// SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause /* * Copyright (C) 2020, STMicroelectronics - All Rights Reserved */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "stm32prog.h" /* Primary GPT header size for 128 entries : 17kB = 34 LBA of 512B */ #define GPT_HEADER_SZ 34 #define OPT_SELECT BIT(0) #define OPT_EMPTY BIT(1) #define OPT_DELETE BIT(2) #define IS_SELECT(part) ((part)->option & OPT_SELECT) #define IS_EMPTY(part) ((part)->option & OPT_EMPTY) #define IS_DELETE(part) ((part)->option & OPT_DELETE) #define ALT_BUF_LEN SZ_1K #define ROOTFS_MMC0_UUID \ EFI_GUID(0xE91C4E10, 0x16E6, 0x4C0E, \ 0xBD, 0x0E, 0x77, 0xBE, 0xCF, 0x4A, 0x35, 0x82) #define ROOTFS_MMC1_UUID \ EFI_GUID(0x491F6117, 0x415D, 0x4F53, \ 0x88, 0xC9, 0x6E, 0x0D, 0xE5, 0x4D, 0xEA, 0xC6) #define ROOTFS_MMC2_UUID \ EFI_GUID(0xFD58F1C7, 0xBE0D, 0x4338, \ 0x88, 0xE9, 0xAD, 0x8F, 0x05, 0x0A, 0xEB, 0x18) /* RAW partition (binary / bootloader) used Linux - reserved UUID */ #define LINUX_RESERVED_UUID "8DA63339-0007-60C0-C436-083AC8230908" /* * unique partition guid (uuid) for partition named "rootfs" * on each MMC instance = SD Card or eMMC * allow fixed kernel bootcmd: "rootf=PARTUID=e91c4e10-..." */ static const efi_guid_t uuid_mmc[3] = { ROOTFS_MMC0_UUID, ROOTFS_MMC1_UUID, ROOTFS_MMC2_UUID }; /* * GUID value defined in the FWU specification for identification * of the FWU metadata partition. */ #define FWU_MDATA_UUID "8a7a84a0-8387-40f6-ab41-a8b9a5a60d23" /* FIP type partition UUID used by TF-A*/ #define FIP_TYPE_UUID "19D5DF83-11B0-457B-BE2C-7559C13142A5" /* unique partition guid (uuid) for FIP partitions A/B */ #define FIP_A_UUID \ EFI_GUID(0x4FD84C93, 0x54EF, 0x463F, \ 0xA7, 0xEF, 0xAE, 0x25, 0xFF, 0x88, 0x70, 0x87) #define FIP_B_UUID \ EFI_GUID(0x09C54952, 0xD5BF, 0x45AF, \ 0xAC, 0xEE, 0x33, 0x53, 0x03, 0x76, 0x6F, 0xB3) static const char * const fip_part_name[] = { "fip-a", "fip-b" }; static const efi_guid_t fip_part_uuid[] = { FIP_A_UUID, FIP_B_UUID }; /* order of column in flash layout file */ enum stm32prog_col_t { COL_OPTION, COL_ID, COL_NAME, COL_TYPE, COL_IP, COL_OFFSET, COL_NB_STM32 }; #define FIP_TOC_HEADER_NAME 0xAA640001 struct fip_toc_header { u32 name; u32 serial_number; u64 flags; }; #define TA_NVMEM_UUID { 0x1a8342cc, 0x81a5, 0x4512, \ { 0x99, 0xfe, 0x9e, 0x2b, 0x3e, 0x37, 0xd6, 0x26 } } /* * Read NVMEM memory for STM32CubeProgrammer * * [in] value[0].a: Type (0 for OTP access) * [out] memref[1].buffer Output buffer to return all read values * [out] memref[1].size Size of buffer to be read * * Return codes: * TEE_SUCCESS - Invoke command success * TEE_ERROR_BAD_PARAMETERS - Incorrect input param */ #define TA_NVMEM_READ 0x0 /* * Write NVMEM memory for STM32CubeProgrammer * * [in] value[0].a Type (0 for OTP access) * [in] memref[1].buffer Input buffer with the values to write * [in] memref[1].size Size of buffer to be written * * Return codes: * TEE_SUCCESS - Invoke command success * TEE_ERROR_BAD_PARAMETERS - Incorrect input param */ #define TA_NVMEM_WRITE 0x1 /* value of TA_NVMEM type = value[in] a */ #define NVMEM_OTP 0 DECLARE_GLOBAL_DATA_PTR; /* OPTEE TA NVMEM open helper */ static int optee_ta_open(struct stm32prog_data *data) { const struct tee_optee_ta_uuid uuid = TA_NVMEM_UUID; struct tee_open_session_arg arg; struct udevice *tee = NULL; int rc; if (data->tee) return 0; tee = tee_find_device(NULL, NULL, NULL, NULL); if (!tee) return -ENODEV; memset(&arg, 0, sizeof(arg)); tee_optee_ta_uuid_to_octets(arg.uuid, &uuid); rc = tee_open_session(tee, &arg, 0, NULL); if (rc < 0) return -ENODEV; data->tee = tee; data->tee_session = arg.session; return 0; } /* OPTEE TA NVMEM invoke helper */ static int optee_ta_invoke(struct stm32prog_data *data, int cmd, int type, void *buff, ulong size) { struct tee_invoke_arg arg; struct tee_param param[2]; struct tee_shm *buff_shm; int rc; rc = tee_shm_register(data->tee, buff, size, 0, &buff_shm); if (rc) return rc; memset(&arg, 0, sizeof(arg)); arg.func = cmd; arg.session = data->tee_session; memset(param, 0, sizeof(param)); param[0].attr = TEE_PARAM_ATTR_TYPE_VALUE_INPUT; param[0].u.value.a = type; if (cmd == TA_NVMEM_WRITE) param[1].attr = TEE_PARAM_ATTR_TYPE_MEMREF_INPUT; else param[1].attr = TEE_PARAM_ATTR_TYPE_MEMREF_OUTPUT; param[1].u.memref.shm = buff_shm; param[1].u.memref.size = size; rc = tee_invoke_func(data->tee, &arg, 2, param); if (rc < 0 || arg.ret != 0) { dev_err(data->tee, "TA_NVMEM invoke failed TEE err: %x, err:%x\n", arg.ret, rc); if (!rc) rc = -EIO; } tee_shm_free(buff_shm); return rc; } char *stm32prog_get_error(struct stm32prog_data *data) { static const char error_msg[] = "Unspecified"; if (strlen(data->error) == 0) strcpy(data->error, error_msg); return data->error; } static bool stm32prog_is_fip_header(struct fip_toc_header *header) { return (header->name == FIP_TOC_HEADER_NAME) && header->serial_number; } static bool stm32prog_is_stm32_header_v1(struct stm32_header_v1 *header) { unsigned int i; if (header->magic_number != (('S' << 0) | ('T' << 8) | ('M' << 16) | (0x32 << 24))) { log_debug("%s:invalid magic number : 0x%x\n", __func__, header->magic_number); return false; } if (header->header_version != 0x00010000) { log_debug("%s:invalid header version : 0x%x\n", __func__, header->header_version); return false; } if (header->reserved1 || header->reserved2) { log_debug("%s:invalid reserved field\n", __func__); return false; } for (i = 0; i < sizeof(header->padding); i++) { if (header->padding[i] != 0) { log_debug("%s:invalid padding field\n", __func__); return false; } } return true; } static bool stm32prog_is_stm32_header_v2(struct stm32_header_v2 *header) { unsigned int i; if (header->magic_number != (('S' << 0) | ('T' << 8) | ('M' << 16) | (0x32 << 24))) { log_debug("%s:invalid magic number : 0x%x\n", __func__, header->magic_number); return false; } if (header->header_version != 0x00020000) { log_debug("%s:invalid header version : 0x%x\n", __func__, header->header_version); return false; } if (header->reserved1 || header->reserved2) return false; for (i = 0; i < sizeof(header->padding); i++) { if (header->padding[i] != 0) { log_debug("%s:invalid padding field\n", __func__); return false; } } return true; } void stm32prog_header_check(uintptr_t raw_header, struct image_header_s *header) { struct stm32_header_v1 *v1_header = (struct stm32_header_v1 *)raw_header; struct stm32_header_v2 *v2_header = (struct stm32_header_v2 *)raw_header; if (!raw_header || !header) { log_debug("%s:no header data\n", __func__); return; } if (stm32prog_is_fip_header((struct fip_toc_header *)raw_header)) { header->type = HEADER_FIP; header->length = 0; return; } if (stm32prog_is_stm32_header_v1(v1_header)) { header->type = HEADER_STM32IMAGE; header->image_checksum = le32_to_cpu(v1_header->image_checksum); header->image_length = le32_to_cpu(v1_header->image_length); header->length = sizeof(struct stm32_header_v1); return; } if (stm32prog_is_stm32_header_v2(v2_header)) { header->type = HEADER_STM32IMAGE_V2; header->image_checksum = le32_to_cpu(v2_header->image_checksum); header->image_length = le32_to_cpu(v2_header->image_length); header->length = sizeof(struct stm32_header_v1) + v2_header->extension_headers_length; return; } header->type = HEADER_NONE; header->image_checksum = 0x0; header->image_length = 0x0; } static u32 stm32prog_header_checksum(uintptr_t addr, struct image_header_s *header) { u32 i, checksum; u8 *payload; /* compute checksum on payload */ payload = (u8 *)addr; checksum = 0; for (i = header->image_length; i > 0; i--) checksum += *(payload++); return checksum; } /* FLASHLAYOUT PARSING *****************************************/ static int parse_option(struct stm32prog_data *data, int i, char *p, struct stm32prog_part_t *part) { int result = 0; char *c = p; part->option = 0; if (!strcmp(p, "-")) return 0; while (*c) { switch (*c) { case 'P': part->option |= OPT_SELECT; break; case 'E': part->option |= OPT_EMPTY; break; case 'D': part->option |= OPT_DELETE; break; default: result = -EINVAL; stm32prog_err("Layout line %d: invalid option '%c' in %s)", i, *c, p); return -EINVAL; } c++; } if (!(part->option & OPT_SELECT)) { stm32prog_err("Layout line %d: missing 'P' in option %s", i, p); return -EINVAL; } return result; } static int parse_id(struct stm32prog_data *data, int i, char *p, struct stm32prog_part_t *part) { int result = 0; unsigned long value; result = strict_strtoul(p, 0, &value); part->id = value; if (result || value > PHASE_LAST_USER) { stm32prog_err("Layout line %d: invalid phase value = %s", i, p); result = -EINVAL; } return result; } static int parse_name(struct stm32prog_data *data, int i, char *p, struct stm32prog_part_t *part) { int result = 0; if (strlen(p) < sizeof(part->name)) { strcpy(part->name, p); } else { stm32prog_err("Layout line %d: partition name too long [%zd]: %s", i, strlen(p), p); result = -EINVAL; } return result; } static int parse_type(struct stm32prog_data *data, int i, char *p, struct stm32prog_part_t *part) { int result = 0; int len = 0; part->bin_nb = 0; if (!strncmp(p, "Binary", 6)) { part->part_type = PART_BINARY; /* search for Binary(X) case */ len = strlen(p); part->bin_nb = 1; if (len > 6) { if (len < 8 || (p[6] != '(') || (p[len - 1] != ')')) result = -EINVAL; else part->bin_nb = dectoul(&p[7], NULL); } } else if (!strcmp(p, "FIP")) { part->part_type = PART_FIP; } else if (!strcmp(p, "FWU_MDATA")) { part->part_type = PART_FWU_MDATA; } else if (!strcmp(p, "ENV")) { part->part_type = PART_ENV; } else if (!strcmp(p, "System")) { part->part_type = PART_SYSTEM; } else if (!strcmp(p, "ESP")) { part->part_type = PART_ESP; } else if (!strcmp(p, "FileSystem")) { part->part_type = PART_FILESYSTEM; } else if (!strcmp(p, "RawImage")) { part->part_type = RAW_IMAGE; } else { result = -EINVAL; } if (result) stm32prog_err("Layout line %d: type parsing error : '%s'", i, p); return result; } static int parse_ip(struct stm32prog_data *data, int i, char *p, struct stm32prog_part_t *part) { int result = 0; unsigned int len = 0; part->dev_id = 0; if (!strcmp(p, "none")) { part->target = STM32PROG_NONE; } else if (!strncmp(p, "mmc", 3)) { part->target = STM32PROG_MMC; len = 3; } else if (!strncmp(p, "nor", 3)) { part->target = STM32PROG_NOR; len = 3; } else if (!strncmp(p, "nand", 4)) { part->target = STM32PROG_NAND; len = 4; } else if (!strncmp(p, "spi-nand", 8)) { part->target = STM32PROG_SPI_NAND; len = 8; } else if (!strncmp(p, "ram", 3)) { part->target = STM32PROG_RAM; len = 0; } else { result = -EINVAL; } if (len) { /* only one digit allowed for device id */ if (strlen(p) != len + 1) { result = -EINVAL; } else { part->dev_id = p[len] - '0'; if (part->dev_id > 9) result = -EINVAL; } } if (result) stm32prog_err("Layout line %d: ip parsing error: '%s'", i, p); return result; } static int parse_offset(struct stm32prog_data *data, int i, char *p, struct stm32prog_part_t *part) { int result = 0; char *tail; part->part_id = 0; part->addr = 0; part->size = 0; /* eMMC boot parttion */ if (!strncmp(p, "boot", 4)) { if (strlen(p) != 5) { result = -EINVAL; } else { if (p[4] == '1') part->part_id = -1; else if (p[4] == '2') part->part_id = -2; else result = -EINVAL; } if (result) stm32prog_err("Layout line %d: invalid part '%s'", i, p); } else { part->addr = simple_strtoull(p, &tail, 10); if (tail == p || *tail != '\0') { stm32prog_err("Layout line %d: invalid offset '%s'", i, p); result = -EINVAL; } } return result; } static int (* const parse[COL_NB_STM32])(struct stm32prog_data *data, int i, char *p, struct stm32prog_part_t *part) = { [COL_OPTION] = parse_option, [COL_ID] = parse_id, [COL_NAME] = parse_name, [COL_TYPE] = parse_type, [COL_IP] = parse_ip, [COL_OFFSET] = parse_offset, }; static int parse_flash_layout(struct stm32prog_data *data, uintptr_t addr, ulong size) { int column = 0, part_nb = 0, ret; bool end_of_line, eof; char *p, *start, *last, *col; struct stm32prog_part_t *part; struct image_header_s header; int part_list_size; int i; data->part_nb = 0; /* check if STM32image is detected */ stm32prog_header_check(addr, &header); if (header.type == HEADER_STM32IMAGE) { u32 checksum; addr = addr + header.length; size = header.image_length; checksum = stm32prog_header_checksum(addr, &header); if (checksum != header.image_checksum) { stm32prog_err("Layout: invalid checksum : 0x%x expected 0x%x", checksum, header.image_checksum); return -EIO; } } if (!size) return -EINVAL; start = (char *)addr; last = start + size; *last = 0x0; /* force null terminated string */ log_debug("flash layout =\n%s\n", start); /* calculate expected number of partitions */ part_list_size = 1; p = start; while (*p && (p < last)) { if (*p++ == '\n') { part_list_size++; if (p < last && *p == '#') part_list_size--; } } if (part_list_size > PHASE_LAST_USER) { stm32prog_err("Layout: too many partition (%d)", part_list_size); return -1; } part = calloc(sizeof(struct stm32prog_part_t), part_list_size); if (!part) { stm32prog_err("Layout: alloc failed"); return -ENOMEM; } data->part_array = part; /* main parsing loop */ i = 1; eof = false; p = start; col = start; /* 1st column */ end_of_line = false; while (!eof) { switch (*p) { /* CR is ignored and replaced by NULL character */ case '\r': *p = '\0'; p++; continue; case '\0': end_of_line = true; eof = true; break; case '\n': end_of_line = true; break; case '\t': break; case '#': /* comment line is skipped */ if (column == 0 && p == col) { while ((p < last) && *p) if (*p++ == '\n') break; col = p; i++; if (p >= last || !*p) { eof = true; end_of_line = true; } continue; } /* fall through */ /* by default continue with the next character */ default: p++; continue; } /* replace by \0: allow string parsing for each column */ *p = '\0'; p++; if (p >= last) { eof = true; end_of_line = true; } /* skip empty line and multiple TAB in tsv file */ if (strlen(col) == 0) { col = p; /* skip empty line */ if (column == 0 && end_of_line) { end_of_line = false; i++; } continue; } if (column < COL_NB_STM32) { ret = parse[column](data, i, col, part); if (ret) return ret; } /* save the beginning of the next column */ column++; col = p; if (!end_of_line) continue; /* end of the line detected */ end_of_line = false; if (column < COL_NB_STM32) { stm32prog_err("Layout line %d: no enought column", i); return -EINVAL; } column = 0; part_nb++; part++; i++; if (part_nb >= part_list_size) { part = NULL; if (!eof) { stm32prog_err("Layout: no enought memory for %d part", part_nb); return -EINVAL; } } } data->part_nb = part_nb; if (data->part_nb == 0) { stm32prog_err("Layout: no partition found"); return -ENODEV; } return 0; } static int __init part_cmp(void *priv, struct list_head *a, struct list_head *b) { struct stm32prog_part_t *parta, *partb; parta = container_of(a, struct stm32prog_part_t, list); partb = container_of(b, struct stm32prog_part_t, list); if (parta->part_id != partb->part_id) return parta->part_id - partb->part_id; else return parta->addr > partb->addr ? 1 : -1; } static void get_mtd_by_target(char *string, enum stm32prog_target target, int dev_id) { const char *dev_str; switch (target) { case STM32PROG_NOR: dev_str = "nor"; break; case STM32PROG_NAND: dev_str = "nand"; break; case STM32PROG_SPI_NAND: dev_str = "spi-nand"; break; default: dev_str = "invalid"; break; } sprintf(string, "%s%d", dev_str, dev_id); } static int init_device(struct stm32prog_data *data, struct stm32prog_dev_t *dev) { struct mmc *mmc = NULL; struct blk_desc *block_dev = NULL; struct mtd_info *mtd = NULL; struct mtd_info *partition; char mtd_id[16]; int part_id; int ret; u64 first_addr = 0, last_addr = 0; struct stm32prog_part_t *part, *next_part; u64 part_addr, part_size; bool part_found; const char *part_name; u8 i; switch (dev->target) { case STM32PROG_MMC: if (!IS_ENABLED(CONFIG_MMC)) { stm32prog_err("unknown device type = %d", dev->target); return -ENODEV; } mmc = find_mmc_device(dev->dev_id); if (!mmc || mmc_init(mmc)) { stm32prog_err("mmc device %d not found", dev->dev_id); return -ENODEV; } block_dev = mmc_get_blk_desc(mmc); if (!block_dev) { stm32prog_err("mmc device %d not probed", dev->dev_id); return -ENODEV; } dev->erase_size = mmc->erase_grp_size * block_dev->blksz; dev->mmc = mmc; /* reserve a full erase group for each GTP headers */ if (mmc->erase_grp_size > GPT_HEADER_SZ) { first_addr = dev->erase_size; last_addr = (u64)(block_dev->lba - mmc->erase_grp_size) * block_dev->blksz; } else { first_addr = (u64)GPT_HEADER_SZ * block_dev->blksz; last_addr = (u64)(block_dev->lba - GPT_HEADER_SZ - 1) * block_dev->blksz; } log_debug("MMC %d: lba=%ld blksz=%ld\n", dev->dev_id, block_dev->lba, block_dev->blksz); log_debug(" available address = 0x%llx..0x%llx\n", first_addr, last_addr); log_debug(" full_update = %d\n", dev->full_update); break; case STM32PROG_NOR: case STM32PROG_NAND: case STM32PROG_SPI_NAND: if (!IS_ENABLED(CONFIG_MTD)) { stm32prog_err("unknown device type = %d", dev->target); return -ENODEV; } /* register partitions with MTDIDS/MTDPARTS or OF fallback */ mtd_probe_devices(); get_mtd_by_target(mtd_id, dev->target, dev->dev_id); log_debug("%s\n", mtd_id); mtd = get_mtd_device_nm(mtd_id); if (IS_ERR(mtd)) { stm32prog_err("MTD device %s not found", mtd_id); return -ENODEV; } first_addr = 0; last_addr = mtd->size; dev->erase_size = mtd->erasesize; log_debug("MTD device %s: size=%lld erasesize=%d\n", mtd_id, mtd->size, mtd->erasesize); log_debug(" available address = 0x%llx..0x%llx\n", first_addr, last_addr); dev->mtd = mtd; break; case STM32PROG_RAM: first_addr = gd->bd->bi_dram[0].start; last_addr = first_addr + gd->bd->bi_dram[0].size; dev->erase_size = 1; break; default: stm32prog_err("unknown device type = %d", dev->target); return -ENODEV; } log_debug(" erase size = 0x%x\n", dev->erase_size); log_debug(" full_update = %d\n", dev->full_update); /* order partition list in offset order */ list_sort(NULL, &dev->part_list, &part_cmp); part_id = 1; log_debug("id : Opt Phase Name target.n dev.n addr size part_off part_size\n"); list_for_each_entry(part, &dev->part_list, list) { if (part->bin_nb > 1) { if ((dev->target != STM32PROG_NAND && dev->target != STM32PROG_SPI_NAND) || part->id >= PHASE_FIRST_USER || strncmp(part->name, "fsbl", 4)) { stm32prog_err("%s (0x%x): multiple binary %d not supported", part->name, part->id, part->bin_nb); return -EINVAL; } } if (part->part_type == RAW_IMAGE) { part->part_id = 0x0; part->addr = 0x0; if (block_dev) part->size = block_dev->lba * block_dev->blksz; else part->size = last_addr; log_debug("-- : %1d %02x %14s %02d.%d %02d.%02d %08llx %08llx\n", part->option, part->id, part->name, part->part_type, part->bin_nb, part->target, part->dev_id, part->addr, part->size); continue; } if (part->part_id < 0) { /* boot hw partition for eMMC */ if (mmc) { part->size = mmc->capacity_boot; } else { stm32prog_err("%s (0x%x): hw partition not expected : %d", part->name, part->id, part->part_id); return -ENODEV; } } else { part->part_id = part_id++; /* last partition : size to the end of the device */ if (part->list.next != &dev->part_list) { next_part = container_of(part->list.next, struct stm32prog_part_t, list); if (part->addr < next_part->addr) { part->size = next_part->addr - part->addr; } else { stm32prog_err("%s (0x%x): same address : 0x%llx == %s (0x%x): 0x%llx", part->name, part->id, part->addr, next_part->name, next_part->id, next_part->addr); return -EINVAL; } } else { if (part->addr <= last_addr) { part->size = last_addr - part->addr; } else { stm32prog_err("%s (0x%x): invalid address 0x%llx (max=0x%llx)", part->name, part->id, part->addr, last_addr); return -EINVAL; } } if (part->addr < first_addr) { stm32prog_err("%s (0x%x): invalid address 0x%llx (min=0x%llx)", part->name, part->id, part->addr, first_addr); return -EINVAL; } } if ((part->addr & ((u64)part->dev->erase_size - 1)) != 0) { stm32prog_err("%s (0x%x): not aligned address : 0x%llx on erase size 0x%x", part->name, part->id, part->addr, part->dev->erase_size); return -EINVAL; } log_debug("%02d : %1d %02x %14s %02d.%d %02d.%02d %08llx %08llx", part->part_id, part->option, part->id, part->name, part->part_type, part->bin_nb, part->target, part->dev_id, part->addr, part->size); part_addr = 0; part_size = 0; part_found = false; /* check coherency with existing partition */ if (block_dev) { /* * block devices with GPT: check user partition size * only for partial update, the GPT partions are be * created for full update */ if (dev->full_update || part->part_id < 0) { log_debug("\n"); continue; } struct disk_partition partinfo; ret = part_get_info(block_dev, part->part_id, &partinfo); if (ret) { stm32prog_err("%s (0x%x):Couldn't find part %d on device mmc %d", part->name, part->id, part_id, part->dev_id); return -ENODEV; } part_addr = (u64)partinfo.start * partinfo.blksz; part_size = (u64)partinfo.size * partinfo.blksz; part_name = (char *)partinfo.name; part_found = true; } if (IS_ENABLED(CONFIG_MTD) && mtd) { i = 0; list_for_each_entry(partition, &mtd->partitions, node) { if ((part->part_id - 1) == i) { part_found = true; break; } i++; } if (part_found) { part_addr = partition->offset; part_size = partition->size; part_name = partition->name; } else { stm32prog_err("%s (0x%x):Couldn't find part %d on device mtd %s", part->name, part->id, part->part_id, mtd_id); return -ENODEV; } } /* no partition for this device */ if (!part_found) { log_debug("\n"); continue; } log_debug(" %08llx %08llx\n", part_addr, part_size); if (part->addr != part_addr) { stm32prog_err("%s (0x%x): Bad address for partition %d (%s) = 0x%llx <> 0x%llx expected", part->name, part->id, part->part_id, part_name, part->addr, part_addr); return -ENODEV; } if (part->size != part_size) { stm32prog_err("%s (0x%x): Bad size for partition %d (%s) at 0x%llx = 0x%llx <> 0x%llx expected", part->name, part->id, part->part_id, part_name, part->addr, part->size, part_size); return -ENODEV; } } return 0; } static int treat_partition_list(struct stm32prog_data *data) { int i, j; struct stm32prog_part_t *part; for (j = 0; j < STM32PROG_MAX_DEV; j++) { data->dev[j].target = STM32PROG_NONE; INIT_LIST_HEAD(&data->dev[j].part_list); } data->fsbl_nor_detected = false; for (i = 0; i < data->part_nb; i++) { part = &data->part_array[i]; part->alt_id = -1; /* skip partition with IP="none" */ if (part->target == STM32PROG_NONE) { if (IS_SELECT(part)) { stm32prog_err("Layout: selected none phase = 0x%x for part %s", part->id, part->name); return -EINVAL; } continue; } if (part->id == PHASE_FLASHLAYOUT || part->id > PHASE_LAST_USER) { stm32prog_err("Layout: invalid phase = 0x%x for part %s", part->id, part->name); return -EINVAL; } for (j = i + 1; j < data->part_nb; j++) { if (part->id == data->part_array[j].id) { stm32prog_err("Layout: duplicated phase 0x%x for part %s and %s", part->id, part->name, data->part_array[j].name); return -EINVAL; } } for (j = 0; j < STM32PROG_MAX_DEV; j++) { if (data->dev[j].target == STM32PROG_NONE) { /* new device found */ data->dev[j].target = part->target; data->dev[j].dev_id = part->dev_id; data->dev[j].full_update = true; data->dev_nb++; break; } else if ((part->target == data->dev[j].target) && (part->dev_id == data->dev[j].dev_id)) { break; } } if (j == STM32PROG_MAX_DEV) { stm32prog_err("Layout: too many device"); return -EINVAL; } switch (part->target) { case STM32PROG_NOR: if (!data->fsbl_nor_detected && !strncmp(part->name, "fsbl", 4)) data->fsbl_nor_detected = true; /* fallthrough */ default: break; } part->dev = &data->dev[j]; if (!IS_SELECT(part)) part->dev->full_update = false; list_add_tail(&part->list, &data->dev[j].part_list); } return 0; } static int create_gpt_partitions(struct stm32prog_data *data) { int offset = 0; const int buflen = SZ_8K; char *buf; char uuid[UUID_STR_LEN + 1]; unsigned char *uuid_bin; unsigned int mmc_id; int i, j; bool rootfs_found; struct stm32prog_part_t *part; const char *type_str; buf = malloc(buflen); if (!buf) return -ENOMEM; /* initialize the selected device */ for (i = 0; i < data->dev_nb; i++) { /* create gpt partition support only for full update on MMC */ if (data->dev[i].target != STM32PROG_MMC || !data->dev[i].full_update) continue; printf("partitions on mmc%d: ", data->dev[i].dev_id); offset = 0; rootfs_found = false; memset(buf, 0, buflen); list_for_each_entry(part, &data->dev[i].part_list, list) { /* skip eMMC boot partitions */ if (part->part_id < 0) continue; /* skip Raw Image */ if (part->part_type == RAW_IMAGE) continue; if (offset + 100 > buflen) { log_debug("\n%s: buffer too small, %s skippped", __func__, part->name); continue; } if (!offset) offset += sprintf(buf, "gpt write mmc %d \"", data->dev[i].dev_id); offset += snprintf(buf + offset, buflen - offset, "name=%s,start=0x%llx,size=0x%llx", part->name, part->addr, part->size); switch (part->part_type) { case PART_BINARY: type_str = LINUX_RESERVED_UUID; break; case PART_ENV: type_str = "u-boot-env"; break; case PART_FIP: type_str = FIP_TYPE_UUID; break; case PART_FWU_MDATA: type_str = FWU_MDATA_UUID; break; case PART_ESP: /* EFI System Partition */ type_str = "system"; break; default: /* PART_FILESYSTEM or PART_SYSTEM for distro */ type_str = "linux"; break; } offset += snprintf(buf + offset, buflen - offset, ",type=%s", type_str); if (part->part_type == PART_SYSTEM) offset += snprintf(buf + offset, buflen - offset, ",bootable"); /* partition UUID */ uuid_bin = NULL; if (!rootfs_found && !strcmp(part->name, "rootfs")) { mmc_id = part->dev_id; rootfs_found = true; if (mmc_id < ARRAY_SIZE(uuid_mmc)) uuid_bin = (unsigned char *)uuid_mmc[mmc_id].b; } if (part->part_type == PART_FIP) { for (j = 0; j < ARRAY_SIZE(fip_part_name); j++) if (!strcmp(part->name, fip_part_name[j])) { uuid_bin = (unsigned char *)fip_part_uuid[j].b; break; } } if (uuid_bin) { uuid_bin_to_str(uuid_bin, uuid, UUID_STR_FORMAT_GUID); offset += snprintf(buf + offset, buflen - offset, ",uuid=%s", uuid); } offset += snprintf(buf + offset, buflen - offset, ";"); } if (offset) { offset += snprintf(buf + offset, buflen - offset, "\""); log_debug("\ncmd: %s\n", buf); if (run_command(buf, 0)) { stm32prog_err("GPT partitionning fail: %s", buf); free(buf); return -1; } } if (data->dev[i].mmc) part_init(mmc_get_blk_desc(data->dev[i].mmc)); #ifdef DEBUG sprintf(buf, "gpt verify mmc %d", data->dev[i].dev_id); log_debug("\ncmd: %s", buf); if (run_command(buf, 0)) printf("fail !\n"); else printf("OK\n"); sprintf(buf, "part list mmc %d", data->dev[i].dev_id); run_command(buf, 0); #endif puts("done\n"); } #ifdef DEBUG run_command("mtd list", 0); #endif free(buf); return 0; } static int stm32prog_alt_add(struct stm32prog_data *data, struct dfu_entity *dfu, struct stm32prog_part_t *part) { int ret = 0; int offset = 0; char devstr[10]; char dfustr[10]; char buf[ALT_BUF_LEN]; u32 size; char multiplier, type; /* max 3 digit for sector size */ if (part->size > SZ_1M) { size = (u32)(part->size / SZ_1M); multiplier = 'M'; } else if (part->size > SZ_1K) { size = (u32)(part->size / SZ_1K); multiplier = 'K'; } else { size = (u32)part->size; multiplier = 'B'; } if (IS_SELECT(part) && !IS_EMPTY(part)) type = 'e'; /*Readable and Writeable*/ else type = 'a';/*Readable*/ memset(buf, 0, sizeof(buf)); offset = snprintf(buf, ALT_BUF_LEN - offset, "@%s/0x%02x/1*%d%c%c ", part->name, part->id, size, multiplier, type); if (part->target == STM32PROG_RAM) { offset += snprintf(buf + offset, ALT_BUF_LEN - offset, "ram 0x%llx 0x%llx", part->addr, part->size); } else if (part->part_type == RAW_IMAGE) { u64 dfu_size; if (part->dev->target == STM32PROG_MMC) dfu_size = part->size / part->dev->mmc->read_bl_len; else dfu_size = part->size; offset += snprintf(buf + offset, ALT_BUF_LEN - offset, "raw 0x0 0x%llx", dfu_size); } else if (part->part_id < 0) { u64 nb_blk = part->size / part->dev->mmc->read_bl_len; offset += snprintf(buf + offset, ALT_BUF_LEN - offset, "raw 0x%llx 0x%llx", part->addr, nb_blk); offset += snprintf(buf + offset, ALT_BUF_LEN - offset, " mmcpart %d", -(part->part_id)); } else { if (part->part_type == PART_SYSTEM && (part->target == STM32PROG_NAND || part->target == STM32PROG_NOR || part->target == STM32PROG_SPI_NAND)) offset += snprintf(buf + offset, ALT_BUF_LEN - offset, "partubi"); else offset += snprintf(buf + offset, ALT_BUF_LEN - offset, "part"); /* dev_id requested by DFU MMC */ if (part->target == STM32PROG_MMC) offset += snprintf(buf + offset, ALT_BUF_LEN - offset, " %d", part->dev_id); offset += snprintf(buf + offset, ALT_BUF_LEN - offset, " %d", part->part_id); } ret = -ENODEV; switch (part->target) { case STM32PROG_MMC: if (IS_ENABLED(CONFIG_MMC)) { ret = 0; sprintf(dfustr, "mmc"); sprintf(devstr, "%d", part->dev_id); } break; case STM32PROG_NAND: case STM32PROG_NOR: case STM32PROG_SPI_NAND: if (IS_ENABLED(CONFIG_MTD)) { ret = 0; sprintf(dfustr, "mtd"); get_mtd_by_target(devstr, part->target, part->dev_id); } break; case STM32PROG_RAM: ret = 0; sprintf(dfustr, "ram"); sprintf(devstr, "0"); break; default: break; } if (ret) { stm32prog_err("invalid target: %d", part->target); return ret; } log_debug("dfu_alt_add(%s,%s,%s)\n", dfustr, devstr, buf); ret = dfu_alt_add(dfu, dfustr, devstr, buf); log_debug("dfu_alt_add(%s,%s,%s) result %d\n", dfustr, devstr, buf, ret); return ret; } static int stm32prog_alt_add_virt(struct dfu_entity *dfu, char *name, int phase, int size) { int ret = 0; char devstr[4]; char buf[ALT_BUF_LEN]; sprintf(devstr, "%d", phase); sprintf(buf, "@%s/0x%02x/1*%dBe", name, phase, size); ret = dfu_alt_add(dfu, "virt", devstr, buf); log_debug("dfu_alt_add(virt,%s,%s) result %d\n", devstr, buf, ret); return ret; } static int dfu_init_entities(struct stm32prog_data *data) { int ret = 0; int phase, i, alt_id; struct stm32prog_part_t *part; struct dfu_entity *dfu; int alt_nb; u32 otp_size = 0; alt_nb = 1; /* number of virtual = CMD*/ if (IS_ENABLED(CONFIG_CMD_STM32PROG_OTP)) { /* OTP_SIZE_SMC = 0 if SMC is not supported */ otp_size = OTP_SIZE_SMC; /* check if PTA BSEC is supported */ ret = optee_ta_open(data); log_debug("optee_ta_open(PTA_NVMEM) result %d\n", ret); if (!ret && data->tee) otp_size = OTP_SIZE_TA; if (otp_size) alt_nb++; /* OTP*/ } if (CONFIG_IS_ENABLED(DM_PMIC)) alt_nb++; /* PMIC NVMEM*/ if (data->part_nb == 0) alt_nb++; /* +1 for FlashLayout */ else for (i = 0; i < data->part_nb; i++) { if (data->part_array[i].target != STM32PROG_NONE) alt_nb++; } if (dfu_alt_init(alt_nb, &dfu)) return -ENODEV; puts("DFU alt info setting: "); if (data->part_nb) { alt_id = 0; ret = 0; for (phase = 1; (phase <= PHASE_LAST_USER) && (alt_id < alt_nb) && !ret; phase++) { /* ordering alt setting by phase id */ part = NULL; for (i = 0; i < data->part_nb; i++) { if (phase == data->part_array[i].id) { part = &data->part_array[i]; break; } } if (!part) continue; if (part->target == STM32PROG_NONE) continue; part->alt_id = alt_id; alt_id++; ret = stm32prog_alt_add(data, dfu, part); } } else { char buf[ALT_BUF_LEN]; sprintf(buf, "@FlashLayout/0x%02x/1*256Ke ram %x 40000", PHASE_FLASHLAYOUT, CONFIG_SYS_LOAD_ADDR); ret = dfu_alt_add(dfu, "ram", NULL, buf); log_debug("dfu_alt_add(ram, NULL,%s) result %d\n", buf, ret); } if (!ret) ret = stm32prog_alt_add_virt(dfu, "virtual", PHASE_CMD, CMD_SIZE); if (!ret && IS_ENABLED(CONFIG_CMD_STM32PROG_OTP) && otp_size) ret = stm32prog_alt_add_virt(dfu, "OTP", PHASE_OTP, otp_size); if (!ret && CONFIG_IS_ENABLED(DM_PMIC)) ret = stm32prog_alt_add_virt(dfu, "PMIC", PHASE_PMIC, PMIC_SIZE); if (ret) stm32prog_err("dfu init failed: %d", ret); puts("done\n"); #ifdef DEBUG dfu_show_entities(); #endif return ret; } int stm32prog_otp_write(struct stm32prog_data *data, u32 offset, u8 *buffer, long *size) { u32 otp_size = data->tee ? OTP_SIZE_TA : OTP_SIZE_SMC; log_debug("%s: %x %lx\n", __func__, offset, *size); if (!IS_ENABLED(CONFIG_CMD_STM32PROG_OTP)) { stm32prog_err("OTP update not supported"); return -EOPNOTSUPP; } if (!data->otp_part) { data->otp_part = memalign(CONFIG_SYS_CACHELINE_SIZE, otp_size); if (!data->otp_part) { stm32prog_err("OTP write issue %d", -ENOMEM); return -ENOMEM; } } if (!offset) memset(data->otp_part, 0, otp_size); if (offset + *size > otp_size) *size = otp_size - offset; memcpy((void *)((uintptr_t)data->otp_part + offset), buffer, *size); return 0; } int stm32prog_otp_read(struct stm32prog_data *data, u32 offset, u8 *buffer, long *size) { u32 otp_size = data->tee ? OTP_SIZE_TA : OTP_SIZE_SMC; int result = 0; if (!IS_ENABLED(CONFIG_CMD_STM32PROG_OTP)) { stm32prog_err("OTP update not supported"); return -EOPNOTSUPP; } log_debug("%s: %x %lx\n", __func__, offset, *size); /* alway read for first packet */ if (!offset) { if (!data->otp_part) data->otp_part = memalign(CONFIG_SYS_CACHELINE_SIZE, otp_size); if (!data->otp_part) { result = -ENOMEM; goto end_otp_read; } /* init struct with 0 */ memset(data->otp_part, 0, otp_size); /* call the service */ result = -EOPNOTSUPP; if (data->tee && CONFIG_IS_ENABLED(OPTEE)) result = optee_ta_invoke(data, TA_NVMEM_READ, NVMEM_OTP, data->otp_part, OTP_SIZE_TA); else if (IS_ENABLED(CONFIG_ARM_SMCCC)) result = stm32_smc_exec(STM32_SMC_BSEC, STM32_SMC_READ_ALL, (unsigned long)data->otp_part, 0); if (result) goto end_otp_read; } if (!data->otp_part) { result = -ENOMEM; goto end_otp_read; } if (offset + *size > otp_size) *size = otp_size - offset; memcpy(buffer, (void *)((uintptr_t)data->otp_part + offset), *size); end_otp_read: if (result) stm32prog_err("OTP read issue %d", result); log_debug("%s: result %i\n", __func__, result); return result; } int stm32prog_otp_start(struct stm32prog_data *data) { int result = 0; struct arm_smccc_res res; if (!IS_ENABLED(CONFIG_CMD_STM32PROG_OTP)) { stm32prog_err("OTP update not supported"); return -EOPNOTSUPP; } if (!data->otp_part) { stm32prog_err("start OTP without data"); return -1; } result = -EOPNOTSUPP; if (data->tee && CONFIG_IS_ENABLED(OPTEE)) { result = optee_ta_invoke(data, TA_NVMEM_WRITE, NVMEM_OTP, data->otp_part, OTP_SIZE_TA); } else if (IS_ENABLED(CONFIG_ARM_SMCCC)) { arm_smccc_smc(STM32_SMC_BSEC, STM32_SMC_WRITE_ALL, (uintptr_t)data->otp_part, 0, 0, 0, 0, 0, &res); if (!res.a0) { switch (res.a1) { case 0: result = 0; break; case 1: stm32prog_err("Provisioning"); result = 0; break; default: log_err("%s: OTP incorrect value (err = %ld)\n", __func__, res.a1); result = -EINVAL; break; } } else { log_err("%s: Failed to exec svc=%x op=%x in secure mode (err = %ld)\n", __func__, STM32_SMC_BSEC, STM32_SMC_WRITE_ALL, res.a0); result = -EINVAL; } } free(data->otp_part); data->otp_part = NULL; if (result) stm32prog_err("OTP write issue %d", result); log_debug("%s: result %i\n", __func__, result); return result; } int stm32prog_pmic_write(struct stm32prog_data *data, u32 offset, u8 *buffer, long *size) { log_debug("%s: %x %lx\n", __func__, offset, *size); if (!offset) memset(data->pmic_part, 0, PMIC_SIZE); if (offset + *size > PMIC_SIZE) *size = PMIC_SIZE - offset; memcpy(&data->pmic_part[offset], buffer, *size); return 0; } int stm32prog_pmic_read(struct stm32prog_data *data, u32 offset, u8 *buffer, long *size) { int result = 0, ret; struct udevice *dev; if (!IS_ENABLED(CONFIG_PMIC_STPMIC1)) { stm32prog_err("PMIC update not supported"); return -EOPNOTSUPP; } log_debug("%s: %x %lx\n", __func__, offset, *size); ret = uclass_get_device_by_driver(UCLASS_MISC, DM_DRIVER_GET(stpmic1_nvm), &dev); if (ret) return ret; /* alway request PMIC for first packet */ if (!offset) { /* init struct with 0 */ memset(data->pmic_part, 0, PMIC_SIZE); ret = uclass_get_device_by_driver(UCLASS_MISC, DM_DRIVER_GET(stpmic1_nvm), &dev); if (ret) return ret; ret = misc_read(dev, 0xF8, data->pmic_part, PMIC_SIZE); if (ret < 0) { result = ret; goto end_pmic_read; } if (ret != PMIC_SIZE) { result = -EACCES; goto end_pmic_read; } } if (offset + *size > PMIC_SIZE) *size = PMIC_SIZE - offset; memcpy(buffer, &data->pmic_part[offset], *size); end_pmic_read: log_debug("%s: result %i\n", __func__, result); return result; } int stm32prog_pmic_start(struct stm32prog_data *data) { int ret; struct udevice *dev; if (!IS_ENABLED(CONFIG_PMIC_STPMIC1)) { stm32prog_err("PMIC update not supported"); return -EOPNOTSUPP; } ret = uclass_get_device_by_driver(UCLASS_MISC, DM_DRIVER_GET(stpmic1_nvm), &dev); if (ret) return ret; return misc_write(dev, 0xF8, data->pmic_part, PMIC_SIZE); } /* copy FSBL on NAND to improve reliability on NAND */ static int stm32prog_copy_fsbl(struct stm32prog_part_t *part) { int ret, i; void *fsbl; struct image_header_s header; struct stm32_header_v2 raw_header; /* V2 size > v1 size */ struct dfu_entity *dfu; long size, offset; if (part->target != STM32PROG_NAND && part->target != STM32PROG_SPI_NAND) return -EINVAL; dfu = dfu_get_entity(part->alt_id); /* read header */ dfu_transaction_cleanup(dfu); size = sizeof(raw_header); ret = dfu->read_medium(dfu, 0, (void *)&raw_header, &size); if (ret) return ret; stm32prog_header_check((ulong)&raw_header, &header); if (header.type != HEADER_STM32IMAGE && header.type != HEADER_STM32IMAGE_V2) return -ENOENT; /* read header + payload */ size = header.image_length + header.length; size = round_up(size, part->dev->mtd->erasesize); fsbl = calloc(1, size); if (!fsbl) return -ENOMEM; ret = dfu->read_medium(dfu, 0, fsbl, &size); log_debug("%s read size=%lx ret=%d\n", __func__, size, ret); if (ret) goto error; dfu_transaction_cleanup(dfu); offset = 0; for (i = part->bin_nb - 1; i > 0; i--) { offset += size; /* write to the next erase block */ ret = dfu->write_medium(dfu, offset, fsbl, &size); log_debug("%s copy at ofset=%lx size=%lx ret=%d", __func__, offset, size, ret); if (ret) goto error; } error: free(fsbl); return ret; } static void stm32prog_end_phase(struct stm32prog_data *data, u64 offset) { if (data->phase == PHASE_FLASHLAYOUT) { #if defined(CONFIG_LEGACY_IMAGE_FORMAT) if (genimg_get_format((void *)CONFIG_SYS_LOAD_ADDR) == IMAGE_FORMAT_LEGACY) { data->script = CONFIG_SYS_LOAD_ADDR; data->phase = PHASE_END; log_notice("U-Boot script received\n"); return; } #endif log_notice("\nFlashLayout received, size = %lld\n", offset); if (parse_flash_layout(data, CONFIG_SYS_LOAD_ADDR, offset)) stm32prog_err("Layout: invalid FlashLayout"); return; } if (!data->cur_part) return; if (data->cur_part->target == STM32PROG_RAM) { if (data->cur_part->part_type == PART_SYSTEM) data->uimage = data->cur_part->addr; if (data->cur_part->part_type == PART_FILESYSTEM) data->dtb = data->cur_part->addr; if (data->cur_part->part_type == PART_BINARY) { data->initrd = data->cur_part->addr; data->initrd_size = offset; } } if (CONFIG_IS_ENABLED(MMC) && data->cur_part->part_id < 0) { char cmdbuf[60]; sprintf(cmdbuf, "mmc bootbus %d 0 0 0; mmc partconf %d 1 %d 0", data->cur_part->dev_id, data->cur_part->dev_id, -(data->cur_part->part_id)); if (run_command(cmdbuf, 0)) { stm32prog_err("commands '%s' failed", cmdbuf); return; } } if (IS_ENABLED(CONFIG_MTD) && data->cur_part->bin_nb > 1) { if (stm32prog_copy_fsbl(data->cur_part)) { stm32prog_err("%s (0x%x): copy of fsbl failed", data->cur_part->name, data->cur_part->id); return; } } } void stm32prog_do_reset(struct stm32prog_data *data) { if (data->phase == PHASE_RESET) { data->phase = PHASE_DO_RESET; puts("Reset requested\n"); } } void stm32prog_next_phase(struct stm32prog_data *data) { int phase, i; struct stm32prog_part_t *part; bool found; phase = data->phase; switch (phase) { case PHASE_RESET: case PHASE_END: case PHASE_DO_RESET: return; } /* found next selected partition */ data->dfu_seq = 0; data->cur_part = NULL; data->phase = PHASE_END; found = false; do { phase++; if (phase > PHASE_LAST_USER) break; for (i = 0; i < data->part_nb; i++) { part = &data->part_array[i]; if (part->id == phase) { if (IS_SELECT(part) && !IS_EMPTY(part)) { data->cur_part = part; data->phase = phase; found = true; } break; } } } while (!found); if (data->phase == PHASE_END) puts("Phase=END\n"); } static int part_delete(struct stm32prog_data *data, struct stm32prog_part_t *part) { int ret = 0; unsigned long blks, blks_offset, blks_size; struct blk_desc *block_dev = NULL; char cmdbuf[40]; char devstr[10]; printf("Erasing %s ", part->name); switch (part->target) { case STM32PROG_MMC: if (!IS_ENABLED(CONFIG_MMC)) { ret = -1; stm32prog_err("%s (0x%x): erase invalid", part->name, part->id); break; } printf("on mmc %d: ", part->dev->dev_id); block_dev = mmc_get_blk_desc(part->dev->mmc); blks_offset = lldiv(part->addr, part->dev->mmc->read_bl_len); blks_size = lldiv(part->size, part->dev->mmc->read_bl_len); /* -1 or -2 : delete boot partition of MMC * need to switch to associated hwpart 1 or 2 */ if (part->part_id < 0) if (blk_select_hwpart_devnum(UCLASS_MMC, part->dev->dev_id, -part->part_id)) return -1; blks = blk_derase(block_dev, blks_offset, blks_size); /* return to user partition */ if (part->part_id < 0) blk_select_hwpart_devnum(UCLASS_MMC, part->dev->dev_id, 0); if (blks != blks_size) { ret = -1; stm32prog_err("%s (0x%x): MMC erase failed", part->name, part->id); } break; case STM32PROG_NOR: case STM32PROG_NAND: case STM32PROG_SPI_NAND: if (!IS_ENABLED(CONFIG_MTD)) { ret = -1; stm32prog_err("%s (0x%x): erase invalid", part->name, part->id); break; } get_mtd_by_target(devstr, part->target, part->dev->dev_id); printf("on %s: ", devstr); sprintf(cmdbuf, "mtd erase %s 0x%llx 0x%llx", devstr, part->addr, part->size); if (run_command(cmdbuf, 0)) { ret = -1; stm32prog_err("%s (0x%x): MTD erase commands failed (%s)", part->name, part->id, cmdbuf); } break; case STM32PROG_RAM: printf("on ram: "); memset((void *)(uintptr_t)part->addr, 0, (size_t)part->size); break; default: ret = -1; stm32prog_err("%s (0x%x): erase invalid", part->name, part->id); break; } if (!ret) printf("done\n"); return ret; } static void stm32prog_devices_init(struct stm32prog_data *data) { int i; int ret; struct stm32prog_part_t *part; ret = treat_partition_list(data); if (ret) goto error; /* empty flashlayout */ if (!data->dev_nb) return; /* initialize the selected device */ for (i = 0; i < data->dev_nb; i++) { ret = init_device(data, &data->dev[i]); if (ret) goto error; } /* delete RAW partition before create partition */ for (i = 0; i < data->part_nb; i++) { part = &data->part_array[i]; if (part->part_type != RAW_IMAGE) continue; if (!IS_SELECT(part) || !IS_DELETE(part)) continue; ret = part_delete(data, part); if (ret) goto error; } if (IS_ENABLED(CONFIG_MMC)) { ret = create_gpt_partitions(data); if (ret) goto error; } /* delete partition GPT or MTD */ for (i = 0; i < data->part_nb; i++) { part = &data->part_array[i]; if (part->part_type == RAW_IMAGE) continue; if (!IS_SELECT(part) || !IS_DELETE(part)) continue; ret = part_delete(data, part); if (ret) goto error; } return; error: data->part_nb = 0; } int stm32prog_dfu_init(struct stm32prog_data *data) { /* init device if no error */ if (data->part_nb) stm32prog_devices_init(data); if (data->part_nb) stm32prog_next_phase(data); /* prepare DFU for device read/write */ dfu_free_entities(); return dfu_init_entities(data); } int stm32prog_init(struct stm32prog_data *data, uintptr_t addr, ulong size) { memset(data, 0x0, sizeof(*data)); data->read_phase = PHASE_RESET; data->phase = PHASE_FLASHLAYOUT; return parse_flash_layout(data, addr, size); } void stm32prog_clean(struct stm32prog_data *data) { /* clean */ dfu_free_entities(); free(data->part_array); free(data->otp_part); free(data->buffer); if (CONFIG_IS_ENABLED(OPTEE) && data->tee) { tee_close_session(data->tee, data->tee_session); data->tee = NULL; data->tee_session = 0x0; } } /* DFU callback: used after serial and direct DFU USB access */ void dfu_flush_callback(struct dfu_entity *dfu) { if (!stm32prog_data) return; if (dfu->dev_type == DFU_DEV_VIRT) { if (dfu->data.virt.dev_num == PHASE_OTP) stm32prog_otp_start(stm32prog_data); else if (dfu->data.virt.dev_num == PHASE_PMIC) stm32prog_pmic_start(stm32prog_data); return; } if (dfu->dev_type == DFU_DEV_RAM) { if (dfu->alt == 0 && stm32prog_data->phase == PHASE_FLASHLAYOUT) { stm32prog_end_phase(stm32prog_data, dfu->offset); /* waiting DFU DETACH for reenumeration */ } } if (!stm32prog_data->cur_part) return; if (dfu->alt == stm32prog_data->cur_part->alt_id) { stm32prog_end_phase(stm32prog_data, dfu->offset); stm32prog_next_phase(stm32prog_data); } } void dfu_initiated_callback(struct dfu_entity *dfu) { if (!stm32prog_data) return; if (!stm32prog_data->cur_part) return; /* force the saved offset for the current partition */ if (dfu->alt == stm32prog_data->cur_part->alt_id) { dfu->offset = stm32prog_data->offset; stm32prog_data->dfu_seq = 0; log_debug("dfu offset = 0x%llx\n", dfu->offset); } } void dfu_error_callback(struct dfu_entity *dfu, const char *msg) { struct stm32prog_data *data = stm32prog_data; if (!stm32prog_data) return; if (!stm32prog_data->cur_part) return; if (dfu->alt == stm32prog_data->cur_part->alt_id) stm32prog_err(msg); }