// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2015-2016 Reinhard Pfau */ #include #include #include #include #include #include #include #include #include #include #include #if defined(CONFIG_MVEBU_EFUSE_FAKE) #define DRY_RUN #else #undef DRY_RUN #endif #define MBUS_EFUSE_BASE 0xF6000000 #define MBUS_EFUSE_SIZE BIT(20) #define MVEBU_EFUSE_CONTROL (MVEBU_REGISTER(0xE4008)) enum { MVEBU_EFUSE_CTRL_PROGRAM_ENABLE = (1 << 31), MVEBU_EFUSE_LD1_SELECT = (1 << 6), }; struct mvebu_hd_efuse { u32 bits_31_0; u32 bits_63_32; u32 bit64; u32 reserved0; }; #ifndef DRY_RUN static struct mvebu_hd_efuse *efuses = (struct mvebu_hd_efuse *)(MBUS_EFUSE_BASE + 0xF9000); static u32 *ld_efuses = (void *)MBUS_EFUSE_BASE + 0xF8F00; #else static struct mvebu_hd_efuse efuses[EFUSE_LINE_MAX + 1]; static u32 ld_efuses[EFUSE_LD_WORDS]; #endif static int efuse_initialised; static struct mvebu_hd_efuse *get_efuse_line(int nr) { if (nr < 0 || nr > 63 || !efuse_initialised) return NULL; return efuses + nr; } #ifndef DRY_RUN static int vhv_gpio; #endif static int enable_efuse_program(void) { #ifndef DRY_RUN if (CONFIG_MVEBU_EFUSE_VHV_GPIO[0]) { if (gpio_lookup_name(CONFIG_MVEBU_EFUSE_VHV_GPIO, NULL, NULL, &vhv_gpio)) { printf("Error: VHV gpio lookup failed\n"); return -EOPNOTSUPP; } if (gpio_request(vhv_gpio, CONFIG_MVEBU_EFUSE_VHV_GPIO)) { printf("Error: VHV gpio request failed\n"); return -EOPNOTSUPP; } if (gpio_direction_output(vhv_gpio, IS_ENABLED(CONFIG_MVEBU_EFUSE_VHV_GPIO_ACTIVE_LOW) ? 0 : 1)) { printf("Error: VHV gpio enable failed\n"); return -EINVAL; } mdelay(5); /* Wait for the VHV power to stabilize */ } setbits_le32(MVEBU_EFUSE_CONTROL, MVEBU_EFUSE_CTRL_PROGRAM_ENABLE); #endif return 0; } static void disable_efuse_program(void) { #ifndef DRY_RUN clrbits_le32(MVEBU_EFUSE_CONTROL, MVEBU_EFUSE_CTRL_PROGRAM_ENABLE); if (CONFIG_MVEBU_EFUSE_VHV_GPIO[0]) { if (gpio_direction_output(vhv_gpio, IS_ENABLED(CONFIG_MVEBU_EFUSE_VHV_GPIO_ACTIVE_LOW) ? 1 : 0)) printf("Error: VHV gpio disable failed\n"); gpio_free(vhv_gpio); vhv_gpio = 0; } #endif } static int do_prog_efuse(struct mvebu_hd_efuse *efuse, struct efuse_val *new_val, u32 mask0, u32 mask1) { struct efuse_val val; val.dwords.d[0] = readl(&efuse->bits_31_0); val.dwords.d[1] = readl(&efuse->bits_63_32); val.lock = readl(&efuse->bit64); if (val.lock & 1) return -EPERM; val.dwords.d[0] |= (new_val->dwords.d[0] & mask0); val.dwords.d[1] |= (new_val->dwords.d[1] & mask1); val.lock |= new_val->lock; writel(val.dwords.d[0], &efuse->bits_31_0); mdelay(1); writel(val.dwords.d[1], &efuse->bits_63_32); mdelay(1); writel(val.lock, &efuse->bit64); mdelay(5); return 0; } static int prog_efuse(int nr, struct efuse_val *new_val, u32 mask0, u32 mask1) { struct mvebu_hd_efuse *efuse; int res = 0; res = mvebu_efuse_init_hw(); if (res) return res; efuse = get_efuse_line(nr); if (!efuse) return -ENODEV; if (!new_val) return -EINVAL; /* only write a fuse line with lock bit */ if (!new_val->lock) return -EINVAL; /* according to specs ECC protection bits must be 0 on write */ if (new_val->bytes.d[7] & 0xFE) return -EINVAL; if (!new_val->dwords.d[0] && !new_val->dwords.d[1] && (mask0 | mask1)) return 0; res = enable_efuse_program(); if (res) return res; res = do_prog_efuse(efuse, new_val, mask0, mask1); disable_efuse_program(); return res; } int mvebu_prog_ld_efuse(int ld1, u32 word, u32 val) { int i, res; u32 line[EFUSE_LD_WORDS]; res = mvebu_efuse_init_hw(); if (res) return res; mvebu_read_ld_efuse(ld1, line); /* check if lock bit is already programmed */ if (line[EFUSE_LD_WORDS - 1]) return -EPERM; /* check if word is valid */ if (word >= EFUSE_LD_WORDS) return -EINVAL; /* check if there is some bit for programming */ if (val == (line[word] & val)) return 0; res = enable_efuse_program(); if (res) return res; mvebu_read_ld_efuse(ld1, line); line[word] |= val; for (i = 0; i < EFUSE_LD_WORDS; i++) { writel(line[i], ld_efuses + i); mdelay(1); } mdelay(5); disable_efuse_program(); return 0; } int mvebu_efuse_init_hw(void) { int ret; if (efuse_initialised) return 0; ret = mvebu_mbus_add_window_by_id( CPU_TARGET_SATA23_DFX, 0xA, MBUS_EFUSE_BASE, MBUS_EFUSE_SIZE); if (ret) return ret; efuse_initialised = 1; return 0; } int mvebu_read_efuse(int nr, struct efuse_val *val) { struct mvebu_hd_efuse *efuse; int res; res = mvebu_efuse_init_hw(); if (res) return res; efuse = get_efuse_line(nr); if (!efuse) return -ENODEV; if (!val) return -EINVAL; val->dwords.d[0] = readl(&efuse->bits_31_0); val->dwords.d[1] = readl(&efuse->bits_63_32); val->lock = readl(&efuse->bit64); return 0; } void mvebu_read_ld_efuse(int ld1, u32 *line) { int i; #ifndef DRY_RUN if (ld1) setbits_le32(MVEBU_EFUSE_CONTROL, MVEBU_EFUSE_LD1_SELECT); else clrbits_le32(MVEBU_EFUSE_CONTROL, MVEBU_EFUSE_LD1_SELECT); #endif for (i = 0; i < EFUSE_LD_WORDS; i++) line[i] = readl(ld_efuses + i); } int mvebu_write_efuse(int nr, struct efuse_val *val) { return prog_efuse(nr, val, ~0, ~0); } int mvebu_lock_efuse(int nr) { struct efuse_val val = { .lock = 1, }; return prog_efuse(nr, &val, 0, 0); } /* * wrapper funcs providing the fuse API * * we use the following mapping: * "bank" -> eFuse line * "word" -> 0: bits 0-31 * 1: bits 32-63 * 2: bit 64 (lock) */ static struct efuse_val prog_val; static int valid_prog_words; int fuse_read(u32 bank, u32 word, u32 *val) { struct efuse_val fuse_line; u32 ld_line[EFUSE_LD_WORDS]; int res; if ((bank == EFUSE_LD0_LINE || bank == EFUSE_LD1_LINE) && word < EFUSE_LD_WORDS) { res = mvebu_efuse_init_hw(); if (res) return res; mvebu_read_ld_efuse(bank == EFUSE_LD1_LINE, ld_line); *val = ld_line[word]; return 0; } if (bank < EFUSE_LINE_MIN || bank > EFUSE_LINE_MAX || word > 2) return -EINVAL; res = mvebu_read_efuse(bank, &fuse_line); if (res) return res; if (word < 2) *val = fuse_line.dwords.d[word]; else *val = fuse_line.lock; return res; } int fuse_sense(u32 bank, u32 word, u32 *val) { /* not supported */ return -ENOSYS; } int fuse_prog(u32 bank, u32 word, u32 val) { int res = 0; if (bank == EFUSE_LD0_LINE || bank == EFUSE_LD1_LINE) return mvebu_prog_ld_efuse(bank == EFUSE_LD1_LINE, word, val); /* * NOTE: Fuse line should be written as whole. * So how can we do that with this API? * For now: remember values for word == 0 and word == 1 and write the * whole line when word == 2. * This implies that we always require all 3 fuse prog cmds (one for * for each word) to write a single fuse line. * Exception is a single write to word 2 which will lock the fuse line. * * Hope that will be OK. */ if (bank < EFUSE_LINE_MIN || bank > EFUSE_LINE_MAX || word > 2) return -EINVAL; if (word < 2) { prog_val.dwords.d[word] = val; valid_prog_words |= (1 << word); } else if ((valid_prog_words & 3) == 0 && val) { res = mvebu_lock_efuse(bank); valid_prog_words = 0; } else if ((valid_prog_words & 3) != 3 || !val) { res = -EINVAL; } else { prog_val.lock = val != 0; res = mvebu_write_efuse(bank, &prog_val); valid_prog_words = 0; } return res; } int fuse_override(u32 bank, u32 word, u32 val) { /* not supported */ return -ENOSYS; }