// SPDX-License-Identifier: GPL-2.0+ /* * Copyright 2021 NXP */ #include #include #include #include #include #include #include #include #include #define XRDC_ADDR 0x292f0000 #define MRC_OFFSET 0x2000 #define MRC_STEP 0x200 #define SP(X) ((X) << 9) #define SU(X) ((X) << 6) #define NP(X) ((X) << 3) #define NU(X) ((X) << 0) #define RWX 7 #define RW 6 #define R 4 #define X 1 #define D7SEL_CODE (SP(RW) | SU(RW) | NP(RWX) | NU(RWX)) #define D6SEL_CODE (SP(RW) | SU(RW) | NP(RWX)) #define D5SEL_CODE (SP(RW) | SU(RWX)) #define D4SEL_CODE SP(RWX) #define D3SEL_CODE (SP(X) | SU(X) | NP(X) | NU(X)) #define D0SEL_CODE 0 #define D7SEL_DAT (SP(RW) | SU(RW) | NP(RW) | NU(RW)) #define D6SEL_DAT (SP(RW) | SU(RW) | NP(RW)) #define D5SEL_DAT (SP(RW) | SU(RW) | NP(R) | NU(R)) #define D4SEL_DAT (SP(RW) | SU(RW)) #define D3SEL_DAT SP(RW) struct mbc_mem_dom { u32 mem_glbcfg[4]; u32 nse_blk_index; u32 nse_blk_set; u32 nse_blk_clr; u32 nsr_blk_clr_all; u32 memn_glbac[8]; /* The upper only existed in the beginning of each MBC */ u32 mem0_blk_cfg_w[64]; u32 mem0_blk_nse_w[16]; u32 mem1_blk_cfg_w[8]; u32 mem1_blk_nse_w[2]; u32 mem2_blk_cfg_w[8]; u32 mem2_blk_nse_w[2]; u32 mem3_blk_cfg_w[8]; u32 mem3_blk_nse_w[2];/*0x1F0, 0x1F4 */ u32 reserved[2]; }; struct mrc_rgn_dom { u32 mrc_glbcfg[4]; u32 nse_rgn_indirect; u32 nse_rgn_set; u32 nse_rgn_clr; u32 nse_rgn_clr_all; u32 memn_glbac[8]; /* The upper only existed in the beginning of each MRC */ u32 rgn_desc_words[8][2]; /* 8 regions, 2 words per region */ u32 reserved[16]; u32 rgn_nse; u32 reserved2[15]; }; struct trdc { u8 res0[0x1000]; struct mbc_mem_dom mem_dom[4][8]; struct mrc_rgn_dom mrc_dom[2][8]; }; union dxsel_perm { struct { u8 dx; u8 perm; }; u32 dom_perm; }; int xrdc_config_mrc_dx_perm(u32 mrc_con, u32 region, u32 dom, u32 dxsel) { ulong w2_addr; u32 val = 0; w2_addr = XRDC_ADDR + MRC_OFFSET + mrc_con * 0x200 + region * 0x20 + 0x8; val = (readl(w2_addr) & (~(7 << (3 * dom)))) | (dxsel << (3 * dom)); writel(val, w2_addr); return 0; } int xrdc_config_mrc_w0_w1(u32 mrc_con, u32 region, u32 w0, u32 size) { ulong w0_addr, w1_addr; w0_addr = XRDC_ADDR + MRC_OFFSET + mrc_con * 0x200 + region * 0x20; w1_addr = w0_addr + 4; if ((size % 32) != 0) return -EINVAL; writel(w0 & ~0x1f, w0_addr); writel(w0 + size - 1, w1_addr); return 0; } int xrdc_config_mrc_w3_w4(u32 mrc_con, u32 region, u32 w3, u32 w4) { ulong w3_addr = XRDC_ADDR + MRC_OFFSET + mrc_con * 0x200 + region * 0x20 + 0xC; ulong w4_addr = w3_addr + 4; writel(w3, w3_addr); writel(w4, w4_addr); return 0; } int xrdc_config_pdac_openacc(u32 bridge, u32 index) { ulong w0_addr; u32 val; switch (bridge) { case 3: w0_addr = XRDC_ADDR + 0x1000 + 0x8 * index; break; case 4: w0_addr = XRDC_ADDR + 0x1400 + 0x8 * index; break; case 5: w0_addr = XRDC_ADDR + 0x1800 + 0x8 * index; break; default: return -EINVAL; } writel(0xffffff, w0_addr); val = readl(w0_addr + 4); writel(val | BIT(31), w0_addr + 4); return 0; } int xrdc_config_pdac(u32 bridge, u32 index, u32 dom, u32 perm) { ulong w0_addr; u32 val; switch (bridge) { case 3: w0_addr = XRDC_ADDR + 0x1000 + 0x8 * index; break; case 4: w0_addr = XRDC_ADDR + 0x1400 + 0x8 * index; break; case 5: w0_addr = XRDC_ADDR + 0x1800 + 0x8 * index; break; default: return -EINVAL; } val = readl(w0_addr); writel((val & ~(0x7 << (dom * 3))) | (perm << (dom * 3)), w0_addr); val = readl(w0_addr + 4); writel(val | BIT(31), w0_addr + 4); return 0; } int xrdc_config_msc(u32 msc, u32 index, u32 dom, u32 perm) { ulong w0_addr; u32 val; if (msc > 2) return -EINVAL; w0_addr = XRDC_ADDR + 0x4000 + 0x400 * msc + 0x8 * index; val = readl(w0_addr); writel((val & ~(0x7 << (dom * 3))) | (perm << (dom * 3)), w0_addr); val = readl(w0_addr + 4); writel(val | BIT(31), w0_addr + 4); return 0; } int release_rdc(enum rdc_type type) { ulong s_mu_base = 0x27020000UL; struct ele_msg msg; int ret; u32 rdc_id = (type == RDC_XRDC) ? 0x78 : 0x74; msg.version = ELE_VERSION; msg.tag = ELE_CMD_TAG; msg.size = 2; msg.command = ELE_RELEASE_RDC_REQ; msg.data[0] = (rdc_id << 8) | 0x2; /* A35 XRDC */ mu_hal_init(s_mu_base); mu_hal_sendmsg(s_mu_base, 0, *((u32 *)&msg)); mu_hal_sendmsg(s_mu_base, 1, msg.data[0]); ret = mu_hal_receivemsg(s_mu_base, 0, (u32 *)&msg); if (!ret) { ret = mu_hal_receivemsg(s_mu_base, 1, &msg.data[0]); if (!ret) { if ((msg.data[0] & 0xff) == 0xd6) return 0; } return -EIO; } return ret; } void xrdc_mrc_region_set_access(int mrc_index, u32 addr, u32 access) { ulong xrdc_base = 0x292f0000, off; u32 mrgd[5]; u8 mrcfg, j, region_num; u8 dsel; mrcfg = readb(xrdc_base + 0x140 + mrc_index); region_num = mrcfg & 0x1f; for (j = 0; j < region_num; j++) { off = 0x2000 + mrc_index * 0x200 + j * 0x20; mrgd[0] = readl(xrdc_base + off); mrgd[1] = readl(xrdc_base + off + 4); mrgd[2] = readl(xrdc_base + off + 8); mrgd[3] = readl(xrdc_base + off + 0xc); mrgd[4] = readl(xrdc_base + off + 0x10); debug("MRC [%u][%u]\n", mrc_index, j); debug("0x%x, 0x%x, 0x%x, 0x%x, 0x%x\n", mrgd[0], mrgd[1], mrgd[2], mrgd[3], mrgd[4]); /* hit */ if (addr >= mrgd[0] && addr <= mrgd[1]) { /* find domain 7 DSEL */ dsel = (mrgd[2] >> 21) & 0x7; if (dsel == 1) { mrgd[4] &= ~0xFFF; mrgd[4] |= (access & 0xFFF); } else if (dsel == 2) { mrgd[4] &= ~0xFFF0000; mrgd[4] |= ((access & 0xFFF) << 16); } /* not handle other cases, since ELE only set ACCESS1 and 2 */ writel(mrgd[4], xrdc_base + off + 0x10); return; } } } void xrdc_init_mda(void) { ulong xrdc_base = XRDC_ADDR, off; u32 i = 0; /* Set MDA3-5 for PXP, ENET, CAAM to DID 1*/ for (i = 3; i <= 5; i++) { off = 0x800 + i * 0x20; writel(0x200000A1, xrdc_base + off); writel(0xA00000A1, xrdc_base + off); } /* Set MDA10 -15 to DID 3 for video */ for (i = 10; i <= 15; i++) { off = 0x800 + i * 0x20; writel(0x200000A3, xrdc_base + off); writel(0xA00000A3, xrdc_base + off); } } void xrdc_init_mrc(void) { /* Re-config MRC3 for SRAM0 in case protected by ELE */ xrdc_config_mrc_w0_w1(3, 0, 0x22010000, 0x10000); xrdc_config_mrc_dx_perm(3, 0, 0, 1); xrdc_config_mrc_dx_perm(3, 0, 1, 1); xrdc_config_mrc_dx_perm(3, 0, 4, 1); xrdc_config_mrc_dx_perm(3, 0, 5, 1); xrdc_config_mrc_dx_perm(3, 0, 6, 1); xrdc_config_mrc_dx_perm(3, 0, 7, 1); xrdc_config_mrc_w3_w4(3, 0, 0x0, 0x80000FFF); /* Clear other 3 regions of MRC3 to invalid */ xrdc_config_mrc_w3_w4(3, 1, 0x0, 0x0); xrdc_config_mrc_w3_w4(3, 2, 0x0, 0x0); xrdc_config_mrc_w3_w4(3, 3, 0x0, 0x0); /* Set MRC4 and MRC5 for DDR access from A35 and AP NIC PER masters */ xrdc_config_mrc_w0_w1(4, 0, CFG_SYS_SDRAM_BASE, PHYS_SDRAM_SIZE); xrdc_config_mrc_dx_perm(4, 0, 1, 1); xrdc_config_mrc_dx_perm(4, 0, 7, 1); xrdc_config_mrc_w3_w4(4, 0, 0x0, 0x80000FFF); xrdc_config_mrc_w0_w1(5, 0, CFG_SYS_SDRAM_BASE, PHYS_SDRAM_SIZE); xrdc_config_mrc_dx_perm(5, 0, 1, 1); xrdc_config_mrc_w3_w4(5, 0, 0x0, 0x80000FFF); /* Set MRC6 for DDR access from ELE */ xrdc_config_mrc_w0_w1(6, 0, CFG_SYS_SDRAM_BASE, PHYS_SDRAM_SIZE); xrdc_config_mrc_dx_perm(6, 0, 4, 1); xrdc_config_mrc_w3_w4(6, 0, 0x0, 0x80000FFF); /* The MRC8 is for SRAM1 */ xrdc_config_mrc_w0_w1(8, 0, 0x21000000, 0x10000); /* Allow for all domains: So domain 2/3 (HIFI DSP/LPAV) is ok to access */ xrdc_config_mrc_dx_perm(8, 0, 0, 1); xrdc_config_mrc_dx_perm(8, 0, 1, 1); xrdc_config_mrc_dx_perm(8, 0, 2, 1); xrdc_config_mrc_dx_perm(8, 0, 3, 1); xrdc_config_mrc_dx_perm(8, 0, 4, 1); xrdc_config_mrc_dx_perm(8, 0, 5, 1); xrdc_config_mrc_dx_perm(8, 0, 6, 1); xrdc_config_mrc_dx_perm(8, 0, 7, 1); xrdc_config_mrc_w3_w4(8, 0, 0x0, 0x80000FFF); /* The MRC6 is for video modules to ddr */ xrdc_config_mrc_w0_w1(6, 0, 0x80000000, 0x80000000); xrdc_config_mrc_dx_perm(6, 0, 3, 1); /* allow for domain 3 video */ xrdc_config_mrc_w3_w4(6, 0, 0x0, 0x80000FFF); } void xrdc_init_pdac_msc(void) { /* Init LPAV PDAC and MSC for DDR init */ xrdc_config_pdac(5, 36, 6, 0x7); /* CMC2*/ xrdc_config_pdac(5, 36, 7, 0x7); xrdc_config_pdac(5, 37, 6, 0x7); /* SIM2 */ xrdc_config_pdac(5, 37, 7, 0x7); xrdc_config_pdac(5, 38, 6, 0x7); /* CGC2 */ xrdc_config_pdac(5, 38, 7, 0x7); xrdc_config_pdac(5, 39, 6, 0x7); /* PCC5 */ xrdc_config_pdac(5, 39, 7, 0x7); xrdc_config_msc(0, 0, 6, 0x7); /* GPIOE */ xrdc_config_msc(0, 0, 7, 0x7); xrdc_config_msc(0, 1, 6, 0x7); /* GPIOF */ xrdc_config_msc(0, 1, 7, 0x7); xrdc_config_msc(1, 0, 6, 0x7); /* GPIOD */ xrdc_config_msc(1, 0, 7, 0x7); xrdc_config_msc(2, 6, 6, 0x7); /* DDR controller */ xrdc_config_msc(2, 6, 7, 0x7); } int trdc_mbc_set_access(u32 mbc_x, u32 dom_x, u32 mem_x, u32 blk_x, bool sec_access) { struct trdc *trdc_base = (struct trdc *)0x28031000U; struct mbc_mem_dom *mbc_dom; u32 *cfg_w, *nse_w; u32 index, offset, val; mbc_dom = &trdc_base->mem_dom[mbc_x][dom_x]; switch (mem_x) { case 0: cfg_w = &mbc_dom->mem0_blk_cfg_w[blk_x / 8]; nse_w = &mbc_dom->mem0_blk_nse_w[blk_x / 32]; break; case 1: cfg_w = &mbc_dom->mem1_blk_cfg_w[blk_x / 8]; nse_w = &mbc_dom->mem1_blk_nse_w[blk_x / 32]; break; case 2: cfg_w = &mbc_dom->mem2_blk_cfg_w[blk_x / 8]; nse_w = &mbc_dom->mem2_blk_nse_w[blk_x / 32]; break; case 3: cfg_w = &mbc_dom->mem3_blk_cfg_w[blk_x / 8]; nse_w = &mbc_dom->mem3_blk_nse_w[blk_x / 32]; break; default: return -EINVAL; }; index = blk_x % 8; offset = index * 4; val = readl((void __iomem *)cfg_w); val &= ~(0xFU << offset); /* MBC0-3 * Global 0, 0x7777 secure pri/user read/write/execute, ELE has already set it. * So select MBC0_MEMN_GLBAC0 */ if (sec_access) { val |= (0x0 << offset); writel(val, (void __iomem *)cfg_w); } else { val |= (0x8 << offset); /* nse bit set */ writel(val, (void __iomem *)cfg_w); } return 0; } int trdc_mrc_region_set_access(u32 mrc_x, u32 dom_x, u32 addr_start, u32 addr_end, bool sec_access) { struct trdc *trdc_base = (struct trdc *)0x28031000U; struct mrc_rgn_dom *mrc_dom; u32 *desc_w; u32 start, end; u32 i, free = 8; bool vld, hit = false; mrc_dom = &trdc_base->mrc_dom[mrc_x][dom_x]; for (i = 0; i < 8; i++) { desc_w = &mrc_dom->rgn_desc_words[i][0]; start = readl((void __iomem *)desc_w) & 0xfff; end = readl((void __iomem *)(desc_w + 1)); vld = end & 0x1; end = end & 0xfff; if (start == 0 && end == 0 && !vld && free >= 8) free = i; /* Check all the region descriptors, even overlap */ if (addr_start >= end || addr_end <= start || !vld) continue; /* MRC0,1 * Global 0, 0x7777 secure pri/user read/write/execute, ELE has already set it. * So select MRCx_MEMN_GLBAC0 */ if (sec_access) { writel(start, (void __iomem *)desc_w); writel(end | 0x1, (void __iomem *)(desc_w + 1)); } else { writel(start, (void __iomem *)desc_w); writel((end | 0x1 | 0x10), (void __iomem *)(desc_w + 1)); } if (addr_start >= start && addr_end <= end) hit = true; } if (!hit) { if (free >= 8) return -EFAULT; desc_w = &mrc_dom->rgn_desc_words[free][0]; addr_start &= ~0xfff; addr_end &= ~0xfff; if (sec_access) { writel(addr_start, (void __iomem *)desc_w); writel(addr_end | 0x1, (void __iomem *)(desc_w + 1)); } else { writel(addr_start, (void __iomem *)desc_w); writel((addr_end | 0x1 | 0x10), (void __iomem *)(desc_w + 1)); } } return 0; }