint64_t dsk_dbg_offset:2; uint64_t dsk_dbg_num_bits_sel:1; uint64_t dsk_dbg_byte_sel:4; uint64_t dsk_dbg_bit_sel:4; uint64_t dbi_mode_ena:1; uint64_t ddr_error_n_ena:1; uint64_t ref_pin_on:1; uint64_t dac_on:1; uint64_t int_pad_loopback_ena:1; uint64_t int_phy_loopback_ena:1; uint64_t phy_dsk_reset:1; uint64_t phy_dsk_byp:1; uint64_t phy_pwr_save_disable:1; uint64_t ten:1; uint64_t rx_always_on:1; uint64_t lv_mode:1; uint64_t ck_tune1:1; uint64_t ck_dlyout1:4; uint64_t ck_tune0:1; uint64_t ck_dlyout0:4; uint64_t loopback:1; uint64_t loopback_pos:1; uint64_t ts_stagger:1; } cn70xx; struct cvmx_lmcx_phy_ctl_cn70xx cn70xxp1; struct cvmx_lmcx_phy_ctl_cn73xx { uint64_t reserved_58_63:6; uint64_t data_rate_loopback:1; uint64_t dq_shallow_loopback:1; uint64_t dm_disable:1; uint64_t c1_sel:2; uint64_t c0_sel:2; uint64_t phy_reset:1; uint64_t dsk_dbg_rd_complete:1; uint64_t dsk_dbg_rd_data:10; uint64_t dsk_dbg_rd_start:1; uint64_t dsk_dbg_clk_scaler:2; uint64_t dsk_dbg_offset:2; uint64_t dsk_dbg_num_bits_sel:1; uint64_t dsk_dbg_byte_sel:4; uint64_t dsk_dbg_bit_sel:4; uint64_t dbi_mode_ena:1; uint64_t ddr_error_n_ena:1; uint64_t ref_pin_on:1; uint64_t dac_on:1; uint64_t int_pad_loopback_ena:1; uint64_t int_phy_loopback_ena:1; uint64_t phy_dsk_reset:1; uint64_t phy_dsk_byp:1; uint64_t phy_pwr_save_disable:1; uint64_t ten:1; uint64_t rx_always_on:1; uint64_t lv_mode:1; uint64_t ck_tune1:1; uint64_t ck_dlyout1:4; uint64_t ck_tune0:1; uint64_t ck_dlyout0:4; uint64_t loopback:1; uint64_t loopback_pos:1; uint64_t ts_stagger:1; } cn73xx; struct cvmx_lmcx_phy_ctl_s cn78xx; struct cvmx_lmcx_phy_ctl_s cn78xxp1; struct cvmx_lmcx_phy_ctl_cn61xx cnf71xx; struct cvmx_lmcx_phy_ctl_s cnf75xx; }; /** * cvmx_lmc#_phy_ctl2 */ union cvmx_lmcx_phy_ctl2 { u64 u64; struct cvmx_lmcx_phy_ctl2_s { uint64_t reserved_27_63:37; uint64_t dqs8_dsk_adj:3; uint64_t dqs7_dsk_adj:3; uint64_t dqs6_dsk_adj:3; uint64_t dqs5_dsk_adj:3; uint64_t dqs4_dsk_adj:3; uint64_t dqs3_dsk_adj:3; uint64_t dqs2_dsk_adj:3; uint64_t dqs1_dsk_adj:3; uint64_t dqs0_dsk_adj:3; } s; struct cvmx_lmcx_phy_ctl2_s cn78xx; struct cvmx_lmcx_phy_ctl2_s cnf75xx; }; /** * cvmx_lmc#_pll_bwctl * * LMC_PLL_BWCTL = DDR PLL Bandwidth Control Register * */ union cvmx_lmcx_pll_bwctl { u64 u64; struct cvmx_lmcx_pll_bwctl_s { uint64_t reserved_5_63:59; uint64_t bwupd:1; uint64_t bwctl:4; } s; struct cvmx_lmcx_pll_bwctl_s cn30xx; struct cvmx_lmcx_pll_bwctl_s cn31xx; struct cvmx_lmcx_pll_bwctl_s cn38xx; struct cvmx_lmcx_pll_bwctl_s cn38xxp2; }; /** * cvmx_lmc#_pll_ctl * * LMC_PLL_CTL = LMC pll control * * * Notes: * This CSR is only relevant for LMC0. LMC1_PLL_CTL is not used. * * Exactly one of EN2, EN4, EN6, EN8, EN12, EN16 must be set. * * The resultant DDR_CK frequency is the DDR2_REF_CLK * frequency multiplied by: * * (CLKF + 1) / ((CLKR + 1) * EN(2,4,6,8,12,16)) * * The PLL frequency, which is: * * (DDR2_REF_CLK freq) * ((CLKF + 1) / (CLKR + 1)) * * must reside between 1.2 and 2.5 GHz. A faster PLL frequency is * desirable if there is a choice. */ union cvmx_lmcx_pll_ctl { u64 u64; struct cvmx_lmcx_pll_ctl_s { uint64_t reserved_30_63:34; uint64_t bypass:1; uint64_t fasten_n:1; uint64_t div_reset:1; uint64_t reset_n:1; uint64_t clkf:12; uint64_t clkr:6; uint64_t reserved_6_7:2; uint64_t en16:1; uint64_t en12:1; uint64_t en8:1; uint64_t en6:1; uint64_t en4:1; uint64_t en2:1; } s; struct cvmx_lmcx_pll_ctl_cn50xx { uint64_t reserved_29_63:35; uint64_t fasten_n:1; uint64_t div_reset:1; uint64_t reset_n:1; uint64_t clkf:12; uint64_t clkr:6; uint64_t reserved_6_7:2; uint64_t en16:1; uint64_t en12:1; uint64_t en8:1; uint64_t en6:1; uint64_t en4:1; uint64_t en2:1; } cn50xx; struct cvmx_lmcx_pll_ctl_s cn52xx; struct cvmx_lmcx_pll_ctl_s cn52xxp1; struct cvmx_lmcx_pll_ctl_cn50xx cn56xx; struct cvmx_lmcx_pll_ctl_cn56xxp1 { uint64_t reserved_28_63:36; uint64_t div_reset:1; uint64_t reset_n:1; uint64_t clkf:12; uint64_t clkr:6; uint64_t reserved_6_7:2; uint64_t en16:1; uint64_t en12:1; uint64_t en8:1; uint64_t en6:1; uint64_t en4:1; uint64_t en2:1; } cn56xxp1; struct cvmx_lmcx_pll_ctl_cn56xxp1 cn58xx; struct cvmx_lmcx_pll_ctl_cn56xxp1 cn58xxp1; }; /** * cvmx_lmc#_pll_status * * LMC_PLL_STATUS = LMC pll status * */ union cvmx_lmcx_pll_status { u64 u64; struct cvmx_lmcx_pll_status_s { uint64_t reserved_32_63:32; uint64_t ddr__nctl:5; uint64_t ddr__pctl:5; uint64_t reserved_2_21:20; uint64_t rfslip:1; uint64_t fbslip:1; } s; struct cvmx_lmcx_pll_status_s cn50xx; struct cvmx_lmcx_pll_status_s cn52xx; struct cvmx_lmcx_pll_status_s cn52xxp1; struct cvmx_lmcx_pll_status_s cn56xx; struct cvmx_lmcx_pll_status_s cn56xxp1; struct cvmx_lmcx_pll_status_s cn58xx; struct cvmx_lmcx_pll_status_cn58xxp1 { uint64_t reserved_2_63:62; uint64_t rfslip:1; uint64_t fbslip:1; } cn58xxp1; }; /** * cvmx_lmc#_ppr_ctl * * This register contains programmable timing and control parameters used * when running the post package repair sequence. The timing fields * PPR_CTL[TPGMPST], PPR_CTL[TPGM_EXIT] and PPR_CTL[TPGM] need to be set as * to satisfy the minimum values mentioned in the JEDEC DDR4 spec before * running the PPR sequence. See LMC()_SEQ_CTL[SEQ_SEL,INIT_START] to run * the PPR sequence. * * Running hard PPR may require LMC to issue security key as four consecutive * MR0 commands, each with a unique address field A[17:0]. Set the security * key in the general purpose CSRs as follows: * * _ Security key 0 = LMC()_GENERAL_PURPOSE0[DATA]<17:0>. * _ Security key 1 = LMC()_GENERAL_PURPOSE0[DATA]<35:18>. * _ Security key 2 = LMC()_GENERAL_PURPOSE1[DATA]<17:0>. * _ Security key 3 = LMC()_GENERAL_PURPOSE1[DATA]<35:18>. */ union cvmx_lmcx_ppr_ctl { u64 u64; struct cvmx_lmcx_ppr_ctl_s { uint64_t reserved_27_63:37; uint64_t lrank_sel:3; uint64_t skip_issue_security:1; uint64_t sppr:1; uint64_t tpgm:10; uint64_t tpgm_exit:5; uint64_t tpgmpst:7; } s; struct cvmx_lmcx_ppr_ctl_cn73xx { uint64_t reserved_24_63:40; uint64_t skip_issue_security:1; uint64_t sppr:1; uint64_t tpgm:10; uint64_t tpgm_exit:5; uint64_t tpgmpst:7; } cn73xx; struct cvmx_lmcx_ppr_ctl_s cn78xx; struct cvmx_lmcx_ppr_ctl_cn73xx cnf75xx; }; /** * cvmx_lmc#_read_level_ctl * * Notes: * The HW writes and reads the cache block selected by ROW, COL, BNK and * the rank as part of a read-leveling sequence for a rank. * A cache block write is 16 72-bit words. PATTERN selects the write value. * For the first 8 words, the write value is the bit PATTERN duplicated * into a 72-bit vector. The write value of the last 8 words is the inverse * of the write value of the first 8 words. See LMC*_READ_LEVEL_RANK*. */ union cvmx_lmcx_read_level_ctl { u64 u64; struct cvmx_lmcx_read_level_ctl_s { uint64_t reserved_44_63:20; uint64_t rankmask:4; uint64_t pattern:8; uint64_t row:16; uint64_t col:12; uint64_t reserved_3_3:1; uint64_t bnk:3; } s; struct cvmx_lmcx_read_level_ctl_s cn52xx; struct cvmx_lmcx_read_level_ctl_s cn52xxp1; struct cvmx_lmcx_read_level_ctl_s cn56xx; struct cvmx_lmcx_read_level_ctl_s cn56xxp1; }; /** * cvmx_lmc#_read_level_dbg * * Notes: * A given read of LMC*_READ_LEVEL_DBG returns the read-leveling pass/fail * results for all possible delay settings (i.e. the BITMASK) for only one * byte in the last rank that the HW read-leveled. * LMC*_READ_LEVEL_DBG[BYTE] selects the particular byte. * To get these pass/fail results for another different rank, you must run * the hardware read-leveling again. For example, it is possible to get the * BITMASK results for every byte of every rank if you run read-leveling * separately for each rank, probing LMC*_READ_LEVEL_DBG between each * read-leveling. */ union cvmx_lmcx_read_level_dbg { u64 u64; struct cvmx_lmcx_read_level_dbg_s { uint64_t reserved_32_63:32; uint64_t bitmask:16; uint64_t reserved_4_15:12; uint64_t byte:4; } s; struct cvmx_lmcx_read_level_dbg_s cn52xx; struct cvmx_lmcx_read_level_dbg_s cn52xxp1; struct cvmx_lmcx_read_level_dbg_s cn56xx; struct cvmx_lmcx_read_level_dbg_s cn56xxp1; }; /** * cvmx_lmc#_read_level_rank# * * Notes: * This is four CSRs per LMC, one per each rank. * Each CSR is written by HW during a read-leveling sequence for the rank. * (HW sets STATUS==3 after HW read-leveling completes for the rank.) * Each CSR may also be written by SW, but not while a read-leveling sequence * is in progress. (HW sets STATUS==1 after a CSR write.) * Deskew setting is measured in units of 1/4 DCLK, so the above BYTE* * values can range over 4 DCLKs. * SW initiates a HW read-leveling sequence by programming * LMC*_READ_LEVEL_CTL and writing INIT_START=1 with SEQUENCE=1. * See LMC*_READ_LEVEL_CTL. */ union cvmx_lmcx_read_level_rankx { u64 u64; struct cvmx_lmcx_read_level_rankx_s { uint64_t reserved_38_63:26; uint64_t status:2; uint64_t byte8:4; uint64_t byte7:4; uint64_t byte6:4; uint64_t byte5:4; uint64_t byte4:4; uint64_t byte3:4; uint64_t byte2:4; uint64_t byte1:4; uint64_t byte0:4; } s; struct cvmx_lmcx_read_level_rankx_s cn52xx; struct cvmx_lmcx_read_level_rankx_s cn52xxp1; struct cvmx_lmcx_read_level_rankx_s cn56xx; struct cvmx_lmcx_read_level_rankx_s cn56xxp1; }; /** * cvmx_lmc#_ref_status * * This register contains the status of the refresh pending counter. * */ union cvmx_lmcx_ref_status { u64 u64; struct cvmx_lmcx_ref_status_s { uint64_t reserved_4_63:60; uint64_t ref_pend_max_clr:1; uint64_t ref_count:3; } s; struct cvmx_lmcx_ref_status_s cn73xx; struct cvmx_lmcx_ref_status_s cn78xx; struct cvmx_lmcx_ref_status_s cnf75xx; }; /** * cvmx_lmc#_reset_ctl * * Specify the RSL base addresses for the block. * */ union cvmx_lmcx_reset_ctl { u64 u64; struct cvmx_lmcx_reset_ctl_s { uint64_t reserved_4_63:60; uint64_t ddr3psv:1; uint64_t ddr3psoft:1; uint64_t ddr3pwarm:1; uint64_t ddr3rst:1; } s; struct cvmx_lmcx_reset_ctl_s cn61xx; struct cvmx_lmcx_reset_ctl_s cn63xx; struct cvmx_lmcx_reset_ctl_s cn63xxp1; struct cvmx_lmcx_reset_ctl_s cn66xx; struct cvmx_lmcx_reset_ctl_s cn68xx; struct cvmx_lmcx_reset_ctl_s cn68xxp1; struct cvmx_lmcx_reset_ctl_s cn70xx; struct cvmx_lmcx_reset_ctl_s cn70xxp1; struct cvmx_lmcx_reset_ctl_s cn73xx; struct cvmx_lmcx_reset_ctl_s cn78xx; struct cvmx_lmcx_reset_ctl_s cn78xxp1; struct cvmx_lmcx_reset_ctl_s cnf71xx; struct cvmx_lmcx_reset_ctl_s cnf75xx; }; /** * cvmx_lmc#_retry_config * * This register configures automatic retry operation. * */ union cvmx_lmcx_retry_config { u64 u64; struct cvmx_lmcx_retry_config_s { uint64_t reserved_56_63:8; uint64_t max_errors:24; uint64_t reserved_13_31:19; uint64_t error_continue:1; uint64_t reserved_9_11:3; uint64_t auto_error_continue:1; uint64_t reserved_5_7:3; uint64_t pulse_count_auto_clr:1; uint64_t reserved_1_3:3; uint64_t retry_enable:1; } s; struct cvmx_lmcx_retry_config_s cn73xx; struct cvmx_lmcx_retry_config_s cn78xx; struct cvmx_lmcx_retry_config_s cnf75xx; }; /** * cvmx_lmc#_retry_status * * This register provides status on automatic retry operation. * */ union cvmx_lmcx_retry_status { u64 u64; struct cvmx_lmcx_retry_status_s { uint64_t clear_error_count:1; uint64_t clear_error_pulse_count:1; uint64_t reserved_57_61:5; uint64_t error_pulse_count_valid:1; uint64_t error_pulse_count_sat:1; uint64_t reserved_52_54:3; uint64_t error_pulse_count:4; uint64_t reserved_45_47:3; uint64_t error_sequence:5; uint64_t reserved_33_39:7; uint64_t error_type:1; uint64_t reserved_24_31:8; uint64_t error_count:24; } s; struct cvmx_lmcx_retry_status_s cn73xx; struct cvmx_lmcx_retry_status_s cn78xx; struct cvmx_lmcx_retry_status_s cnf75xx; }; /** * cvmx_lmc#_rlevel_ctl */ union cvmx_lmcx_rlevel_ctl { u64 u64; struct cvmx_lmcx_rlevel_ctl_s { uint64_t reserved_33_63:31; uint64_t tccd_sel:1; uint64_t pattern:8; uint64_t reserved_22_23:2; uint64_t delay_unload_3:1; uint64_t delay_unload_2:1; uint64_t delay_unload_1:1; uint64_t delay_unload_0:1; uint64_t bitmask:8; uint64_t or_dis:1; uint64_t offset_en:1; uint64_t offset:4; uint64_t byte:4; } s; struct cvmx_lmcx_rlevel_ctl_cn61xx { uint64_t reserved_22_63:42; uint64_t delay_unload_3:1; uint64_t delay_unload_2:1; uint64_t delay_unload_1:1; uint64_t delay_unload_0:1; uint64_t bitmask:8; uint64_t or_dis:1; uint64_t offset_en:1; uint64_t offset:4; uint64_t byte:4; } cn61xx; struct cvmx_lmcx_rlevel_ctl_cn61xx cn63xx; struct cvmx_lmcx_rlevel_ctl_cn63xxp1 { uint64_t reserved_9_63:55; uint64_t offset_en:1; uint64_t offset:4; uint64_t byte:4; } cn63xxp1; struct cvmx_lmcx_rlevel_ctl_cn61xx cn66xx; struct cvmx_lmcx_rlevel_ctl_cn61xx cn68xx; struct cvmx_lmcx_rlevel_ctl_cn61xx cn68xxp1; struct cvmx_lmcx_rlevel_ctl_cn70xx { uint64_t reserved_32_63:32; uint64_t pattern:8; uint64_t reserved_22_23:2; uint64_t delay_unload_3:1; uint64_t delay_unload_2:1; uint64_t delay_unload_1:1; uint64_t delay_unload_0:1; uint64_t bitmask:8; uint64_t or_dis:1; uint64_t offset_en:1; uint64_t offset:4; uint64_t byte:4; } cn70xx; struct cvmx_lmcx_rlevel_ctl_cn70xx cn70xxp1; struct cvmx_lmcx_rlevel_ctl_cn70xx cn73xx; struct cvmx_lmcx_rlevel_ctl_s cn78xx; struct cvmx_lmcx_rlevel_ctl_s cn78xxp1; struct cvmx_lmcx_rlevel_ctl_cn61xx cnf71xx; struct cvmx_lmcx_rlevel_ctl_s cnf75xx; }; /** * cvmx_lmc#_rlevel_dbg * * A given read of LMC()_RLEVEL_DBG returns the read leveling pass/fail * results for all possible delay settings (i.e. the BITMASK) for only * one byte in the last rank that the hardware ran read leveling on. * LMC()_RLEVEL_CTL[BYTE] selects the particular byte. To get these * pass/fail results for a different rank, you must run the hardware * read leveling again. For example, it is possible to get the [BITMASK] * results for every byte of every rank if you run read leveling separately * for each rank, probing LMC()_RLEVEL_DBG between each read- leveling. */ union cvmx_lmcx_rlevel_dbg { u64 u64; struct cvmx_lmcx_rlevel_dbg_s { uint64_t bitmask:64; } s; struct cvmx_lmcx_rlevel_dbg_s cn61xx; struct cvmx_lmcx_rlevel_dbg_s cn63xx; struct cvmx_lmcx_rlevel_dbg_s cn63xxp1; struct cvmx_lmcx_rlevel_dbg_s cn66xx; struct cvmx_lmcx_rlevel_dbg_s cn68xx; struct cvmx_lmcx_rlevel_dbg_s cn68xxp1; struct cvmx_lmcx_rlevel_dbg_s cn70xx; struct cvmx_lmcx_rlevel_dbg_s cn70xxp1; struct cvmx_lmcx_rlevel_dbg_s cn73xx; struct cvmx_lmcx_rlevel_dbg_s cn78xx; struct cvmx_lmcx_rlevel_dbg_s cn78xxp1; struct cvmx_lmcx_rlevel_dbg_s cnf71xx; struct cvmx_lmcx_rlevel_dbg_s cnf75xx; }; /** * cvmx_lmc#_rlevel_rank# * * Four of these CSRs exist per LMC, one for each rank. Read level setting * is measured in units of 1/4 CK, so the BYTEn values can range over 16 CK * cycles. Each CSR is written by hardware during a read leveling sequence * for the rank. (Hardware sets [STATUS] to 3 after hardware read leveling * completes for the rank.) * * If hardware is unable to find a match per LMC()_RLEVEL_CTL[OFFSET_EN] and * LMC()_RLEVEL_CTL[OFFSET], then hardware sets * LMC()_RLEVEL_RANK()[BYTEn<5:0>] to 0x0. * * Each CSR may also be written by software, but not while a read leveling * sequence is in progress. (Hardware sets [STATUS] to 1 after a CSR write.) * Software initiates a hardware read leveling sequence by programming * LMC()_RLEVEL_CTL and writing [INIT_START] = 1 with [SEQ_SEL]=1. * See LMC()_RLEVEL_CTL. * * LMC()_RLEVEL_RANKi values for ranks i without attached DRAM should be set * such that they do not increase the range of possible BYTE values for any * byte lane. The easiest way to do this is to set LMC()_RLEVEL_RANKi = * LMC()_RLEVEL_RANKj, where j is some rank with attached DRAM whose * LMC()_RLEVEL_RANKj is already fully initialized. */ union cvmx_lmcx_rlevel_rankx { u64 u64; struct cvmx_lmcx_rlevel_rankx_s { uint64_t reserved_56_63:8; uint64_t status:2; uint64_t byte8:6; uint64_t byte7:6; uint64_t byte6:6; uint64_t byte5:6; uint64_t byte4:6; uint64_t byte3:6; uint64_t byte2:6; uint64_t byte1:6; uint64_t byte0:6; } s; struct cvmx_lmcx_rlevel_rankx_s cn61xx; struct cvmx_lmcx_rlevel_rankx_s cn63xx; struct cvmx_lmcx_rlevel_rankx_s cn63xxp1; struct cvmx_lmcx_rlevel_rankx_s cn66xx; struct cvmx_lmcx_rlevel_rankx_s cn68xx; struct cvmx_lmcx_rlevel_rankx_s cn68xxp1; struct cvmx_lmcx_rlevel_rankx_s cn70xx; struct cvmx_lmcx_rlevel_rankx_s cn70xxp1; struct cvmx_lmcx_rlevel_rankx_s cn73xx; struct cvmx_lmcx_rlevel_rankx_s cn78xx; struct cvmx_lmcx_rlevel_rankx_s cn78xxp1; struct cvmx_lmcx_rlevel_rankx_s cnf71xx; struct cvmx_lmcx_rlevel_rankx_s cnf75xx; }; /** * cvmx_lmc#_rodt_comp_ctl * * LMC_RODT_COMP_CTL = LMC Compensation control * */ union cvmx_lmcx_rodt_comp_ctl { u64 u64; struct cvmx_lmcx_rodt_comp_ctl_s { uint64_t reserved_17_63:47; uint64_t enable:1; uint64_t reserved_12_15:4; uint64_t nctl:4; uint64_t reserved_5_7:3; uint64_t pctl:5; } s; struct cvmx_lmcx_rodt_comp_ctl_s cn50xx; struct cvmx_lmcx_rodt_comp_ctl_s cn52xx; struct cvmx_lmcx_rodt_comp_ctl_s cn52xxp1; struct cvmx_lmcx_rodt_comp_ctl_s cn56xx; struct cvmx_lmcx_rodt_comp_ctl_s cn56xxp1; struct cvmx_lmcx_rodt_comp_ctl_s cn58xx; struct cvmx_lmcx_rodt_comp_ctl_s cn58xxp1; }; /** * cvmx_lmc#_rodt_ctl * * LMC_RODT_CTL = Obsolete LMC Read OnDieTermination control * See the description in LMC_WODT_CTL1. On Reads, Octeon only supports * turning on ODT's in the lower 2 DIMM's with the masks as below. * * Notes: * When a given RANK in position N is selected, the RODT _HI and _LO masks * for that position are used. * Mask[3:0] is used for RODT control of the RANKs in positions 3, 2, 1, * and 0, respectively. * In 64b mode, DIMMs are assumed to be ordered in the following order: * position 3: [unused , DIMM1_RANK1_LO] * position 2: [unused , DIMM1_RANK0_LO] * position 1: [unused , DIMM0_RANK1_LO] * position 0: [unused , DIMM0_RANK0_LO] * In 128b mode, DIMMs are assumed to be ordered in the following order: * position 3: [DIMM3_RANK1_HI, DIMM1_RANK1_LO] * position 2: [DIMM3_RANK0_HI, DIMM1_RANK0_LO] * position 1: [DIMM2_RANK1_HI, DIMM0_RANK1_LO] * position 0: [DIMM2_RANK0_HI, DIMM0_RANK0_LO] */ union cvmx_lmcx_rodt_ctl { u64 u64; struct cvmx_lmcx_rodt_ctl_s { uint64_t reserved_32_63:32; uint64_t rodt_hi3:4; uint64_t rodt_hi2:4; uint64_t rodt_hi1:4; uint64_t rodt_hi0:4; uint64_t rodt_lo3:4; uint64_t rodt_lo2:4; uint64_t rodt_lo1:4; uint64_t rodt_lo0:4; } s; struct cvmx_lmcx_rodt_ctl_s cn30xx; struct cvmx_lmcx_rodt_ctl_s cn31xx; struct cvmx_lmcx_rodt_ctl_s cn38xx; struct cvmx_lmcx_rodt_ctl_s cn38xxp2; struct cvmx_lmcx_rodt_ctl_s cn50xx; struct cvmx_lmcx_rodt_ctl_s cn52xx; struct cvmx_lmcx_rodt_ctl_s cn52xxp1; struct cvmx_lmcx_rodt_ctl_s cn56xx; struct cvmx_lmcx_rodt_ctl_s cn56xxp1; struct cvmx_lmcx_rodt_ctl_s cn58xx; struct cvmx_lmcx_rodt_ctl_s cn58xxp1; }; /** * cvmx_lmc#_rodt_mask * * System designers may desire to terminate DQ/DQS lines for higher frequency * DDR operations, especially on a multirank system. DDR3 DQ/DQS I/Os have * built-in termination resistors that can be turned on or off by the * controller, after meeting TAOND and TAOF timing requirements. * * Each rank has its own ODT pin that fans out to all the memory parts in * that DIMM. System designers may prefer different combinations of ODT ONs * for read operations into different ranks. CNXXXX supports full * programmability by way of the mask register below. Each rank position has * its own 4-bit programmable field. When the controller does a read to that * rank, it sets the 4 ODT pins to the MASK pins below. For example, when * doing a read from Rank0, a system designer may desire to terminate the * lines with the resistor on DIMM0/Rank1. The mask [RODT_D0_R0] would then * be [0010]. * * CNXXXX drives the appropriate mask values on the ODT pins by default. * If this feature is not required, write 0x0 in this register. Note that, * as per the JEDEC DDR3 specifications, the ODT pin for the rank that is * being read should always be 0x0. When a given RANK is selected, the RODT * mask for that rank is used. The resulting RODT mask is driven to the * DIMMs in the following manner: */ union cvmx_lmcx_rodt_mask { u64 u64; struct cvmx_lmcx_rodt_mask_s { uint64_t rodt_d3_r1:8; uint64_t rodt_d3_r0:8; uint64_t rodt_d2_r1:8; uint64_t rodt_d2_r0:8; uint64_t rodt_d1_r1:8; uint64_t rodt_d1_r0:8; uint64_t rodt_d0_r1:8; uint64_t rodt_d0_r0:8; } s; struct cvmx_lmcx_rodt_mask_s cn61xx; struct cvmx_lmcx_rodt_mask_s cn63xx; struct cvmx_lmcx_rodt_mask_s cn63xxp1; struct cvmx_lmcx_rodt_mask_s cn66xx; struct cvmx_lmcx_rodt_mask_s cn68xx; struct cvmx_lmcx_rodt_mask_s cn68xxp1; struct cvmx_lmcx_rodt_mask_cn70xx { uint64_t reserved_28_63:36; uint64_t rodt_d1_r1:4; uint64_t reserved_20_23:4; uint64_t rodt_d1_r0:4; uint64_t reserved_12_15:4; uint64_t rodt_d0_r1:4; uint64_t reserved_4_7:4; uint64_t rodt_d0_r0:4; } cn70xx; struct cvmx_lmcx_rodt_mask_cn70xx cn70xxp1; struct cvmx_lmcx_rodt_mask_cn70xx cn73xx; struct cvmx_lmcx_rodt_mask_cn70xx cn78xx; struct cvmx_lmcx_rodt_mask_cn70xx cn78xxp1; struct cvmx_lmcx_rodt_mask_s cnf71xx; struct cvmx_lmcx_rodt_mask_cn70xx cnf75xx; }; /** * cvmx_lmc#_scramble_cfg0 * * LMC_SCRAMBLE_CFG0 = LMC Scramble Config0 * */ union cvmx_lmcx_scramble_cfg0 { u64 u64; struct cvmx_lmcx_scramble_cfg0_s { uint64_t key:64; } s; struct cvmx_lmcx_scramble_cfg0_s cn61xx; struct cvmx_lmcx_scramble_cfg0_s cn66xx; struct cvmx_lmcx_scramble_cfg0_s cn70xx; struct cvmx_lmcx_scramble_cfg0_s cn70xxp1; struct cvmx_lmcx_scramble_cfg0_s cn73xx; struct cvmx_lmcx_scramble_cfg0_s cn78xx; struct cvmx_lmcx_scramble_cfg0_s cn78xxp1; struct cvmx_lmcx_scramble_cfg0_s cnf71xx; struct cvmx_lmcx_scramble_cfg0_s cnf75xx; }; /** * cvmx_lmc#_scramble_cfg1 * * These registers set the aliasing that uses the lowest, legal chip select(s). * */ union cvmx_lmcx_scramble_cfg1 { u64 u64; struct cvmx_lmcx_scramble_cfg1_s { uint64_t key:64; } s; struct cvmx_lmcx_scramble_cfg1_s cn61xx; struct cvmx_lmcx_scramble_cfg1_s cn66xx; struct cvmx_lmcx_scramble_cfg1_s cn70xx; struct cvmx_lmcx_scramble_cfg1_s cn70xxp1; struct cvmx_lmcx_scramble_cfg1_s cn73xx; struct cvmx_lmcx_scramble_cfg1_s cn78xx; struct cvmx_lmcx_scramble_cfg1_s cn78xxp1; struct cvmx_lmcx_scramble_cfg1_s cnf71xx; struct cvmx_lmcx_scramble_cfg1_s cnf75xx; }; /** * cvmx_lmc#_scramble_cfg2 */ union cvmx_lmcx_scramble_cfg2 { u64 u64; struct cvmx_lmcx_scramble_cfg2_s { uint64_t key:64; } s; struct cvmx_lmcx_scramble_cfg2_s cn73xx; struct cvmx_lmcx_scramble_cfg2_s cn78xx; struct cvmx_lmcx_scramble_cfg2_s cnf75xx; }; /** * cvmx_lmc#_scrambled_fadr * * LMC()_FADR captures the failing pre-scrambled address location (split into * DIMM, bunk, bank, etc). If scrambling is off, LMC()_FADR also captures the * failing physical location in the DRAM parts. LMC()_SCRAMBLED_FADR captures * the actual failing address location in the physical DRAM parts, i.e.: * * * If scrambling is on, LMC()_SCRAMBLED_FADR contains the failing physical * location in the * DRAM parts (split into DIMM, bunk, bank, etc). * * * If scrambling is off, the pre-scramble and post-scramble addresses are * the same, and so the * contents of LMC()_SCRAMBLED_FADR match the contents of LMC()_FADR. * * This register only captures the first transaction with ECC errors. A DED * error can over-write this register with its failing addresses if the first * error was a SEC. If you write LMC()_CONFIG -> SEC_ERR/DED_ERR, it clears * the error bits and captures the next failing address. If [FDIMM] is 1, * that means the error is in the higher DIMM. */ union cvmx_lmcx_scrambled_fadr { u64 u64; struct cvmx_lmcx_scrambled_fadr_s { uint64_t reserved_43_63:21; uint64_t fcid:3; uint64_t fill_order:2; uint64_t reserved_14_37:24; uint64_t fcol:14; } s; struct cvmx_lmcx_scrambled_fadr_cn61xx { uint64_t reserved_36_63:28; uint64_t fdimm:2; uint64_t fbunk:1; uint64_t fbank:3; uint64_t frow:16; uint64_t fcol:14; } cn61xx; struct cvmx_lmcx_scrambled_fadr_cn61xx cn66xx; struct cvmx_lmcx_scrambled_fadr_cn70xx { uint64_t reserved_40_63:24; uint64_t fill_order:2; uint64_t fdimm:1; uint64_t fbunk:1; uint64_t fbank:4; uint64_t frow:18; uint64_t fcol:14; } cn70xx; struct cvmx_lmcx_scrambled_fadr_cn70xx cn70xxp1; struct cvmx_lmcx_scrambled_fadr_cn73xx { uint64_t reserved_43_63:21; uint64_t fcid:3; uint64_t fill_order:2; uint64_t fdimm:1; uint64_t fbunk:1; uint64_t fbank:4; uint64_t frow:18; uint64_t fcol:14; } cn73xx; struct cvmx_lmcx_scrambled_fadr_cn73xx cn78xx; struct cvmx_lmcx_scrambled_fadr_cn73xx cn78xxp1; struct cvmx_lmcx_scrambled_fadr_cn61xx cnf71xx; struct cvmx_lmcx_scrambled_fadr_cn73xx cnf75xx; }; /** * cvmx_lmc#_seq_ctl * * This register is used to initiate the various control sequences in the LMC. * */ union cvmx_lmcx_seq_ctl { u64 u64; struct cvmx_lmcx_seq_ctl_s { uint64_t reserved_6_63:58; uint64_t seq_complete:1; uint64_t seq_sel:4; uint64_t init_start:1; } s; struct cvmx_lmcx_seq_ctl_s cn70xx; struct cvmx_lmcx_seq_ctl_s cn70xxp1; struct cvmx_lmcx_seq_ctl_s cn73xx; struct cvmx_lmcx_seq_ctl_s cn78xx; struct cvmx_lmcx_seq_ctl_s cn78xxp1; struct cvmx_lmcx_seq_ctl_s cnf75xx; }; /** * cvmx_lmc#_slot_ctl0 * * This register is an assortment of control fields needed by the memory * controller. If software has not previously written to this register * (since the last DRESET), hardware updates the fields in this register to * the minimum allowed value when any of LMC()_RLEVEL_RANK(), * LMC()_WLEVEL_RANK(), LMC()_CONTROL, and LMC()_MODEREG_PARAMS0 registers * change. Ideally, only read this register after LMC has been initialized and * LMC()_RLEVEL_RANK(), LMC()_WLEVEL_RANK() have valid data. * * The interpretation of the fields in this register depends on * LMC(0)_CONFIG[DDR2T]: * * * If LMC()_CONFIG[DDR2T]=1, (FieldValue + 4) is the minimum CK cycles * between when the DRAM part registers CAS commands of the first and * second types from different cache blocks. * * If LMC()_CONFIG[DDR2T]=0, (FieldValue + 3) is the minimum CK cycles * between when the DRAM part registers CAS commands of the first and second * types from different cache blocks. * FieldValue = 0 is always illegal in this case. * The hardware-calculated minimums for these fields are shown in * LMC(0)_SLOT_CTL0 Hardware-Calculated Minimums. */ union cvmx_lmcx_slot_ctl0 { u64 u64; struct cvmx_lmcx_slot_ctl0_s { uint64_t reserved_50_63:14; uint64_t w2r_l_init_ext:1; uint64_t w2r_init_ext:1; uint64_t w2w_l_init:6; uint64_t w2r_l_init:6; uint64_t r2w_l_init:6; uint64_t r2r_l_init:6; uint64_t w2w_init:6; uint64_t w2r_init:6; uint64_t r2w_init:6; uint64_t r2r_init:6; } s; struct cvmx_lmcx_slot_ctl0_cn61xx { uint64_t reserved_24_63:40; uint64_t w2w_init:6; uint64_t w2r_init:6; uint64_t r2w_init:6; uint64_t r2r_init:6; } cn61xx; struct cvmx_lmcx_slot_ctl0_cn61xx cn63xx; struct cvmx_lmcx_slot_ctl0_cn61xx cn63xxp1; struct cvmx_lmcx_slot_ctl0_cn61xx cn66xx; struct cvmx_lmcx_slot_ctl0_cn61xx cn68xx; struct cvmx_lmcx_slot_ctl0_cn61xx cn68xxp1; struct cvmx_lmcx_slot_ctl0_cn70xx { uint64_t reserved_48_63:16; uint64_t w2w_l_init:6; uint64_t w2r_l_init:6; uint64_t r2w_l_init:6; uint64_t r2r_l_init:6; uint64_t w2w_init:6; uint64_t w2r_init:6; uint64_t r2w_init:6; uint64_t r2r_init:6; } cn70xx; struct cvmx_lmcx_slot_ctl0_cn70xx cn70xxp1; struct cvmx_lmcx_slot_ctl0_s cn73xx; struct cvmx_lmcx_slot_ctl0_s cn78xx; struct cvmx_lmcx_slot_ctl0_s cn78xxp1; struct cvmx_lmcx_slot_ctl0_cn61xx cnf71xx; struct cvmx_lmcx_slot_ctl0_s cnf75xx; }; /** * cvmx_lmc#_slot_ctl1 * * This register is an assortment of control fields needed by the memory * controller. If software has not previously written to this register * (since the last DRESET), hardware updates the fields in this register to * the minimum allowed value when any of LMC()_RLEVEL_RANK(), * LMC()_WLEVEL_RANK(), LMC()_CONTROL and LMC()_MODEREG_PARAMS0 change. * Ideally, only read this register after LMC has been initialized and * LMC()_RLEVEL_RANK(), LMC()_WLEVEL_RANK() have valid data. * * The interpretation of the fields in this CSR depends on * LMC(0)_CONFIG[DDR2T]: * * * If LMC()_CONFIG[DDR2T]=1, (FieldValue + 4) is the minimum CK cycles * between when the DRAM part registers CAS commands of the first and * second types from different cache blocks. * * * If LMC()_CONFIG[DDR2T]=0, (FieldValue + 3) is the minimum CK cycles * between when the DRAM part registers CAS commands of the first and * second types from different cache blocks. * FieldValue = 0 is always illegal in this case. * * The hardware-calculated minimums for these fields are shown in * LMC(0)_SLOT_CTL1 Hardware-Calculated Minimums. */ union cvmx_lmcx_slot_ctl1 { u64 u64; struct cvmx_lmcx_slot_ctl1_s { uint64_t reserved_24_63:40; uint64_t w2w_xrank_init:6; uint64_t w2r_xrank_init:6; uint64_t r2w_xrank_init:6; uint64_t r2r_xrank_init:6; } s; struct cvmx_lmcx_slot_ctl1_s cn61xx; struct cvmx_lmcx_slot_ctl1_s cn63xx; struct cvmx_lmcx_slot_ctl1_s cn63xxp1; struct cvmx_lmcx_slot_ctl1_s cn66xx; struct cvmx_lmcx_slot_ctl1_s cn68xx; struct cvmx_lmcx_slot_ctl1_s cn68xxp1; struct cvmx_lmcx_slot_ctl1_s cn70xx; struct cvmx_lmcx_slot_ctl1_s cn70xxp1; struct cvmx_lmcx_slot_ctl1_s cn73xx; struct cvmx_lmcx_slot_ctl1_s cn78xx; struct cvmx_lmcx_slot_ctl1_s cn78xxp1; struct cvmx_lmcx_slot_ctl1_s cnf71xx; struct cvmx_lmcx_slot_ctl1_s cnf75xx; }; /** * cvmx_lmc#_slot_ctl2 * * This register is an assortment of control fields needed by the memory * controller. If software has not previously written to this register * (since the last DRESET), hardware updates the fields in this register * to the minimum allowed value when any of LMC()_RLEVEL_RANK(), * LMC()_WLEVEL_RANK(), LMC()_CONTROL and LMC()_MODEREG_PARAMS0 change. * Ideally, only read this register after LMC has been initialized and * LMC()_RLEVEL_RANK(), LMC()_WLEVEL_RANK() have valid data. * * The interpretation of the fields in this CSR depends on LMC(0)_CONFIG[DDR2T]: * * * If LMC()_CONFIG[DDR2T] = 1, (FieldValue + 4) is the minimum CK cycles * between when the DRAM part registers CAS commands of the first and * second types from different cache blocks. * * * If LMC()_CONFIG[DDR2T] = 0, (FieldValue + 3) is the minimum CK cycles * between when the DRAM part registers CAS commands of the first and second * types from different cache blocks. * FieldValue = 0 is always illegal in this case. * * The hardware-calculated minimums for these fields are shown in LMC Registers. */ union cvmx_lmcx_slot_ctl2 { u64 u64; struct cvmx_lmcx_slot_ctl2_s { uint64_t reserved_24_63:40; uint64_t w2w_xdimm_init:6; uint64_t w2r_xdimm_init:6; uint64_t r2w_xdimm_init:6; uint64_t r2r_xdimm_init:6; } s; struct cvmx_lmcx_slot_ctl2_s cn61xx; struct cvmx_lmcx_slot_ctl2_s cn63xx; struct cvmx_lmcx_slot_ctl2_s cn63xxp1; struct cvmx_lmcx_slot_ctl2_s cn66xx; struct cvmx_lmcx_slot_ctl2_s cn68xx; struct cvmx_lmcx_slot_ctl2_s cn68xxp1; struct cvmx_lmcx_slot_ctl2_s cn70xx; struct cvmx_lmcx_slot_ctl2_s cn70xxp1; struct cvmx_lmcx_slot_ctl2_s cn73xx; struct cvmx_lmcx_slot_ctl2_s cn78xx; struct cvmx_lmcx_slot_ctl2_s cn78xxp1; struct cvmx_lmcx_slot_ctl2_s cnf71xx; struct cvmx_lmcx_slot_ctl2_s cnf75xx; }; /** * cvmx_lmc#_slot_ctl3 * * This register is an assortment of control fields needed by the memory * controller. If software has not previously written to this register * (since the last DRESET), hardware updates the fields in this register * to the minimum allowed value when any of LMC()_RLEVEL_RANK(), * LMC()_WLEVEL_RANK(), LMC()_CONTROL and LMC()_MODEREG_PARAMS0 change. * Ideally, only read this register after LMC has been initialized and * LMC()_RLEVEL_RANK(), LMC()_WLEVEL_RANK() have valid data. * * The interpretation of the fields in this CSR depends on LMC(0)_CONFIG[DDR2T]: * * * If LMC()_CONFIG[DDR2T] = 1, (FieldValue + 4) is the minimum CK cycles * between when the DRAM part registers CAS commands of the first and * second types from different cache blocks. * * * If LMC()_CONFIG[DDR2T] = 0, (FieldValue + 3) is the minimum CK cycles * between when the DRAM part registers CAS commands of the first and second * types from different cache blocks. * FieldValue = 0 is always illegal in this case. * * The hardware-calculated minimums for these fields are shown in LMC Registers. */ union cvmx_lmcx_slot_ctl3 { u64 u64; struct cvmx_lmcx_slot_ctl3_s { uint64_t reserved_50_63:14; uint64_t w2r_l_xrank_init_ext:1; uint64_t w2r_xrank_init_ext:1; uint64_t w2w_l_xrank_init:6; uint64_t w2r_l_xrank_init:6; uint64_t r2w_l_xrank_init:6; uint64_t r2r_l_xrank_init:6; uint64_t w2w_xrank_init:6; uint64_t w2r_xrank_init:6; uint64_t r2w_xrank_init:6; uint64_t r2r_xrank_init:6; } s; struct cvmx_lmcx_slot_ctl3_s cn73xx; struct cvmx_lmcx_slot_ctl3_s cn78xx; struct cvmx_lmcx_slot_ctl3_s cnf75xx; }; /** * cvmx_lmc#_timing_params0 */ union cvmx_lmcx_timing_params0 { u64 u64; struct cvmx_lmcx_timing_params0_s { uint64_t reserved_54_63:10; uint64_t tbcw:6; uint64_t reserved_26_47:22; uint64_t tmrd:4; uint64_t reserved_8_21:14; uint64_t tckeon:8; } s; struct cvmx_lmcx_timing_params0_cn61xx { uint64_t reserved_47_63:17; uint64_t trp_ext:1; uint64_t tcksre:4; uint64_t trp:4; uint64_t tzqinit:4; uint64_t tdllk:4; uint64_t tmod:4; uint64_t tmrd:4; uint64_t txpr:4; uint64_t tcke:4; uint64_t tzqcs:4; uint64_t reserved_0_9:10; } cn61xx; struct cvmx_lmcx_timing_params0_cn61xx cn63xx; struct cvmx_lmcx_timing_params0_cn63xxp1 { uint64_t reserved_46_63:18; uint64_t tcksre:4; uint64_t trp:4; uint64_t tzqinit:4; uint64_t tdllk:4; uint64_t tmod:4; uint64_t tmrd:4; uint64_t txpr:4; uint64_t tcke:4; uint64_t tzqcs:4; uint64_t tckeon:10; } cn63xxp1; struct cvmx_lmcx_timing_params0_cn61xx cn66xx; struct cvmx_lmcx_timing_params0_cn61xx cn68xx; struct cvmx_lmcx_timing_params0_cn61xx cn68xxp1; struct cvmx_lmcx_timing_params0_cn70xx { uint64_t reserved_48_63:16; uint64_t tcksre:4; uint64_t trp:5; uint64_t tzqinit:4; uint64_t tdllk:4; uint64_t tmod:5; uint64_t tmrd:4; uint64_t txpr:6; uint64_t tcke:4; uint64_t tzqcs:4; uint64_t reserved_0_7:8; } cn70xx; struct cvmx_lmcx_timing_params0_cn70xx cn70xxp1; struct cvmx_lmcx_timing_params0_cn73xx { uint64_t reserved_54_63:10; uint64_t tbcw:6; uint64_t tcksre:4; uint64_t trp:5; uint64_t tzqinit:4; uint64_t tdllk:4; uint64_t tmod:5; uint64_t tmrd:4; uint64_t txpr:6; uint64_t tcke:4; uint64_t tzqcs:4; uint64_t reserved_0_7:8; } cn73xx; struct cvmx_lmcx_timing_params0_cn73xx cn78xx; struct cvmx_lmcx_timing_params0_cn73xx cn78xxp1; struct cvmx_lmcx_timing_params0_cn61xx cnf71xx; struct cvmx_lmcx_timing_params0_cn73xx cnf75xx; }; /** * cvmx_lmc#_timing_params1 */ union cvmx_lmcx_timing_params1 { u64 u64; struct cvmx_lmcx_timing_params1_s { uint64_t reserved_59_63:5; uint64_t txp_ext:1; uint64_t trcd_ext:1; uint64_t tpdm_full_cycle_ena:1; uint64_t trfc_dlr:7; uint64_t reserved_4_48:45; uint64_t tmprr:4; } s; struct cvmx_lmcx_timing_params1_cn61xx { uint64_t reserved_47_63:17; uint64_t tras_ext:1; uint64_t txpdll:5; uint64_t tfaw:5; uint64_t twldqsen:4; uint64_t twlmrd:4; uint64_t txp:3; uint64_t trrd:3; uint64_t trfc:5; uint64_t twtr:4; uint64_t trcd:4; uint64_t tras:5; uint64_t tmprr:4; } cn61xx; struct cvmx_lmcx_timing_params1_cn61xx cn63xx; struct cvmx_lmcx_timing_params1_cn63xxp1 { uint64_t reserved_46_63:18; uint64_t txpdll:5; uint64_t tfaw:5; uint64_t twldqsen:4; uint64_t twlmrd:4; uint64_t txp:3; uint64_t trrd:3; uint64_t trfc:5; uint64_t twtr:4; uint64_t trcd:4; uint64_t tras:5; uint64_t tmprr:4; } cn63xxp1; struct cvmx_lmcx_timing_params1_cn61xx cn66xx; struct cvmx_lmcx_timing_params1_cn61xx cn68xx; struct cvmx_lmcx_timing_params1_cn61xx cn68xxp1; struct cvmx_lmcx_timing_params1_cn70xx { uint64_t reserved_49_63:15; uint64_t txpdll:5; uint64_t tfaw:5; uint64_t twldqsen:4; uint64_t twlmrd:4; uint64_t txp:3; uint64_t trrd:3; uint64_t trfc:7; uint64_t twtr:4; uint64_t trcd:4; uint64_t tras:6; uint64_t tmprr:4; } cn70xx; struct cvmx_lmcx_timing_params1_cn70xx cn70xxp1; struct cvmx_lmcx_timing_params1_cn73xx { uint64_t reserved_59_63:5; uint64_t txp_ext:1; uint64_t trcd_ext:1; uint64_t tpdm_full_cycle_ena:1; uint64_t trfc_dlr:7; uint64_t txpdll:5; uint64_t tfaw:5; uint64_t twldqsen:4; uint64_t twlmrd:4; uint64_t txp:3; uint64_t trrd:3; uint64_t trfc:7; uint64_t twtr:4; uint64_t trcd:4; uint64_t tras:6; uint64_t tmprr:4; } cn73xx; struct cvmx_lmcx_timing_params1_cn73xx cn78xx; struct cvmx_lmcx_timing_params1_cn73xx cn78xxp1; struct cvmx_lmcx_timing_params1_cn61xx cnf71xx; struct cvmx_lmcx_timing_params1_cn73xx cnf75xx; }; /** * cvmx_lmc#_timing_params2 * * This register sets timing parameters for DDR4. * */ union cvmx_lmcx_timing_params2 { u64 u64; struct cvmx_lmcx_timing_params2_s { uint64_t reserved_16_63:48; uint64_t trrd_l_ext:1; uint64_t trtp:4; uint64_t t_rw_op_max:4; uint64_t twtr_l:4; uint64_t trrd_l:3; } s; struct cvmx_lmcx_timing_params2_cn70xx { uint64_t reserved_15_63:49; uint64_t trtp:4; uint64_t t_rw_op_max:4; uint64_t twtr_l:4; uint64_t trrd_l:3; } cn70xx; struct cvmx_lmcx_timing_params2_cn70xx cn70xxp1; struct cvmx_lmcx_timing_params2_s cn73xx; struct cvmx_lmcx_timing_params2_s cn78xx; struct cvmx_lmcx_timing_params2_s cn78xxp1; struct cvmx_lmcx_timing_params2_s cnf75xx; }; /** * cvmx_lmc#_tro_ctl * * LMC_TRO_CTL = LMC Temperature Ring Osc Control * This register is an assortment of various control fields needed to * control the temperature ring oscillator * * Notes: * To bring up the temperature ring oscillator, write TRESET to 0, and * follow by initializing RCLK_CNT to desired value */ union cvmx_lmcx_tro_ctl { u64 u64; struct cvmx_lmcx_tro_ctl_s { uint64_t reserved_33_63:31; uint64_t rclk_cnt:32; uint64_t treset:1; } s; struct cvmx_lmcx_tro_ctl_s cn61xx; struct cvmx_lmcx_tro_ctl_s cn63xx; struct cvmx_lmcx_tro_ctl_s cn63xxp1; struct cvmx_lmcx_tro_ctl_s cn66xx; struct cvmx_lmcx_tro_ctl_s cn68xx; struct cvmx_lmcx_tro_ctl_s cn68xxp1; struct cvmx_lmcx_tro_ctl_s cnf71xx; }; /** * cvmx_lmc#_tro_stat * * LMC_TRO_STAT = LMC Temperature Ring Osc Status * This register is an assortment of various control fields needed to * control the temperature ring oscillator */ union cvmx_lmcx_tro_stat { u64 u64; struct cvmx_lmcx_tro_stat_s { uint64_t reserved_32_63:32; uint64_t ring_cnt:32; } s; struct cvmx_lmcx_tro_stat_s cn61xx; struct cvmx_lmcx_tro_stat_s cn63xx; struct cvmx_lmcx_tro_stat_s cn63xxp1; struct cvmx_lmcx_tro_stat_s cn66xx; struct cvmx_lmcx_tro_stat_s cn68xx; struct cvmx_lmcx_tro_stat_s cn68xxp1; struct cvmx_lmcx_tro_stat_s cnf71xx; }; /** * cvmx_lmc#_wlevel_ctl */ union cvmx_lmcx_wlevel_ctl { u64 u64; struct cvmx_lmcx_wlevel_ctl_s { uint64_t reserved_22_63:42; uint64_t rtt_nom:3; uint64_t bitmask:8; uint64_t or_dis:1; uint64_t sset:1; uint64_t lanemask:9; } s; struct cvmx_lmcx_wlevel_ctl_s cn61xx; struct cvmx_lmcx_wlevel_ctl_s cn63xx; struct cvmx_lmcx_wlevel_ctl_cn63xxp1 { uint64_t reserved_10_63:54; uint64_t sset:1; uint64_t lanemask:9; } cn63xxp1; struct cvmx_lmcx_wlevel_ctl_s cn66xx; struct cvmx_lmcx_wlevel_ctl_s cn68xx; struct cvmx_lmcx_wlevel_ctl_s cn68xxp1; struct cvmx_lmcx_wlevel_ctl_s cn70xx; struct cvmx_lmcx_wlevel_ctl_s cn70xxp1; struct cvmx_lmcx_wlevel_ctl_s cn73xx; struct cvmx_lmcx_wlevel_ctl_s cn78xx; struct cvmx_lmcx_wlevel_ctl_s cn78xxp1; struct cvmx_lmcx_wlevel_ctl_s cnf71xx; struct cvmx_lmcx_wlevel_ctl_s cnf75xx; }; /** * cvmx_lmc#_wlevel_dbg * * A given write of LMC()_WLEVEL_DBG returns the write leveling pass/fail * results for all possible delay settings (i.e. the BITMASK) for only one * byte in the last rank that the hardware write leveled. * LMC()_WLEVEL_DBG[BYTE] selects the particular byte. To get these * pass/fail results for a different rank, you must run the hardware write * leveling again. For example, it is possible to get the [BITMASK] results * for every byte of every rank if you run write leveling separately for * each rank, probing LMC()_WLEVEL_DBG between each write-leveling. */ union cvmx_lmcx_wlevel_dbg { u64 u64; struct cvmx_lmcx_wlevel_dbg_s { uint64_t reserved_12_63:52; uint64_t bitmask:8; uint64_t byte:4; } s; struct cvmx_lmcx_wlevel_dbg_s cn61xx; struct cvmx_lmcx_wlevel_dbg_s cn63xx; struct cvmx_lmcx_wlevel_dbg_s cn63xxp1; struct cvmx_lmcx_wlevel_dbg_s cn66xx; struct cvmx_lmcx_wlevel_dbg_s cn68xx; struct cvmx_lmcx_wlevel_dbg_s cn68xxp1; struct cvmx_lmcx_wlevel_dbg_s cn70xx; struct cvmx_lmcx_wlevel_dbg_s cn70xxp1; struct cvmx_lmcx_wlevel_dbg_s cn73xx; struct cvmx_lmcx_wlevel_dbg_s cn78xx; struct cvmx_lmcx_wlevel_dbg_s cn78xxp1; struct cvmx_lmcx_wlevel_dbg_s cnf71xx; struct cvmx_lmcx_wlevel_dbg_s cnf75xx; }; /** * cvmx_lmc#_wlevel_rank# * * Four of these CSRs exist per LMC, one for each rank. Write level setting * is measured in units of 1/8 CK, so the below BYTEn values can range over * 4 CK cycles. Assuming LMC()_WLEVEL_CTL[SSET]=0, the BYTEn<2:0> values are * not used during write leveling, and they are overwritten by the hardware * as part of the write leveling sequence. (Hardware sets [STATUS] to 3 after * hardware write leveling completes for the rank). Software needs to set * BYTEn<4:3> bits. * * Each CSR may also be written by software, but not while a write leveling * sequence is in progress. (Hardware sets [STATUS] to 1 after a CSR write.) * Software initiates a hardware write-leveling sequence by programming * LMC()_WLEVEL_CTL and writing RANKMASK and INIT_START=1 with SEQ_SEL=6 in * LMC*0_CONFIG. * * LMC will then step through and accumulate write leveling results for 8 * unique delay settings (twice), starting at a delay of LMC()_WLEVEL_RANK() * [BYTEn<4:3>]* 8 CK increasing by 1/8 CK each setting. Hardware will then * set LMC()_WLEVEL_RANK()[BYTEn<2:0>] to indicate the first write leveling * result of 1 that followed a result of 0 during the sequence by searching * for a '1100' pattern in the generated bitmask, except that LMC will always * write LMC()_WLEVEL_RANK()[BYTEn<0>]=0. If hardware is unable to find a match * for a '1100' pattern, then hardware sets LMC()_WLEVEL_RANK() [BYTEn<2:0>] * to 0x4. See LMC()_WLEVEL_CTL. * * LMC()_WLEVEL_RANKi values for ranks i without attached DRAM should be set * such that they do not increase the range of possible BYTE values for any * byte lane. The easiest way to do this is to set LMC()_WLEVEL_RANKi = * LMC()_WLEVEL_RANKj, where j is some rank with attached DRAM whose * LMC()_WLEVEL_RANKj is already fully initialized. */ union cvmx_lmcx_wlevel_rankx { u64 u64; struct cvmx_lmcx_wlevel_rankx_s { uint64_t reserved_47_63:17; uint64_t status:2; uint64_t byte8:5; uint64_t byte7:5; uint64_t byte6:5; uint64_t byte5:5; uint64_t byte4:5; uint64_t byte3:5; uint64_t byte2:5; uint64_t byte1:5; uint64_t byte0:5; } s; struct cvmx_lmcx_wlevel_rankx_s cn61xx; struct cvmx_lmcx_wlevel_rankx_s cn63xx; struct cvmx_lmcx_wlevel_rankx_s cn63xxp1; struct cvmx_lmcx_wlevel_rankx_s cn66xx; struct cvmx_lmcx_wlevel_rankx_s cn68xx; struct cvmx_lmcx_wlevel_rankx_s cn68xxp1; struct cvmx_lmcx_wlevel_rankx_s cn70xx; struct cvmx_lmcx_wlevel_rankx_s cn70xxp1; struct cvmx_lmcx_wlevel_rankx_s cn73xx; struct cvmx_lmcx_wlevel_rankx_s cn78xx; struct cvmx_lmcx_wlevel_rankx_s cn78xxp1; struct cvmx_lmcx_wlevel_rankx_s cnf71xx; struct cvmx_lmcx_wlevel_rankx_s cnf75xx; }; /** * cvmx_lmc#_wodt_ctl0 * * LMC_WODT_CTL0 = LMC Write OnDieTermination control * See the description in LMC_WODT_CTL1. * * Notes: * Together, the LMC_WODT_CTL1 and LMC_WODT_CTL0 CSRs control the write * ODT mask. See LMC_WODT_CTL1. * */ union cvmx_lmcx_wodt_ctl0 { u64 u64; struct cvmx_lmcx_wodt_ctl0_s { uint64_t reserved_0_63:64; } s; struct cvmx_lmcx_wodt_ctl0_cn30xx { uint64_t reserved_32_63:32; uint64_t wodt_d1_r1:8; uint64_t wodt_d1_r0:8; uint64_t wodt_d0_r1:8; uint64_t wodt_d0_r0:8; } cn30xx; struct cvmx_lmcx_wodt_ctl0_cn30xx cn31xx; struct cvmx_lmcx_wodt_ctl0_cn38xx { uint64_t reserved_32_63:32; uint64_t wodt_hi3:4; uint64_t wodt_hi2:4; uint64_t wodt_hi1:4; uint64_t wodt_hi0:4; uint64_t wodt_lo3:4; uint64_t wodt_lo2:4; uint64_t wodt_lo1:4; uint64_t wodt_lo0:4; } cn38xx; struct cvmx_lmcx_wodt_ctl0_cn38xx cn38xxp2; struct cvmx_lmcx_wodt_ctl0_cn38xx cn50xx; struct cvmx_lmcx_wodt_ctl0_cn30xx cn52xx; struct cvmx_lmcx_wodt_ctl0_cn30xx cn52xxp1; struct cvmx_lmcx_wodt_ctl0_cn30xx cn56xx; struct cvmx_lmcx_wodt_ctl0_cn30xx cn56xxp1; struct cvmx_lmcx_wodt_ctl0_cn38xx cn58xx; struct cvmx_lmcx_wodt_ctl0_cn38xx cn58xxp1; }; /** * cvmx_lmc#_wodt_ctl1 * * LMC_WODT_CTL1 = LMC Write OnDieTermination control * System designers may desire to terminate DQ/DQS/DM lines for higher * frequency DDR operations (667MHz and faster), especially on a multi-rank * system. DDR2 DQ/DM/DQS I/O's have built in Termination resistor that can * be turned on or off by the controller, after meeting tAOND and tAOF * timing requirements. Each Rank has its own ODT pin that fans out to all * the memory parts in that DIMM. System designers may prefer different * combinations of ODT ON's for read and write into different ranks. Octeon * supports full programmability by way of the mask register below. * Each Rank position has its own 8-bit programmable field. * When the controller does a write to that rank, it sets the 8 ODT pins * to the MASK pins below. For eg., When doing a write into Rank0, a system * designer may desire to terminate the lines with the resistor on * Dimm0/Rank1. The mask WODT_D0_R0 would then be [00000010]. If ODT feature * is not desired, the DDR parts can be programmed to not look at these pins by * writing 0 in QS_DIC. Octeon drives the appropriate mask values on the ODT * pins by default. * If this feature is not required, write 0 in this register. * * Notes: * Together, the LMC_WODT_CTL1 and LMC_WODT_CTL0 CSRs control the write * ODT mask. When a given RANK is selected, the WODT mask for that RANK * is used. The resulting WODT mask is driven to the DIMMs in the following * manner: * BUNK_ENA=1 BUNK_ENA=0 * Mask[7] -> DIMM3, RANK1 DIMM3 * Mask[6] -> DIMM3, RANK0 * Mask[5] -> DIMM2, RANK1 DIMM2 * Mask[4] -> DIMM2, RANK0 * Mask[3] -> DIMM1, RANK1 DIMM1 * Mask[2] -> DIMM1, RANK0 * Mask[1] -> DIMM0, RANK1 DIMM0 * Mask[0] -> DIMM0, RANK0 */ union cvmx_lmcx_wodt_ctl1 { u64 u64; struct cvmx_lmcx_wodt_ctl1_s { uint64_t reserved_32_63:32; uint64_t wodt_d3_r1:8; uint64_t wodt_d3_r0:8; uint64_t wodt_d2_r1:8; uint64_t wodt_d2_r0:8; } s; struct cvmx_lmcx_wodt_ctl1_s cn30xx; struct cvmx_lmcx_wodt_ctl1_s cn31xx; struct cvmx_lmcx_wodt_ctl1_s cn52xx; struct cvmx_lmcx_wodt_ctl1_s cn52xxp1; struct cvmx_lmcx_wodt_ctl1_s cn56xx; struct cvmx_lmcx_wodt_ctl1_s cn56xxp1; }; /** * cvmx_lmc#_wodt_mask * * System designers may desire to terminate DQ/DQS lines for higher-frequency * DDR operations, especially on a multirank system. DDR3 DQ/DQS I/Os have * built-in termination resistors that can be turned on or off by the * controller, after meeting TAOND and TAOF timing requirements. Each rank * has its own ODT pin that fans out to all of the memory parts in that DIMM. * System designers may prefer different combinations of ODT ONs for write * operations into different ranks. CNXXXX supports full programmability by * way of the mask register below. Each rank position has its own 8-bit * programmable field. When the controller does a write to that rank, * it sets the four ODT pins to the mask pins below. For example, when * doing a write into Rank0, a system designer may desire to terminate the * lines with the resistor on DIMM0/Rank1. The mask [WODT_D0_R0] would then * be [00000010]. * * CNXXXX drives the appropriate mask values on the ODT pins by default. * If this feature is not required, write 0x0 in this register. When a * given RANK is selected, the WODT mask for that RANK is used. The * resulting WODT mask is driven to the DIMMs in the following manner: */ union cvmx_lmcx_wodt_mask { u64 u64; struct cvmx_lmcx_wodt_mask_s { uint64_t wodt_d3_r1:8; uint64_t wodt_d3_r0:8; uint64_t wodt_d2_r1:8; uint64_t wodt_d2_r0:8; uint64_t wodt_d1_r1:8; uint64_t wodt_d1_r0:8; uint64_t wodt_d0_r1:8; uint64_t wodt_d0_r0:8; } s; struct cvmx_lmcx_wodt_mask_s cn61xx; struct cvmx_lmcx_wodt_mask_s cn63xx; struct cvmx_lmcx_wodt_mask_s cn63xxp1; struct cvmx_lmcx_wodt_mask_s cn66xx; struct cvmx_lmcx_wodt_mask_s cn68xx; struct cvmx_lmcx_wodt_mask_s cn68xxp1; struct cvmx_lmcx_wodt_mask_cn70xx { uint64_t reserved_28_63:36; uint64_t wodt_d1_r1:4; uint64_t reserved_20_23:4; uint64_t wodt_d1_r0:4; uint64_t reserved_12_15:4; uint64_t wodt_d0_r1:4; uint64_t reserved_4_7:4; uint64_t wodt_d0_r0:4; } cn70xx; struct cvmx_lmcx_wodt_mask_cn70xx cn70xxp1; struct cvmx_lmcx_wodt_mask_cn70xx cn73xx; struct cvmx_lmcx_wodt_mask_cn70xx cn78xx; struct cvmx_lmcx_wodt_mask_cn70xx cn78xxp1; struct cvmx_lmcx_wodt_mask_s cnf71xx; struct cvmx_lmcx_wodt_mask_cn70xx cnf75xx; }; #endif