// SPDX-License-Identifier: GPL-2.0+ /* * (C) Copyright 2014 - 2015 Xilinx, Inc. * Michal Simek */ #include #include #include #include #include #include #include #include #define LOCK 0 #define SPLIT 1 #define HALT 0 #define RELEASE 1 #define ZYNQMP_BOOTADDR_HIGH_MASK 0xFFFFFFFF #define ZYNQMP_R5_HIVEC_ADDR 0xFFFF0000 #define ZYNQMP_R5_LOVEC_ADDR 0x0 #define ZYNQMP_RPU_CFG_CPU_HALT_MASK 0x01 #define ZYNQMP_RPU_CFG_HIVEC_MASK 0x04 #define ZYNQMP_RPU_GLBL_CTRL_SPLIT_LOCK_MASK 0x08 #define ZYNQMP_RPU_GLBL_CTRL_TCM_COMB_MASK 0x40 #define ZYNQMP_RPU_GLBL_CTRL_SLCLAMP_MASK 0x10 #define ZYNQMP_CRLAPB_RST_LPD_AMBA_RST_MASK 0x04 #define ZYNQMP_CRLAPB_RST_LPD_R50_RST_MASK 0x01 #define ZYNQMP_CRLAPB_RST_LPD_R51_RST_MASK 0x02 #define ZYNQMP_CRLAPB_CPU_R5_CTRL_CLKACT_MASK 0x1000000 #define ZYNQMP_R5_0_TCM_START_ADDR 0xFFE00000 #define ZYNQMP_R5_1_TCM_START_ADDR 0xFFE90000 #define ZYNQMP_TCM_BOTH_SIZE 0x40000 #define ZYNQMP_CORE_APU0 0 #define ZYNQMP_CORE_APU3 3 #define ZYNQMP_CORE_RPU0 4 #define ZYNQMP_CORE_RPU1 5 #define ZYNQMP_MAX_CORES 6 #define ZYNQMP_RPU0_USE_MASK BIT(1) #define ZYNQMP_RPU1_USE_MASK BIT(2) int is_core_valid(unsigned int core) { if (core < ZYNQMP_MAX_CORES) return 1; return 0; } int cpu_reset(u32 nr) { puts("Feature is not implemented.\n"); return 0; } static void set_r5_halt_mode(u32 nr, u8 halt, u8 mode) { u32 tmp; if (mode == LOCK || nr == ZYNQMP_CORE_RPU0) { tmp = readl(&rpu_base->rpu0_cfg); if (halt == HALT) tmp &= ~ZYNQMP_RPU_CFG_CPU_HALT_MASK; else tmp |= ZYNQMP_RPU_CFG_CPU_HALT_MASK; writel(tmp, &rpu_base->rpu0_cfg); } if (mode == LOCK || nr == ZYNQMP_CORE_RPU1) { tmp = readl(&rpu_base->rpu1_cfg); if (halt == HALT) tmp &= ~ZYNQMP_RPU_CFG_CPU_HALT_MASK; else tmp |= ZYNQMP_RPU_CFG_CPU_HALT_MASK; writel(tmp, &rpu_base->rpu1_cfg); } } static void set_r5_tcm_mode(u8 mode) { u32 tmp; tmp = readl(&rpu_base->rpu_glbl_ctrl); if (mode == LOCK) { tmp &= ~ZYNQMP_RPU_GLBL_CTRL_SPLIT_LOCK_MASK; tmp |= ZYNQMP_RPU_GLBL_CTRL_TCM_COMB_MASK | ZYNQMP_RPU_GLBL_CTRL_SLCLAMP_MASK; } else { tmp |= ZYNQMP_RPU_GLBL_CTRL_SPLIT_LOCK_MASK; tmp &= ~(ZYNQMP_RPU_GLBL_CTRL_TCM_COMB_MASK | ZYNQMP_RPU_GLBL_CTRL_SLCLAMP_MASK); } writel(tmp, &rpu_base->rpu_glbl_ctrl); } static void set_r5_reset(u32 nr, u8 mode) { u32 tmp; tmp = readl(&crlapb_base->rst_lpd_top); if (mode == LOCK) { tmp |= (ZYNQMP_CRLAPB_RST_LPD_AMBA_RST_MASK | ZYNQMP_CRLAPB_RST_LPD_R50_RST_MASK | ZYNQMP_CRLAPB_RST_LPD_R51_RST_MASK); } else { if (nr == ZYNQMP_CORE_RPU0) { tmp |= ZYNQMP_CRLAPB_RST_LPD_R50_RST_MASK; if (tmp & ZYNQMP_CRLAPB_RST_LPD_R51_RST_MASK) tmp |= ZYNQMP_CRLAPB_RST_LPD_AMBA_RST_MASK; } else { tmp |= ZYNQMP_CRLAPB_RST_LPD_R51_RST_MASK; if (tmp & ZYNQMP_CRLAPB_RST_LPD_R50_RST_MASK) tmp |= ZYNQMP_CRLAPB_RST_LPD_AMBA_RST_MASK; } } writel(tmp, &crlapb_base->rst_lpd_top); } static void release_r5_reset(u32 nr, u8 mode) { u32 tmp; tmp = readl(&crlapb_base->rst_lpd_top); if (mode == LOCK || nr == ZYNQMP_CORE_RPU0) tmp &= ~(ZYNQMP_CRLAPB_RST_LPD_AMBA_RST_MASK | ZYNQMP_CRLAPB_RST_LPD_R50_RST_MASK); if (mode == LOCK || nr == ZYNQMP_CORE_RPU1) tmp &= ~(ZYNQMP_CRLAPB_RST_LPD_AMBA_RST_MASK | ZYNQMP_CRLAPB_RST_LPD_R51_RST_MASK); writel(tmp, &crlapb_base->rst_lpd_top); } static void enable_clock_r5(void) { u32 tmp; tmp = readl(&crlapb_base->cpu_r5_ctrl); tmp |= ZYNQMP_CRLAPB_CPU_R5_CTRL_CLKACT_MASK; writel(tmp, &crlapb_base->cpu_r5_ctrl); /* Give some delay for clock * to propagate */ udelay(0x500); } static int check_r5_mode(void) { u32 tmp; tmp = readl(&rpu_base->rpu_glbl_ctrl); if (tmp & ZYNQMP_RPU_GLBL_CTRL_SPLIT_LOCK_MASK) return SPLIT; return LOCK; } int cpu_disable(u32 nr) { if (nr <= ZYNQMP_CORE_APU3) { u32 val = readl(&crfapb_base->rst_fpd_apu); val |= 1 << nr; writel(val, &crfapb_base->rst_fpd_apu); } else { set_r5_reset(nr, check_r5_mode()); } return 0; } int cpu_status(u32 nr) { if (nr <= ZYNQMP_CORE_APU3) { u32 addr_low = readl(((u8 *)&apu_base->rvbar_addr0_l) + nr * 8); u32 addr_high = readl(((u8 *)&apu_base->rvbar_addr0_h) + nr * 8); u32 val = readl(&crfapb_base->rst_fpd_apu); val &= 1 << nr; printf("APU CPU%d %s - starting address HI: %x, LOW: %x\n", nr, val ? "OFF" : "ON" , addr_high, addr_low); } else { u32 val = readl(&crlapb_base->rst_lpd_top); val &= 1 << (nr - 4); printf("RPU CPU%d %s\n", nr - 4, val ? "OFF" : "ON"); } return 0; } static void set_r5_start(u8 high) { u32 tmp; tmp = readl(&rpu_base->rpu0_cfg); if (high) tmp |= ZYNQMP_RPU_CFG_HIVEC_MASK; else tmp &= ~ZYNQMP_RPU_CFG_HIVEC_MASK; writel(tmp, &rpu_base->rpu0_cfg); tmp = readl(&rpu_base->rpu1_cfg); if (high) tmp |= ZYNQMP_RPU_CFG_HIVEC_MASK; else tmp &= ~ZYNQMP_RPU_CFG_HIVEC_MASK; writel(tmp, &rpu_base->rpu1_cfg); } static void write_tcm_boot_trampoline(u32 nr, u32 boot_addr) { if (boot_addr) { u64 tcm_start_addr = ZYNQMP_R5_0_TCM_START_ADDR; if (nr == ZYNQMP_CORE_RPU1) tcm_start_addr = ZYNQMP_R5_1_TCM_START_ADDR; /* * Boot trampoline is simple ASM code below. * * b over; * label: * .word 0 * over: ldr r0, =label * ldr r1, [r0] * bx r1 */ debug("Write boot trampoline for %x\n", boot_addr); writel(0xea000000, tcm_start_addr); writel(boot_addr, tcm_start_addr + 0x4); writel(0xe59f0004, tcm_start_addr + 0x8); writel(0xe5901000, tcm_start_addr + 0xc); writel(0xe12fff11, tcm_start_addr + 0x10); writel(0x00000004, tcm_start_addr + 0x14); } } void initialize_tcm(bool mode) { if (!mode) { set_r5_tcm_mode(LOCK); set_r5_halt_mode(ZYNQMP_CORE_RPU0, HALT, LOCK); enable_clock_r5(); release_r5_reset(ZYNQMP_CORE_RPU0, LOCK); } else { set_r5_tcm_mode(SPLIT); set_r5_halt_mode(ZYNQMP_CORE_RPU0, HALT, SPLIT); set_r5_halt_mode(ZYNQMP_CORE_RPU1, HALT, SPLIT); enable_clock_r5(); release_r5_reset(ZYNQMP_CORE_RPU0, SPLIT); release_r5_reset(ZYNQMP_CORE_RPU1, SPLIT); } } static void mark_r5_used(u32 nr, u8 mode) { u32 mask = 0; if (mode == LOCK) { mask = ZYNQMP_RPU0_USE_MASK | ZYNQMP_RPU1_USE_MASK; } else { switch (nr) { case ZYNQMP_CORE_RPU0: mask = ZYNQMP_RPU0_USE_MASK; break; case ZYNQMP_CORE_RPU1: mask = ZYNQMP_RPU1_USE_MASK; break; default: return; } } zynqmp_mmio_write((ulong)&pmu_base->gen_storage4, mask, mask); } int cpu_release(u32 nr, int argc, char *const argv[]) { if (nr <= ZYNQMP_CORE_APU3) { u64 boot_addr = simple_strtoull(argv[0], NULL, 16); /* HIGH */ writel((u32)(boot_addr >> 32), ((u8 *)&apu_base->rvbar_addr0_h) + nr * 8); /* LOW */ writel((u32)(boot_addr & ZYNQMP_BOOTADDR_HIGH_MASK), ((u8 *)&apu_base->rvbar_addr0_l) + nr * 8); u32 val = readl(&crfapb_base->rst_fpd_apu); val &= ~(1 << nr); writel(val, &crfapb_base->rst_fpd_apu); } else { if (argc != 2) { printf("Invalid number of arguments to release.\n"); printf(" -Start addr lockstep or split\n"); return 1; } u32 boot_addr = hextoul(argv[0], NULL); u32 boot_addr_uniq = 0; if (!(boot_addr == ZYNQMP_R5_LOVEC_ADDR || boot_addr == ZYNQMP_R5_HIVEC_ADDR)) { printf("Using TCM jump trampoline for address 0x%x\n", boot_addr); /* Save boot address for later usage */ boot_addr_uniq = boot_addr; /* * R5 needs to start from LOVEC at TCM * OCM will be probably occupied by ATF */ boot_addr = ZYNQMP_R5_LOVEC_ADDR; } /* * Since we don't know where the user may have loaded the image * for an R5 we have to flush all the data cache to ensure * the R5 sees it. */ flush_dcache_all(); if (!strncmp(argv[1], "lockstep", 8)) { if (nr != ZYNQMP_CORE_RPU0) { printf("Lockstep mode should run on ZYNQMP_CORE_RPU0\n"); return 1; } printf("R5 lockstep mode\n"); set_r5_reset(nr, LOCK); set_r5_tcm_mode(LOCK); set_r5_halt_mode(nr, HALT, LOCK); set_r5_start(boot_addr); enable_clock_r5(); release_r5_reset(nr, LOCK); dcache_disable(); write_tcm_boot_trampoline(nr, boot_addr_uniq); dcache_enable(); set_r5_halt_mode(nr, RELEASE, LOCK); mark_r5_used(nr, LOCK); } else if (!strncmp(argv[1], "split", 5)) { printf("R5 split mode\n"); set_r5_reset(nr, SPLIT); set_r5_tcm_mode(SPLIT); set_r5_halt_mode(nr, HALT, SPLIT); set_r5_start(boot_addr); enable_clock_r5(); release_r5_reset(nr, SPLIT); dcache_disable(); write_tcm_boot_trampoline(nr, boot_addr_uniq); dcache_enable(); set_r5_halt_mode(nr, RELEASE, SPLIT); mark_r5_used(nr, SPLIT); } else { printf("Unsupported mode\n"); return 1; } } return 0; }