/* SPDX-License-Identifier: GPL-2.0+ */ /* * Copyright (c) 2011 The Chromium OS Authors. */ /* Tegra clock control functions */ #ifndef _TEGRA_CLOCK_H_ #define _TEGRA_CLOCK_H_ struct udevice; /* Set of oscillator frequencies supported in the internal API. */ enum clock_osc_freq { /* All in MHz, so 13_0 is 13.0MHz */ CLOCK_OSC_FREQ_13_0 = 0, CLOCK_OSC_FREQ_16_8, CLOCK_OSC_FREQ_19_2 = 4, CLOCK_OSC_FREQ_38_4, CLOCK_OSC_FREQ_12_0 = 8, CLOCK_OSC_FREQ_48_0, CLOCK_OSC_FREQ_26_0 = 12, CLOCK_OSC_FREQ_COUNT, }; /* * Note that no Tegra clock register actually uses all of bits 31:28 as * the mux field. Rather, bits 30:28, 29:28, or 28 are used. However, in * those cases, nothing is stored in the bits about the mux field, so it's * safe to pretend that the mux field extends all the way to the end of the * register. As such, the U-Boot clock driver is currently a bit lazy, and * doesn't distinguish between 31:28, 30:28, 29:28 and 28; it just lumps * them all together and pretends they're all 31:28. */ enum { MASK_BITS_31_30, MASK_BITS_31_29, MASK_BITS_31_28, }; #include /* PLL stabilization delay in usec */ #define CLOCK_PLL_STABLE_DELAY_US 300 /* return the current oscillator clock frequency */ enum clock_osc_freq clock_get_osc_freq(void); /* return the clk_m frequency */ unsigned int clk_m_get_rate(unsigned int parent_rate); /** * Start PLL using the provided configuration parameters. * * @param id clock id * @param divm input divider * @param divn feedback divider * @param divp post divider 2^n * @param cpcon charge pump setup control * @param lfcon loop filter setup control * * @returns monotonic time in us that the PLL will be stable */ unsigned long clock_start_pll(enum clock_id id, u32 divm, u32 divn, u32 divp, u32 cpcon, u32 lfcon); /** * Set PLL output frequency * * @param clkid clock id * @param pllout pll output id * @param rate desired output rate * * Return: 0 if ok, -1 on error (invalid clock id or no suitable divider) */ int clock_set_pllout(enum clock_id clkid, enum pll_out_id pllout, unsigned rate); /** * Read low-level parameters of a PLL. * * @param id clock id to read (note: USB is not supported) * @param divm returns input divider * @param divn returns feedback divider * @param divp returns post divider 2^n * @param cpcon returns charge pump setup control * @param lfcon returns loop filter setup control * * @returns 0 if ok, -1 on error (invalid clock id) */ int clock_ll_read_pll(enum clock_id clkid, u32 *divm, u32 *divn, u32 *divp, u32 *cpcon, u32 *lfcon); /* * Enable a clock * * @param id clock id */ void clock_enable(enum periph_id clkid); /* * Disable a clock * * @param id clock id */ void clock_disable(enum periph_id clkid); /* * Set whether a clock is enabled or disabled. * * @param id clock id * @param enable 1 to enable, 0 to disable */ void clock_set_enable(enum periph_id clkid, int enable); /** * Reset a peripheral. This puts it in reset, waits for a delay, then takes * it out of reset and waits for th delay again. * * @param periph_id peripheral to reset * @param us_delay time to delay in microseconds */ void reset_periph(enum periph_id periph_id, int us_delay); /** * Put a peripheral into or out of reset. * * @param periph_id peripheral to reset * @param enable 1 to put into reset, 0 to take out of reset */ void reset_set_enable(enum periph_id periph_id, int enable); /* CLK_RST_CONTROLLER_RST_CPU_CMPLX_SET/CLR_0 */ enum crc_reset_id { /* Things we can hold in reset for each CPU */ crc_rst_cpu = 1, crc_rst_de = 1 << 4, /* What is de? */ crc_rst_watchdog = 1 << 8, crc_rst_debug = 1 << 12, }; /** * Put parts of the CPU complex into or out of reset.\ * * @param cpu cpu number (0 or 1 on Tegra2, 0-3 on Tegra3) * @param which which parts of the complex to affect (OR of crc_reset_id) * @param reset 1 to assert reset, 0 to de-assert */ void reset_cmplx_set_enable(int cpu, int which, int reset); /** * Set the source for a peripheral clock. This plus the divisor sets the * clock rate. You need to look up the datasheet to see the meaning of the * source parameter as it changes for each peripheral. * * Warning: This function is only for use pre-relocation. Please use * clock_start_periph_pll() instead. * * @param periph_id peripheral to adjust * @param source source clock (0, 1, 2 or 3) */ void clock_ll_set_source(enum periph_id periph_id, unsigned source); /** * This function is similar to clock_ll_set_source() except that it can be * used for clocks with more than 2 mux bits. * * @param periph_id peripheral to adjust * @param mux_bits number of mux bits for the clock * @param source source clock (0-15 depending on mux_bits) */ int clock_ll_set_source_bits(enum periph_id periph_id, int mux_bits, unsigned source); /** * Set the source and divisor for a peripheral clock. This sets the * clock rate. You need to look up the datasheet to see the meaning of the * source parameter as it changes for each peripheral. * * Warning: This function is only for use pre-relocation. Please use * clock_start_periph_pll() instead. * * @param periph_id peripheral to adjust * @param source source clock (0, 1, 2 or 3) * @param divisor divisor value to use */ void clock_ll_set_source_divisor(enum periph_id periph_id, unsigned source, unsigned divisor); /** * Returns the current parent clock ID of a given peripheral. This can be * useful in order to call clock_*_periph_*() from generic code that has no * specific knowledge of system-level clock tree structure. * * @param periph_id peripheral to query * Return: clock ID of the peripheral's current parent clock */ enum clock_id clock_get_periph_parent(enum periph_id periph_id); /** * Start a peripheral PLL clock at the given rate. This also resets the * peripheral. * * @param periph_id peripheral to start * @param parent PLL id of required parent clock * @param rate Required clock rate in Hz * Return: rate selected in Hz, or -1U if something went wrong */ unsigned clock_start_periph_pll(enum periph_id periph_id, enum clock_id parent, unsigned rate); /** * Returns the rate of a peripheral clock in Hz. Since the caller almost * certainly knows the parent clock (having just set it) we require that * this be passed in so we don't need to work it out. * * @param periph_id peripheral to start * @param parent PLL id of parent clock (used to calculate rate, you * must know this!) * Return: clock rate of peripheral in Hz */ unsigned long clock_get_periph_rate(enum periph_id periph_id, enum clock_id parent); /** * Adjust peripheral PLL clock to the given rate. This does not reset the * peripheral. If a second stage divisor is not available, pass NULL for * extra_div. If it is available, then this parameter will return the * divisor selected (which will be a power of 2 from 1 to 256). * * @param periph_id peripheral to start * @param parent PLL id of required parent clock * @param rate Required clock rate in Hz * @param extra_div value for the second-stage divisor (NULL if one is not available) * Return: rate selected in Hz, or -1U if something went wrong */ unsigned clock_adjust_periph_pll_div(enum periph_id periph_id, enum clock_id parent, unsigned rate, int *extra_div); /** * Returns the clock rate of a specified clock, in Hz. * * @param parent PLL id of clock to check * Return: rate of clock in Hz */ unsigned clock_get_rate(enum clock_id clkid); /** * Start up a UART using low-level calls * * Prior to relocation clock_start_periph_pll() cannot be called. This * function provides a way to set up a UART using low-level calls which * do not require BSS. * * @param periph_id Peripheral ID of UART to enable (e,g, PERIPH_ID_UART1) */ void clock_ll_start_uart(enum periph_id periph_id); /** * Decode a peripheral ID from a device tree node. * * This works by looking up the peripheral's 'clocks' node and reading out * the second cell, which is the clock number / peripheral ID. * * @param blob FDT blob to use * @param node Node to look at * Return: peripheral ID, or PERIPH_ID_NONE if none */ int clock_decode_periph_id(struct udevice *dev); /** * Get periph clock id and its parent from device tree. * * This works by looking up the peripheral's 'clocks' node and reading out * the second and fourth cells, which are the peripheral and PLL clock numbers. * * @param dev udevice associated with FDT node * @param clk_id pointer to int array of 2 values * first is periph clock, second is * its PLL parent according to FDT. */ int clock_decode_pair(struct udevice *dev, int *clk_id); /** * Checks if the oscillator bypass is enabled (XOBP bit) * * Return: 1 if bypass is enabled, 0 if not */ int clock_get_osc_bypass(void); /* * Checks that clocks are valid and prints a warning if not * * Return: 0 if ok, -1 on error */ int clock_verify(void); /* Initialize the clocks */ void clock_init(void); /* Initialize the PLLs */ void clock_early_init(void); /* @return true if hardware indicates that clock_early_init() was called */ bool clock_early_init_done(void); /* Returns a pointer to the clock source register for a peripheral */ u32 *get_periph_source_reg(enum periph_id periph_id); /* Returns a pointer to the given 'simple' PLL */ struct clk_pll_simple *clock_get_simple_pll(enum clock_id clkid); /* * Given a peripheral ID, determine where the mux bits are in the peripheral * clock's register, the number of divider bits the clock has, and the SoC- * specific clock type. * * This is an internal API between the core Tegra clock code and the SoC- * specific clock code. * * @param periph_id peripheral to query * @param mux_bits Set to number of bits in mux register * @param divider_bits Set to the relevant MASK_BITS_* value * @param type Set to the SoC-specific clock type * Return: 0 on success, -1 on error */ int get_periph_clock_info(enum periph_id periph_id, int *mux_bits, int *divider_bits, int *type); /* * Given a peripheral ID and clock source mux value, determine the clock_id * of that peripheral's parent. * * This is an internal API between the core Tegra clock code and the SoC- * specific clock code. * * @param periph_id peripheral to query * @param source raw clock source mux value * Return: the CLOCK_ID_* value @source represents */ enum clock_id get_periph_clock_id(enum periph_id periph_id, int source); /** * Given a peripheral ID and the required source clock, this returns which * value should be programmed into the source mux for that peripheral. * * There is special code here to handle the one source type with 5 sources. * * @param periph_id peripheral to start * @param source PLL id of required parent clock * @param mux_bits Set to number of bits in mux register: 2 or 4 * @param divider_bits Set to number of divider bits (8 or 16) * Return: mux value (0-4, or -1 if not found) */ int get_periph_clock_source(enum periph_id periph_id, enum clock_id parent, int *mux_bits, int *divider_bits); /* * Convert a device tree clock ID to our peripheral ID. They are mostly * the same but we are very cautious so we check that a valid clock ID is * provided. * * @param clk_id Clock ID according to tegra30 device tree binding * Return: peripheral ID, or PERIPH_ID_NONE if the clock ID is invalid */ enum periph_id clk_id_to_periph_id(int clk_id); /* * Convert a device tree clock ID to our PLL ID. * * @param clk_id Clock ID according to tegra device tree binding * Return: clock ID, or CLOCK_ID_NONE if the clock ID is invalid */ enum clock_id clk_id_to_pll_id(int clk_id); /** * Set the output frequency you want for each PLL clock. * PLL output frequencies are programmed by setting their N, M and P values. * The governing equations are: * VCO = (Fi / m) * n, Fo = VCO / (2^p) * where Fo is the output frequency from the PLL. * Example: Set the output frequency to 216Mhz(Fo) with 12Mhz OSC(Fi) * 216Mhz = ((12Mhz / m) * n) / (2^p) so n=432,m=12,p=1 * Please see Tegra TRM section 5.3 to get the detail for PLL Programming * * @param n PLL feedback divider(DIVN) * @param m PLL input divider(DIVN) * @param p post divider(DIVP) * @param cpcon base PLL charge pump(CPCON) * Return: 0 if ok, -1 on error (the requested PLL is incorrect and cannot * be overridden), 1 if PLL is already correct */ int clock_set_rate(enum clock_id clkid, u32 n, u32 m, u32 p, u32 cpcon); /* return 1 if a peripheral ID is in range */ #define clock_type_id_isvalid(id) ((id) >= 0 && \ (id) < CLOCK_TYPE_COUNT) /* return 1 if a periphc_internal_id is in range */ #define periphc_internal_id_isvalid(id) ((id) >= 0 && \ (id) < PERIPHC_COUNT) /* SoC-specific TSC init */ void arch_timer_init(void); void tegra30_set_up_pllp(void); /* Number of PLL-based clocks (i.e. not OSC, MCLK or 32KHz) */ #define CLOCK_ID_PLL_COUNT (CLOCK_ID_COUNT - 3) struct clk_pll_info { u32 m_shift:5; /* DIVM_SHIFT */ u32 n_shift:5; /* DIVN_SHIFT */ u32 p_shift:5; /* DIVP_SHIFT */ u32 kcp_shift:5; /* KCP/cpcon SHIFT */ u32 kvco_shift:5; /* KVCO/lfcon SHIFT */ u32 lock_ena:6; /* LOCK_ENABLE/EN_LOCKDET shift */ u32 rsvd:1; u32 m_mask:10; /* DIVM_MASK */ u32 n_mask:12; /* DIVN_MASK */ u32 p_mask:10; /* DIVP_MASK or VCO_MASK */ u32 kcp_mask:10; /* KCP/CPCON MASK */ u32 kvco_mask:10; /* KVCO/LFCON MASK */ u32 lock_det:6; /* LOCK_DETECT/LOCKED shift */ u32 rsvd2:6; }; extern struct clk_pll_info tegra_pll_info_table[CLOCK_ID_PLL_COUNT]; struct periph_clk_init { enum periph_id periph_id; enum clock_id parent_clock_id; }; extern struct periph_clk_init periph_clk_init_table[]; /** * Enable output clock for external peripherals * * @param clk_id Clock ID to output (1, 2 or 3) * Return: 0 if OK. -ve on error */ int clock_external_output(int clk_id); #endif /* _TEGRA_CLOCK_H_ */