// SPDX-License-Identifier: GPL-2.0+ /* * K3: Common Architecture initialization * * Copyright (C) 2018 Texas Instruments Incorporated - http://www.ti.com/ * Lokesh Vutla */ #include #include #include #include #include #include #include #include #include "common.h" #include #include #include #include #include #include #include #include #include #include #include #include #if IS_ENABLED(CONFIG_SYS_K3_SPL_ATF) enum { IMAGE_ID_ATF, IMAGE_ID_OPTEE, IMAGE_ID_SPL, IMAGE_ID_DM_FW, IMAGE_AMT, }; #if CONFIG_IS_ENABLED(FIT_IMAGE_POST_PROCESS) static const char *image_os_match[IMAGE_AMT] = { "arm-trusted-firmware", "tee", "U-Boot", "DM", }; #endif static struct image_info fit_image_info[IMAGE_AMT]; #endif struct ti_sci_handle *get_ti_sci_handle(void) { struct udevice *dev; int ret; ret = uclass_get_device_by_driver(UCLASS_FIRMWARE, DM_DRIVER_GET(ti_sci), &dev); if (ret) panic("Failed to get SYSFW (%d)\n", ret); return (struct ti_sci_handle *)ti_sci_get_handle_from_sysfw(dev); } void k3_sysfw_print_ver(void) { struct ti_sci_handle *ti_sci = get_ti_sci_handle(); char fw_desc[sizeof(ti_sci->version.firmware_description) + 1]; /* * Output System Firmware version info. Note that since the * 'firmware_description' field is not guaranteed to be zero- * terminated we manually add a \0 terminator if needed. Further * note that we intentionally no longer rely on the extended * printf() formatter '%.*s' to not having to require a more * full-featured printf() implementation. */ strncpy(fw_desc, ti_sci->version.firmware_description, sizeof(ti_sci->version.firmware_description)); fw_desc[sizeof(fw_desc) - 1] = '\0'; printf("SYSFW ABI: %d.%d (firmware rev 0x%04x '%s')\n", ti_sci->version.abi_major, ti_sci->version.abi_minor, ti_sci->version.firmware_revision, fw_desc); } void mmr_unlock(phys_addr_t base, u32 partition) { /* Translate the base address */ phys_addr_t part_base = base + partition * CTRL_MMR0_PARTITION_SIZE; /* Unlock the requested partition if locked using two-step sequence */ writel(CTRLMMR_LOCK_KICK0_UNLOCK_VAL, part_base + CTRLMMR_LOCK_KICK0); writel(CTRLMMR_LOCK_KICK1_UNLOCK_VAL, part_base + CTRLMMR_LOCK_KICK1); } bool is_rom_loaded_sysfw(struct rom_extended_boot_data *data) { if (strncmp(data->header, K3_ROM_BOOT_HEADER_MAGIC, 7)) return false; return data->num_components > 1; } DECLARE_GLOBAL_DATA_PTR; #ifdef CONFIG_K3_EARLY_CONS int early_console_init(void) { struct udevice *dev; int ret; gd->baudrate = CONFIG_BAUDRATE; ret = uclass_get_device_by_seq(UCLASS_SERIAL, CONFIG_K3_EARLY_CONS_IDX, &dev); if (ret) { printf("Error getting serial dev for early console! (%d)\n", ret); return ret; } gd->cur_serial_dev = dev; gd->flags |= GD_FLG_SERIAL_READY; gd->have_console = 1; return 0; } #endif #if IS_ENABLED(CONFIG_SYS_K3_SPL_ATF) void init_env(void) { #ifdef CONFIG_SPL_ENV_SUPPORT char *part; env_init(); env_relocate(); switch (spl_boot_device()) { case BOOT_DEVICE_MMC2: part = env_get("bootpart"); env_set("storage_interface", "mmc"); env_set("fw_dev_part", part); break; case BOOT_DEVICE_SPI: env_set("storage_interface", "ubi"); env_set("fw_ubi_mtdpart", "UBI"); env_set("fw_ubi_volume", "UBI0"); break; default: printf("%s from device %u not supported!\n", __func__, spl_boot_device()); return; } #endif } int load_firmware(char *name_fw, char *name_loadaddr, u32 *loadaddr) { struct udevice *fsdev; char *name = NULL; int size = 0; if (!IS_ENABLED(CONFIG_FS_LOADER)) return 0; *loadaddr = 0; #ifdef CONFIG_SPL_ENV_SUPPORT switch (spl_boot_device()) { case BOOT_DEVICE_MMC2: name = env_get(name_fw); *loadaddr = env_get_hex(name_loadaddr, *loadaddr); break; default: printf("Loading rproc fw image from device %u not supported!\n", spl_boot_device()); return 0; } #endif if (!*loadaddr) return 0; if (!get_fs_loader(&fsdev)) { size = request_firmware_into_buf(fsdev, name, (void *)*loadaddr, 0, 0); } return size; } void release_resources_for_core_shutdown(void) { struct ti_sci_handle *ti_sci = get_ti_sci_handle(); struct ti_sci_dev_ops *dev_ops = &ti_sci->ops.dev_ops; struct ti_sci_proc_ops *proc_ops = &ti_sci->ops.proc_ops; int ret; u32 i; /* Iterate through list of devices to put (shutdown) */ for (i = 0; i < ARRAY_SIZE(put_device_ids); i++) { u32 id = put_device_ids[i]; ret = dev_ops->put_device(ti_sci, id); if (ret) panic("Failed to put device %u (%d)\n", id, ret); } /* Iterate through list of cores to put (shutdown) */ for (i = 0; i < ARRAY_SIZE(put_core_ids); i++) { u32 id = put_core_ids[i]; /* * Queue up the core shutdown request. Note that this call * needs to be followed up by an actual invocation of an WFE * or WFI CPU instruction. */ ret = proc_ops->proc_shutdown_no_wait(ti_sci, id); if (ret) panic("Failed sending core %u shutdown message (%d)\n", id, ret); } } void __noreturn jump_to_image_no_args(struct spl_image_info *spl_image) { typedef void __noreturn (*image_entry_noargs_t)(void); struct ti_sci_handle *ti_sci = get_ti_sci_handle(); u32 loadaddr = 0; int ret, size = 0, shut_cpu = 0; /* Release all the exclusive devices held by SPL before starting ATF */ ti_sci->ops.dev_ops.release_exclusive_devices(ti_sci); ret = rproc_init(); if (ret) panic("rproc failed to be initialized (%d)\n", ret); init_env(); if (!fit_image_info[IMAGE_ID_DM_FW].image_start) { size = load_firmware("name_mcur5f0_0fw", "addr_mcur5f0_0load", &loadaddr); } /* * It is assumed that remoteproc device 1 is the corresponding * Cortex-A core which runs ATF. Make sure DT reflects the same. */ if (!fit_image_info[IMAGE_ID_ATF].image_start) fit_image_info[IMAGE_ID_ATF].image_start = spl_image->entry_point; ret = rproc_load(1, fit_image_info[IMAGE_ID_ATF].image_start, 0x200); if (ret) panic("%s: ATF failed to load on rproc (%d)\n", __func__, ret); #if (CONFIG_IS_ENABLED(FIT_IMAGE_POST_PROCESS) && IS_ENABLED(CONFIG_SYS_K3_SPL_ATF)) /* Authenticate ATF */ void *image_addr = (void *)fit_image_info[IMAGE_ID_ATF].image_start; debug("%s: Authenticating image: addr=%lx, size=%ld, os=%s\n", __func__, fit_image_info[IMAGE_ID_ATF].image_start, fit_image_info[IMAGE_ID_ATF].image_len, image_os_match[IMAGE_ID_ATF]); ti_secure_image_post_process(&image_addr, (size_t *)&fit_image_info[IMAGE_ID_ATF].image_len); /* Authenticate OPTEE */ image_addr = (void *)fit_image_info[IMAGE_ID_OPTEE].image_start; debug("%s: Authenticating image: addr=%lx, size=%ld, os=%s\n", __func__, fit_image_info[IMAGE_ID_OPTEE].image_start, fit_image_info[IMAGE_ID_OPTEE].image_len, image_os_match[IMAGE_ID_OPTEE]); ti_secure_image_post_process(&image_addr, (size_t *)&fit_image_info[IMAGE_ID_OPTEE].image_len); #endif if (!fit_image_info[IMAGE_ID_DM_FW].image_len && !(size > 0 && valid_elf_image(loadaddr))) { shut_cpu = 1; goto start_arm64; } if (!fit_image_info[IMAGE_ID_DM_FW].image_start) { loadaddr = load_elf_image_phdr(loadaddr); } else { loadaddr = fit_image_info[IMAGE_ID_DM_FW].image_start; if (valid_elf_image(loadaddr)) loadaddr = load_elf_image_phdr(loadaddr); } debug("%s: jumping to address %x\n", __func__, loadaddr); start_arm64: /* Add an extra newline to differentiate the ATF logs from SPL */ printf("Starting ATF on ARM64 core...\n\n"); ret = rproc_start(1); if (ret) panic("%s: ATF failed to start on rproc (%d)\n", __func__, ret); if (shut_cpu) { debug("Shutting down...\n"); release_resources_for_core_shutdown(); while (1) asm volatile("wfe"); } image_entry_noargs_t image_entry = (image_entry_noargs_t)loadaddr; image_entry(); } #endif #if CONFIG_IS_ENABLED(FIT_IMAGE_POST_PROCESS) void board_fit_image_post_process(const void *fit, int node, void **p_image, size_t *p_size) { #if IS_ENABLED(CONFIG_SYS_K3_SPL_ATF) int len; int i; const char *os; u32 addr; os = fdt_getprop(fit, node, "os", &len); addr = fdt_getprop_u32_default_node(fit, node, 0, "entry", -1); debug("%s: processing image: addr=%x, size=%d, os=%s\n", __func__, addr, *p_size, os); for (i = 0; i < IMAGE_AMT; i++) { if (!strcmp(os, image_os_match[i])) { fit_image_info[i].image_start = addr; fit_image_info[i].image_len = *p_size; debug("%s: matched image for ID %d\n", __func__, i); break; } } /* * Only DM and the DTBs are being authenticated here, * rest will be authenticated when A72 cluster is up */ if ((i != IMAGE_ID_ATF) && (i != IMAGE_ID_OPTEE)) #endif { ti_secure_image_check_binary(p_image, p_size); ti_secure_image_post_process(p_image, p_size); } #if IS_ENABLED(CONFIG_SYS_K3_SPL_ATF) else ti_secure_image_check_binary(p_image, p_size); #endif } #endif #ifndef CONFIG_SYSRESET void reset_cpu(void) { } #endif enum k3_device_type get_device_type(void) { u32 sys_status = readl(K3_SEC_MGR_SYS_STATUS); u32 sys_dev_type = (sys_status & SYS_STATUS_DEV_TYPE_MASK) >> SYS_STATUS_DEV_TYPE_SHIFT; u32 sys_sub_type = (sys_status & SYS_STATUS_SUB_TYPE_MASK) >> SYS_STATUS_SUB_TYPE_SHIFT; switch (sys_dev_type) { case SYS_STATUS_DEV_TYPE_GP: return K3_DEVICE_TYPE_GP; case SYS_STATUS_DEV_TYPE_TEST: return K3_DEVICE_TYPE_TEST; case SYS_STATUS_DEV_TYPE_EMU: return K3_DEVICE_TYPE_EMU; case SYS_STATUS_DEV_TYPE_HS: if (sys_sub_type == SYS_STATUS_SUB_TYPE_VAL_FS) return K3_DEVICE_TYPE_HS_FS; else return K3_DEVICE_TYPE_HS_SE; default: return K3_DEVICE_TYPE_BAD; } } #if defined(CONFIG_DISPLAY_CPUINFO) static const char *get_device_type_name(void) { enum k3_device_type type = get_device_type(); switch (type) { case K3_DEVICE_TYPE_GP: return "GP"; case K3_DEVICE_TYPE_TEST: return "TEST"; case K3_DEVICE_TYPE_EMU: return "EMU"; case K3_DEVICE_TYPE_HS_FS: return "HS-FS"; case K3_DEVICE_TYPE_HS_SE: return "HS-SE"; default: return "BAD"; } } int print_cpuinfo(void) { struct udevice *soc; char name[64]; int ret; printf("SoC: "); ret = soc_get(&soc); if (ret) { printf("UNKNOWN\n"); return 0; } ret = soc_get_family(soc, name, 64); if (!ret) { printf("%s ", name); } ret = soc_get_revision(soc, name, 64); if (!ret) { printf("%s ", name); } printf("%s\n", get_device_type_name()); return 0; } #endif #ifdef CONFIG_ARM64 void board_prep_linux(struct bootm_headers *images) { debug("Linux kernel Image start = 0x%lx end = 0x%lx\n", images->os.start, images->os.end); __asm_flush_dcache_range(images->os.start, ROUND(images->os.end, CONFIG_SYS_CACHELINE_SIZE)); } #endif #ifdef CONFIG_CPU_V7R void disable_linefill_optimization(void) { u32 actlr; /* * On K3 devices there are 2 conditions where R5F can deadlock: * 1.When software is performing series of store operations to * cacheable write back/write allocate memory region and later * on software execute barrier operation (DSB or DMB). R5F may * hang at the barrier instruction. * 2.When software is performing a mix of load and store operations * within a tight loop and store operations are all writing to * cacheable write back/write allocates memory regions, R5F may * hang at one of the load instruction. * * To avoid the above two conditions disable linefill optimization * inside Cortex R5F. */ asm("mrc p15, 0, %0, c1, c0, 1" : "=r" (actlr)); actlr |= (1 << 13); /* Set DLFO bit */ asm("mcr p15, 0, %0, c1, c0, 1" : : "r" (actlr)); } #endif static void remove_fwl_regions(struct fwl_data fwl_data, size_t num_regions, enum k3_firewall_region_type fwl_type) { struct ti_sci_fwl_ops *fwl_ops; struct ti_sci_handle *ti_sci; struct ti_sci_msg_fwl_region region; size_t j; ti_sci = get_ti_sci_handle(); fwl_ops = &ti_sci->ops.fwl_ops; for (j = 0; j < fwl_data.regions; j++) { region.fwl_id = fwl_data.fwl_id; region.region = j; region.n_permission_regs = 3; fwl_ops->get_fwl_region(ti_sci, ®ion); /* Don't disable the background regions */ if (region.control != 0 && ((region.control >> K3_FIREWALL_BACKGROUND_BIT) & 1) == fwl_type) { pr_debug("Attempting to disable firewall %5d (%25s)\n", region.fwl_id, fwl_data.name); region.control = 0; if (fwl_ops->set_fwl_region(ti_sci, ®ion)) pr_err("Could not disable firewall %5d (%25s)\n", region.fwl_id, fwl_data.name); } } } void remove_fwl_configs(struct fwl_data *fwl_data, size_t fwl_data_size) { size_t i; for (i = 0; i < fwl_data_size; i++) { remove_fwl_regions(fwl_data[i], fwl_data[i].regions, K3_FIREWALL_REGION_FOREGROUND); remove_fwl_regions(fwl_data[i], fwl_data[i].regions, K3_FIREWALL_REGION_BACKGROUND); } } void spl_enable_dcache(void) { #if !(defined(CONFIG_SYS_ICACHE_OFF) && defined(CONFIG_SYS_DCACHE_OFF)) phys_addr_t ram_top = CFG_SYS_SDRAM_BASE; dram_init(); /* reserve TLB table */ gd->arch.tlb_size = PGTABLE_SIZE; ram_top += get_effective_memsize(); /* keep ram_top in the 32-bit address space */ if (ram_top >= 0x100000000) ram_top = (phys_addr_t) 0x100000000; gd->arch.tlb_addr = ram_top - gd->arch.tlb_size; gd->arch.tlb_addr &= ~(0x10000 - 1); debug("TLB table from %08lx to %08lx\n", gd->arch.tlb_addr, gd->arch.tlb_addr + gd->arch.tlb_size); gd->relocaddr = gd->arch.tlb_addr; dcache_enable(); #endif } #if !(defined(CONFIG_SYS_ICACHE_OFF) && defined(CONFIG_SYS_DCACHE_OFF)) void spl_board_prepare_for_boot(void) { dcache_disable(); } void spl_board_prepare_for_linux(void) { dcache_disable(); } #endif int misc_init_r(void) { if (IS_ENABLED(CONFIG_TI_AM65_CPSW_NUSS)) { struct udevice *dev; int ret; ret = uclass_get_device_by_driver(UCLASS_MISC, DM_DRIVER_GET(am65_cpsw_nuss), &dev); if (ret) printf("Failed to probe am65_cpsw_nuss driver\n"); } /* Default FIT boot on HS-SE devices */ if (get_device_type() == K3_DEVICE_TYPE_HS_SE) env_set("boot_fit", "1"); return 0; } /** * do_board_detect() - Detect board description * * Function to detect board description. This is expected to be * overridden in the SoC family board file where desired. */ void __weak do_board_detect(void) { }